# Prepare uma tabela de transformações especiais

Prepare uma tabela de transformações especiais de variáveis aleatórias que gere distribuições paramétricas incorporadas.
 In[1]:= Xspecialtransformations = {HoldForm[ TransformedDistribution[a x + b, x \[Distributed] NormalDistribution[\[Mu], \[Sigma]]]], HoldForm[ TransformedDistribution[Sqrt[x], x \[Distributed] ExponentialDistribution[1]]], HoldForm[ TransformedDistribution[x^2, x \[Distributed] StudentTDistribution[\[Nu]]]], HoldForm[ TransformedDistribution[ Sqrt[x^2 + y^2], {x, y} \[Distributed] BinormalDistribution[{a, b}, {c, d}, e]]], HoldForm[ TransformedDistribution[Tan[x], x \[Distributed] UniformDistribution[{-Pi/2, Pi/2}]]], HoldForm[ TransformedDistribution[ x + y + z, {x, y, z} \[Distributed] ProductDistribution[{PoissonDistribution[\[Mu]], 3}]]], HoldForm[ TransformedDistribution[ Min[x, y], {x \[Distributed] GeometricDistribution[Subscript[p, 1]], y \[Distributed] GeometricDistribution[Subscript[p, 2]]}]], HoldForm[ TransformedDistribution[ x - y, {x \[Distributed] PoissonDistribution[Subscript[\[Mu], 1]], y \[Distributed] PoissonDistribution[Subscript[\[Mu], 2]]}]], HoldForm[ TransformedDistribution[Exp[u], u \[Distributed] NormalDistribution[\[Mu], \[Sigma]]]]};
 In[2]:= XFormulaGallery[forms_List] := Module[{vals = ParallelMap[ReleaseHold, forms]}, TraditionalForm@ Grid[Join[{Style[#, Bold] & /@ {"Derived Distribution", " ", "Parametric Equivalent"}}, Table[{forms[[i]], "\[Rule]", vals[[i]]}, {i, Length[forms]}]], Dividers -> {{}, All}, Spacings -> {{2, {2}, 1}, 5}, Alignment -> {{Left, Left, Left}, Baseline}, BaseStyle -> {FontFamily -> "Verdana"}, Background -> {None, {Lighter[Blend[{Blue, Green, Blue}], 0.4], {Lighter[Blend[{Blue, Green, Blue}], 0.7], GrayLevel[.9]}}}, FrameStyle -> Directive[Thick, White]]];
 In[3]:= XFormulaGallery[specialtransformations]