# Find Conditions for Stationarity and Invertibility of Time Series Processes

#### Find conditions for an ARMAProcess[2, 2] to be weakly stationary using WeakStationarity.

 In[1]:= Xarma = ARMAProcess[{Subscript[a, 1], Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2]}, \[Sigma]]; ws = WeakStationarity[arma]
 Out[1]=
 In[2]:= XRegionPlot[ws, {Subscript[a, 1], -2, 2}, {Subscript[a, 2], -2, 2}, GridLines -> Automatic]
 Out[2]=

#### Find an instance of a weakly stationary ARMAProcess[2, 2].

 In[3]:= Xaspt = ProcessParameterAssumptions[arma]; rest = Subscript[a, 1] != 0 && Subscript[a, 2] != 0 && Subscript[b, 1] != 0 && Subscript[b, 2] != 0 && \[Sigma] != 0; wsARMA = arma /. FindInstance[ ws && rest && aspt, {Subscript[a, 1], Subscript[a, 2], Subscript[ b, 1], Subscript[b, 2], \[Sigma]}][[1]]
 Out[3]=

#### Check that the process is weakly stationary.

 In[4]:= XWeakStationarity[wsARMA]
 Out[4]=

#### Find conditions for an ARMAProcess[2, 2] to be invertible using TimeSeriesInvertibility.

 In[5]:= Xin = TimeSeriesInvertibility[arma]
 Out[5]=
 In[6]:= XRegionPlot[in, {Subscript[b, 1], -2, 2}, {Subscript[b, 2], -2, 2}, GridLines -> Automatic]
 Out[6]=

#### Find an instance of an invertible ARMAProcess[2, 2].

 In[7]:= Xaspt = ProcessParameterAssumptions[arma]; rest = Subscript[a, 1] != 0 && Subscript[a, 2] != 0 && Subscript[b, 1] != 0 && Subscript[b, 2] != 0 && \[Sigma] != 0; invARMA = arma /. FindInstance[ in && rest && aspt, {Subscript[a, 1], Subscript[a, 2], Subscript[ b, 1], Subscript[b, 2], \[Sigma]}][[1]]
 Out[7]=

#### Check that the process is invertible.

 In[8]:= XTimeSeriesInvertibility[invARMA]
 Out[8]=