Comparison of Parallel Computing
in Mathematica 10 and Maple 2015

Maplesoft marketing literature claims that Mathematica’s parallel programming requires
“complicated message-passing between nodes to communicate context and state. This style of
parallel programming takes longer to develop and debug, and generally requires an experienced
programmer.”

This document will show that the reality is the complete reverse of this statement. Mathematica
requires less programming to achieve a more robust and faster result.

To show this, we take a Maplesoft marketing example for its parallel programming tools (from
www.maplesoft.com/products/maple/features/gridcomputing.aspx, presumed to be an example of
best practice for Maple) and implement the same task in Mathematica.

Maple

The document starts by creating a simple Monte Carlo integrator called parallelApproxint (code for
this is at the end of this document). Maple then parallelizes this procedure with the following code:

parallelApproxint := proc(expr, lim::name=numeric..numeric,
{ numSamples::integer := 1000 })
uses Grid;
local me, numNodes, r, n;

me := MyNode();

numNodes := NumNodes();

n := trunc(numSamples/numNodes);

r:=approxint(expr, lim, numsamples = n);

printf (“Node %d compute result %a using %d samples\n”, me, r, n);

if me = 0 then

r := (r+add(Receive(), i=1l..numNodes-1)) / numNodes;
else
Send(0,r):
end if;
end proc:

Grid:-Setup(“hpc”);
Grid:-Launch(parallelApproxint, x"2,x=1..3,numSamples=10"7,
imports=[‘approxint’], numnodes=16);

Mathematica

The Mathematica equivalent is much simpler:

parrallelApproxInt[args__, n_Integer] n:Mean[
ParallelTable[approxInt[args, Floor[n//skerneICount]], {$Kerne1Count}]];
parrallelApproxInt[x~2, {x, 1, 3}, 10"7]

Comparison of Parallel Computing in Mathematica 10 and Maple 2015 | 1

http://www.maplesoft.com/products/maple/features/gridcomputing.aspx

Key observations

There are sevaral important differences to note:

= Despite the Maplesoft claim that Mathematica requires complicated messaging, it is only the
Maple version that requires the user to write explicit messaging commands (Send and Receive).
Messaging between nodes is entirely automated within Mathematica.

= In the Maple code, the user must explicitly list functions that must be passed to the compute node
(using imports=['approxint']). Mathematica automatically distributes definitions that will be
needed by the remote nodes.

= The Maple user must explicitly start up the computation nodes using Grid:-Setup("hpc").
Mathematica starts these automatically when first required.

m The user does not have to state the number of nodes in the Mathematica version. This means
that the Mathematica code will adapt to the environment, automatically knowing the number of
CPUs available to it.

m The Maple programmer is responsible for ensuring that Receive () is called for each of the
nodes (tracked using the counter i in the code). Mathematica does this automatically.

= In the Maple code, Grid:-Setup("hpc") is used to explicitly declare that the code should use
remote hardware (as opposed to local processes on the same computer Grid: -
Setup(“local”)). The Mathematica code will automatically distribute work to remote CPUs if
it is aware of any, as well as to any local ones.

» Mathematica will automatically handle re-queueing of tasks to a new compute node should the
node fail or become otherwise unavailable. There is no provision in the Maple example for node
failure recovery.

Mathematica's rich automation allows the user to avoid most of the complexities of parallel program-
ming, while Maple's bare-bones implementation of the basic concepts leaves much more of the
work to the user.

Performance

The principle reason for parallelization is to improve speed.

Comparing the execution time of the two implementations reveals Mathematica to be a massive 30
times faster. Using this code, Maple would need a 128 CPU cluster to be able to match the perfor-
mance of Mathematica running on a typical quad-core desktop computer.

Test performed using Mathematica 10.3 and Maple 2015.1 on a Windows 7 64-bit PC with Intel Core i7 3.07 GHz with 24GB RAM.
Timings are for parallel code execution only and exclude computation engine acquisition time.

Maple code was adjusted to use Grid:-Setup(“local”) and numnodes=4.

Timings averaged over five executions of the code were Maple: 5.312 seconds, Mathematica: 0.174 seconds.

Comparison of Parallel Computing in Mathematica 10 and Maple 2015 | 2

Appendix: Code for approxint

Maple

The code for the simple Monte Carlo integrator used is as follows:

approxint := proc(expr, r::name-numeric..numeric,
{ numsamples::integer := 1000 })
local f, randvals;

f:= “if " (type(expr, procedure), expr, unapply(expr,lhs(r)));

randomize();
randvals := LinearAlgebra:-RandomVector (numsamples,
generator=evalf(rhs(r)), datatype=float[8]);
(add(f(randvals[i]), i=l..numsamples)/numsamples) *
(rhs(rhs(r)) - lhs(rhs(r)));
end proc:

Mathematica

The same function implemented in Mathematica is more compact:

approxInt[expr_, {var_Symbol, low_?NumericQ, high_?NumericQ}, n_: 1000] :=
Mean[Function[{var},expr]/@RandomReal[{low,high},n]]*(high—low)

For more comparison information, see
www.wolfram.com/mathematica/compare-mathematica/compare-mathematica-and-maple.html.

Maple® is a trademark of Maplesoft Inc.

Comparison of Parallel Computing in Mathematica 10 and Maple 2015 | 3

