Quantum Hamiltonian

In standard quantum mechanics, systems evolve according to the Schrödinger equation , where is a Hermitian matrix called the Hamiltonian. The following are possible Hamiltonians.

 In[1]:= X\[ScriptCapitalH]1 = {{0, -I}, {I, 0}}; \[ScriptCapitalH]2 = {{1, 0, 1 + I}, {0, 1, 0}, {1 - I, 0, 2}};
 In[2]:= X{HermitianMatrixQ[\[ScriptCapitalH]1], HermitianMatrixQ[\[ScriptCapitalH]2]}
 Out[2]=

The following matrices cannot be quantum Hamiltonians because they are not Hermitian.

 In[3]:= Xbad1 = {{0, 1}, {-1, 0}}; bad2 = {{1, 0, I}, {0, 1 - I, 2}, {-I, 1 + I, 5}};
 Out[4]=

The matrix exponential is called the time-evolution operator and is always a unitary matrix (assuming the time and Planck's constant are real).

 In[5]:= Xu1 = MatrixExp[-((I \[ScriptCapitalH]1)/\[HBar]) t]
 Out[5]=
 In[6]:= Xu2 = MatrixExp[-((I \[ScriptCapitalH]2)/\[HBar]) t]
 Out[6]=
 In[7]:= XFunction[m, UnitaryMatrixQ[m, SameTest -> (Simplify[#1 == #2, {t, \[HBar]} \[Element] Reals] &)]] /@ {u1, u2}
 Out[7]=

Mathematica

Questions? Comments? Contact a Wolfram expert »