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Summary

The objective of MathOptimizer is to find the best solution of a general class of real-valued, constrained
optimization problems. In numerical practice, this means the generation of an approximate solution(s), on
the basis of a finite number of model function evaluations, possibly including the use of higher-order
information.

The primary current area of MathOptimizer applications is nonlinear programming, specifically including
global (multiextremal) optimization models. MathOptimizer can also be applied to solve linear program-
ming problems (which in principle belong to its more general scope), and certain — as a rule, smaller —
integer programming models.



The following standardized model form is considered:
minimize f(x)

subject to the constraints

gx)=0

h(x) <0

xlb < x < xub

Here x is a real vector, f is a scalar objective function, the vector functions g and h are the (equality and
inequality) constraints.

The finiteness of the component-wise bounds x1b and xub is assumed. All model functions f, g , h are
assumed to be real-valued and (at least) continuous. The individual function lists for f, g and h may be
empty, but at least one of these lists is supposed to be non-empty. This means that, for instance, systems
of nonlinear equations and model feasibility problems naturally belong to the scope of this general model.

Note additionally that all well-posed, but seemingly more general optimization models can be brought to
the above form by elementary transformations. This formulation also includes the broad class of combina-
torial (discrete) optimization models. However, MathOptimizer currently is not targeted to handle such
models, at least not with competitive efficiency. (A related extension is planned soon.)

MathOptimizer provides a state-of-art combination of global and local search procedures to solve — in
principle, 'all possible' — instances of the general optimization model stated above. The built-in solvers
can be used in a variety of operational modes, and they can be flexibly tuned by setting and adjusting
their documented options.

This User Guide (following technical and legal notes) briefly reviews the background of MathOptimizer.
This is followed by a detailed description of its usage, a concise discussion of modeling tips, and a fairly
extensive exposition related to the solution of various test problems. Some important aspects of the
modeling process are also explained, and new users are advised to work through the examples provided,
quite possibly including model changes, as well as your own 'favorite' tests. The last section of the Guide
contains a few illustrative applications (more will be added), and the bibliography section provides
pointers towards further details for the interested Reader.

One of the great advantages of using Mathematica (and, hence, of MathOptimizer) is that the entire
application development process can be documented in a single 'live' notebook that enables sophisticated
project documentation (with embedded multimedia components as deemed necessary), while it also fully
supports the actual software development and computational work. Mathematica notebooks (being
ordinary text files) are portable across all supported platforms: therefore they enable convenient and
compact information exchange with research colleagues and clients.

The MathOptimizer User Guide assumes that the Reader is familiar with the essential concepts of
nonlinear and global optimization and these are discussed only briefly. The algorithmic options are
explained in sufficient detail, to support their intelligent usage; and a list of reference books is provided
to assist the Reader.

It is also assumed that the Reader is reasonably comfortable working with Mathematica. If this is not the
case, then an introductory training course, or an in-depth self-study course — using simultaneously an
introductory level text and a computer, with the Mathematica Book at arms-length — is strongly recom-
mended. Several books on Mathematica (from introductory to advanced level) are also listed in the
bibliography section. In addition, there is a huge amount of useful information at the Web site of Wol-
fram Research, http://www.wri.com.
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System Requirements and Installation

Hardware and Software Requirements

MathOptimizer will run on all hardware platforms for which a (current) Mathematica implementation
and support is available from Wolfram Research. MathOptimizer has been developed and tested mostly
using Mathematica Versions 4.0 and 4.1, but earlier versions (3.5, 3.0, and even 2.2) should also be
sufficient. A full installation of Mathematica, as well as the usage of at least Version 3.0 is recom-
mended.

Most of the examples included in this Guide typically can be solved in seconds, or at most in a few
minutes on a Pentium II class personal computer with 128 Mbytes of RAM, when using Mathematica 4.0
(or later versions). The solution of large, complex optimization models will obviously benefit from more
RAM and a faster processor, while — at least for demonstration purposes — any Pentium class PC with
64 Mbytes of RAM should work without problems.

The illustrative examples discussed below were solved (often in a fraction of a second) on a Pentium IV
1.6 GHz processor based machine with 256 MBytes of RAM, but a Celeron 433 MHz, 192 MBytes
RAM laptop — with the estimated computing power of a Pentium I 300 MHz machine — was also
successfully used during the tests (solving the same models about 4 to 6 times slower).

Installation

The current MathOptimizer installation file system can be obtained on CD or diskette(s) media, or it can
be obtained via e-mail (following a proper licensing procedure). The directory structure on the media
(using standard PC notation) is as follows:



\MathOptimizer: this folder (directory) contains the current set of MathOptimizer distribution packages
(.m files, typically in encoded format).

\MathOptimizer\Documentation\English: this subdirectory contains the current User Guide (a notebook
file), and the corresponding browser categories (an .m file), possibly in zipped format. (Use WinZip or a
similar utility for zipped file delivery systems, after copying them into the directory specified below.)

Additional delivery files (technical notes etc.) may also be present.
Version 4.x

To install MathOptimizer, place (copy) the MathOptimizer folder directly in the Mathematica 4.x Files\-
AddOns\Applications folder. (The name of the actual main Mathematica folder may be different on your
own machine, but the subdirectory structure should be the same as above.) Then start Mathematica and
select Help—Rebuild Help Index from the front end menu to install the MathOptimizer documentation
in the help system.

Upon installation, the AddOns\Applications\MathOptimizer folder will contain, the package distribution
files, and the \Documentation\English folder.

The package files (possibly in operating system specific executable only versions) are intended for
loading into Mathematica using the Needs or Get command. The documentation consists of standard
notebook (plain text) files, and it is the same for all operating systems.

Versions 3.0 and 3.5

The procedure is essentially identical to the above. To install MathOptimizer, place the MathOptimizer
folder in the Mathematica 3.x Files\AddOns\Applications folder. Then start Mathematica and select
Help—Rebuild Help Index from the front end menu to install the MathOptimizer documentation in the
help system.

Technical Support and Legal Issues

Technical Support and Contact Information

Licensed users are entitled to technical support. MathOptimizer is developed and supported by
Pintér Consulting Services, Inc.

129 Glenforest Drive, Halifax, NS, Canada B3M 1J2.

Tel. 1-902-443-5910  (24-hours message service available)

E-mail: jdpinter@hfx.eastlink.ca

Please note that e-mail is the preferred way of communication, except in cases of extreme urgency;
consulting fees may be charged for direct assistance via telephone.

Please let us know of your opinion, questions and problems related to using MathOptimizer and this User
Guide. New modeling challenges are also of interest.



Consulting, workshops and tutorials, as well as customized software development — related to MathOpti-
mizer and to other advanced system modeling and optimization projects — are also offered by Pintér
Consulting Services.

Copyright Notice

The MathOptimizer program system has been developed by Janos D. Pintér, Ph.D., D.Sc.
MathOptimizer is a trademark of Pintér Consulting Services, Inc.
Copyright (C) 2002 by Pintér Consulting Services, Inc., Halifax, NS, Canada.

Neither the MathOptimizer software, nor this User Guide or parts thereof may be copied, reproduced,
translated, engineered or reduced to any readable or interpretable form, without the express written
consent of Pintér Consulting Services, Inc., except as permitted by the Software License Agreement.

License Agreement

Software License

The MathOptimizer program system and its entire documentation (referred to below as the 'Product') is
the property of Pintér Consulting Services, Inc., Halifax, NS, Canada (abbreviated below as 'PCS').

PCS grants you, an individual or an organization (referred to below as 'User'), the right to use the MathOp-
timizer software that you have received from an authorized dealer, following a proper licensing proce-
dure.

The Product may be stored and used on one or several computers, as long as you have a correesponding
valid license and you are its only User.

The licensed User may not make available for use the software to any other party, in any format, without
a proper licensing agreement. Multiple simultaneous (or separate) licenses are available from PCS and its
authorized partners. Please contact PCs and its partners for such licensing details.

Limited Warranty

The MathOptimizer software is provided 'as is', without warranty of any kind, regarding its usability for a
specific purpose. The entire risk as to the results and the performance of the Product is assumed by the
User. PCS disclaims all warranties, either express or implied, including but not limited to implied
warranties of merchantability, and fitness for a particular purpose, with respect to the entire Product.

In no event will PCS be liable for any business related damages (including but not limited to: loss of
profits, business interruption, loss of information, and the like) arising out of the use or inability to use
the Product.

PCS guarantees that all shipped Products are free from defects in materials and workmanship under
normal use and service for a period of 90 days.

The functionality of the Product is also guaranteed to the specific details and examples, exactly as
documented by this User Guide.

Product Replacement and Returns

PCS offers replacement of the Product, if it arrives in unusable form (due to damage caused during
shipment). Only shipping and handling charges apply in such cases of replacement.



Product returns are accepted within 30 days with a full refund, except shipping and handling charges that
apply also in such cases. Return expenses are also to be covered by the User: All returned items have to
be in resellable (as if brand new) condition.

A brief explanation regarding the reason for return will be much appreciated: PCS will make every
reasonable effort to keep all MathOptimizer users satisfied.

Product Upgrades

It is planned to add features to the MathOptimizer product: users will be offered the opportunity to
purchase upgrades, at a full deduction of the price already paid. Shipping and handling charges will
typically be payable also in such cases.

Mathematical Background Notes

Scope of Application

MathOptimizer is primarily aimed at the solution of the most general (solvable) class of constrained
optimization problems. It provides a combination of advanced global and local search procedures for
optimizing the value of a given objective function subject to a finite collection of equality and inequality
constraints.

Although, at least in principle, MathOptimizer can be used to solve arbitrary — linear or nonlinear —
optimization models, the current main emphasis is on the continuous nonlinear case. This very general
class of models includes 'traditional' (convex) nonlinear optimization. In addition, it includes the far more
general case of global optimization problems: these are typically defined by a multimodal objective
function on a simple 'box' region, on a linearly constrained set, or on a possibly far more complicated
(nonconvex and even disconnected) feasible solution set.

The picture below illustrates the potential difficulty of continuous optimization models encompassed by
MathOptimizer. Although the feasible set is just a two-dimensional 'box’, the objective function is highly
multimodal. Hence, the application of a purely local scope solver — as a general rule — will not enable
the finding of the best solution (even in much simpler cases). This illustrative example actually will be
discussed later on, as one of the numerical challenges.
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Methodology and lllustrative References

MathOptimizer combines several local and global scope algorithmic approaches, to support the robust
and efficient solution of global as well as local (linear or nonlinear) optimization models.

The global solver approach is based on state-of-art research. The core of the current implementation is a
stochastic search algorithm combined with statistically based reasoning. (Theoretically, this method will
be globally convergent with probabilty one, as the sample size tends to infinity.)

The current local solver is based on Lagrangian duality theory in convex optimization. In its operations,
it uses the built-in function FindMinimum that serves for unconstrained (local) optimization. (Theoreti-
cally, this method will be locally convergent for sufficiently smooth models.)

Due to the primary objectives and intended scope of this User Guide, there is no reason and room here to
discuss the underlying mathematical optimization theory that leads to the strategies embedded in MathOp-
timizer. A few illustrative references are cited below, a more complete list is provided at the end of this
Guide. Several of the references also include an extensive discussion of nonlinear / global optimization
applications.

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993) Nonlinear Programming: Theory and Algorithms.
Wiley, New York.

Bertsekas, D.P. (1999) Nonlinear Programming. (2nd edn.) Athena Scientific, Cambridge, MA.

Edgar, T.F., Himmelblau, D.M, and Lasdon, L.S. (2001) Optimization of Chemical Processes. McGraw-
Hill, New York.

Hillier, F.S. and Lieberman, G.J. (1986) Introduction to Operations Research. (4th edn.) Holden Day,
CA.



Horst, R. and Pardalos, P.M., eds. (1995) Handbook of Global Optimization, Vol. 1. Kluwer Academic
Publishers, Dordrecht / Boston / London.

Papalambros, P.Y. and Wilde, D.J. (2000) Principles of Optimal Design, Cambridge University Press,
UK.

Pardalos, P.M. and Romeijn, H.E., eds. (2002) Handbook of Global Optimization, Vol. 2. Kluwer
Academic Publishers, Dordrecht / Boston / London.

Pintér, J.D. (1996) Global Optimization in Action, Kluwer Academic Publishers, Dordrecht / Boston /
London.

Roos, C. and Terlaky, T. (1998) Nonlinear Optimization, TU Delft, The Netherlands.

Model Formulation, Input and Output Information

Input Information Standard Names

(optional, used in most examples in this User Guide)

X vector of decision variables vars
xlb finite lower bound vector of x varlb
xub  finite upper bound vector of x varub
xnom (or Xxinit) nominal (or initial) value of x varnom
f(x)  (scalar) objective function objf
g(x)  vector of equality constraints eqs
h(x)  vector of inequality constraints ineqs

Model Formulation

The following standardized model form is considered throughout this User Guide:
minimize f(x)

subject to the constraints

g(x) =0

h(x) <0

xlb < x < xub

Note that all (formally more general) constrained optimization models can be brought to the above form
by elementary transformations. The individual function lists for f, g and h may be empty, but at least one
of these lists is non-empty.

Basic Assumptions and Explanatory Notes

All model functions f, g, h are assumed to be at least computable and continuous over the domain
[x1Ib,xub]: this guarantees the theoretical convergence of the global (sub)algorithms used. Note that in the
context of the built-in local scope search methodology, the (local) smoothness of the model functions is
also tacitly postulated.
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The explicit consideration of lower and upper bounds x1b and xub is necessary, since the existence of the
global solution (set) is guaranteed only by the existence of such known, finite bounds. It is assumed that
x1b < xub component-wise, and that xlb < xnom < xub.

Output of Results

- the optimal solution vector found (i.e., numerically estimated) by the algorithm

- the estimated optimum value

- constraint function values at optimum estimate

- aggregated merit (exact penalty) function value at optimum estimate (following a global search phase)
- statistically established global bound for optimum value (following a global search phase)

- constraint satisfaction/violation level (following a local search phase)

- Kuhn-Tucker conditions: satisfaction/violation level (following a local search phase)

- complementary slackness conditions: satisfaction/violation level (following a local search phase)

Depending on the solver options and combinations used, some of this information may be suppressed in
the final result. By selecting a detailed reporting option, the full set of solver messages may be reported
to the Messages window, in addition to the final result that appears in the user's own application note-
book.

MathOptimizer Usage Definitions and Options

m Activate MathOptimizer

In order to invoke MathOptimizer, the user simply enters

Needs[ " Mat hOpti m zer Optim ze "];

$Cont ext Pat h

{Mat hOptim zer Optinize , MathQptim zer CNLP,
Mat hOptimi zer” M5, @ obal °, System }

This yields the output shown above. (Make sure to select 'No', if Mathematica asks you about evaluating
all initialization cells.)

Note that the context path query shown above serves only for verifying the correct context settings:
although it is not essential, it may be wise to routinely use this simple check, to avoid seemingly
'puzzling' behaviour later.
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m Optimize Function Definition and Options

The package Optimize serves to integrate the currently available solver options. Basic information
regarding its usage can be invoked as shown below.

?0ptini ze

Optimze[f, g, h, x, xinit, xlb, xub, opts] integrates the
current solver options of the MathOpti m zer system of
packages. These packages together serve to find - that is,
to nunerically approxinmate - the solution of the follow ng
general constrained optinization problem mnimze f (x)
subject to g(x)=0 and h(x)<=0, x is a real vector froma
given finite interval range [xlb, xub], xinit is a |list
of initial (nomnal) values for x. Al npbdel functions
are assuned to be continuous, g and h are |ists of
Mat hemati ca expressions. MathOptim zer is based on a
combi nation of global and | ocal scope search procedures:
these can be used via calling Optimze in a flexible
manner, in suitable conbinations or in a stand-al one node,
with corresponding sets of options. Optinize returns the
sol ution vector, and additional nodel information (as
described in detail with respect to the individual solver
options). The synbolic argunent opts denotes a |list of
usage possiblities: please use Options[Optinize] to display
these. The current sol ver option packages are M5 and
CNLP: for further information on these, type ?MS or ?CNLP

The options of the package Optimize can be queried as shown below.

Options[Optim ze]
{Version - 1., d obal Sol ver Mbde - 1,
Local Sol ver Mode - 1, ReportLevel - 0}

?d obal Sol ver Mode

A obal Sol verMbde is an Optimze option. Its default setting
is 1. in this case the gl obal scope search node option
1 (currently set to the algorithm M) is applied. The
gl obal search node can al so be used on its own, by setting
A obal Sol ver Mbde -> 1 and Local Sol ver Mode -> 0. For further
informati on regardi ng the gl obal solver nbde M5, type ?MS



? Local Sol ver Mbde

Local Sol ver Mode is an Optimize option. Its default setting
is 1: in this case the |local scope search node option 1
(currently set to the algorithm CNLP) is applied. The
| ocal search nmode can al so be used on itw own, by setting
A obal Sol ver Mbde -> 0 and Local Sol ver Mode -> 1. For further
i nformati on regarding the |ocal solver node CNLP, type ?CNLP

? Report Level

ReportLevel is an Optinize option. If it is set to 1, then al
results are reported in the formof item zed nmessages.
For the default setting ReportlLevel -> 0, the solution
information is provided only in a concise list format.

m MS Function Definition and Options

The options of the solver package MS can be queried as shown below.

? M5

Ms[f, g, h, x, xinit, xlb, xub, opts] is an adaptive
stochastic (Multi Start based) search procedure which
nunerically approxi mates the gl obal solution of the
foll owi ng general, possibly nultiextremal constrained
optinization problem mnimze f (x) subject to g(x)=0 and
h(x)<=0. It is assuned that the real vector x belongs to
a given finite interval range [xlb, xub], xinit is a list
of initial (nomnal) values for x. The objective f and the
constraints g and h are assuned to be continuous, g and h
are |lists of Mathematica expressions. The collection of
real -val ued nodel functions {f, g, h} is aggregated by
a merit (exact penalty) function. MS returns the globa
estimate of the solution vector, the corresponding merit
function value and its (stochastic) gl obal |ower bound
estimate, the individual nmodel function values, and the
total nunber of nodel function eval uations. Al though M5
can be used in stand-al one node (especially to handle
pure box-constrai ned nodels), it is reconmended to apply
subsequently a nore precise |ocal search nmethod such as
CNLP. (Seanml ess sol ver node comnbi nations are supported by
the package Optim ze.) The argument 'opts' denotes a |ist
of algorithmfeatures: use Options[M5] to display these

Opt i ons[ M)

{Version > 1., ReportLevel M50, PenaltyMiltiplier - 1,
Maxl terations - 0, MaxSanpl e - 0, RandonSeed - 0}
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?Report Level M5

ReportLevel M5 is an option in Ms. If it is set to 1,
then all results are reported in the formof item zed
messages. For the default setting ReportlLevel M5 -> 0, the
solution information is provided only in a list fornmat.

?Penal tyMul tiplier

PenaltyMultiplier is an option in Ms: it is the penalty
factor 'p' used in the definition of the nerit function
The latter is defined as neritfct = f (X) + p=(]|]9¢(

X)||] + | IMax[h(x),0]]]); here the absolute value (I1)-
normis used. PenaltyMultiplier can be set to any non-
negative value, its default setting is 1. Note that

this setting assunes that the objective and constraint
functions are well -scaled (i.e. that all functions

are approxi mately of the same order of magnitude). It

is reconmended to pre-scale the functions as much as
possible, to attain good scaling. Larger PenaltyMiltiplier
values - as arule - will enforce nodel feasibility,

but their use may also lead to nunerical difficulties.

Note that the option MaxIterations below has an identical name to one of the Mathematica function
option names. (This could have been avoided, but would lead to more complicated notations.) Therefore
the More... hyperlink — see below — will lead to a feature of Mathematica itself (and hence there is no
need to follow up on it in the present context).

?Max| terations

Maxlterations is an option in MS: it determines the nunber of
multistart iteration cycles. Maxlterati ons can be set
to any non-negative integer value. It is recommended to
set its value as an increasing function of the node
size, considering both the nunber of variables and
constraints. Note that larger values will increase the
runtime linearly. If Maxlterations is set to 0, then the
default internal setting will take place: the latter
is set inline with the recommendati on above. More...

?MaxSanpl e

MaxSanple is an option in Ms: it determ nes the number of
sample points in each nmultistart iteration cycle (up to
a roundi ng operation; a mniml value for this paraneter
is set internally). MaxSanple can be set to any non-
negative integer value, the default setting being sinply
0. It is recormended to set its value as an increasing
function of the nodel size, considering both the nunber
of variables and constraints. If MaxSanple is set to
0, then the default internal setting will take place:
the latter is set inline with the recommendati on above.
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?Randonfseed

Randonteed is an option in Ms: it determines the way the
intrinsic random nunber generator is initialized. Its value
can be set to an arbitrary integer which then will be used
to seed the generator: this option supports the generation
of possibly different nunerical results in different runs,
even if all other option paranmeters are the sanme. The
default setting is O, in which case the random seed is set
internally to a fixed value: this option guarantees that
identically parameterized runs will lead to identical results.

m CNLP Function Definition and Options

The options of the solver package CNLP can be queried as shown below.

?CNLP

CNLP[f, g, h, x, xinit, xlb, xub, opts] nunerically
approximates a |local solution to the foll owi ng genera
constrained optimzation problem mninimze f (x) subject
to g(x)=0 and h(x)<=0. The real vector x and the given
initial solution xinit are assuned to belong to the
finite interval range [xlb, xub]. The objective f and the
constraints g and h are arbitrary, possibly nonlinear
real -val ued functions, g and h are lists of Mathematica
expressions. The local Cl-continuity (snoothness) of all
nmodel functions is assuned. CNLP is based on a locally
conver gent Constrai ned Non-Li near Programm ng al gorithm
CNLP returns the local solution vector, the corresponding
| ocal optinumestinmte and constraint function val ues, and
addi tional nodel information (related to the satisfaction
of feasibility, Kuhn-Tucker, and conpl enentary sl ackness
conditions). In order to solve nultiextremal nodels, it is
recomrended to apply first a gl obal scope method such as
MB. (Seanl ess sol ver npde conbi nations are supported by
the package Optim ze.) The argunment 'opts' denotes a |ist
of algorithmfeatures: use Options[CNLP] to display these

Opt i ons[ CNLP]

{Version = 1., ReportLevel CNLP - 0, Conver gencelLevel - 6,
Preci si onLevel - 6, Unconstrai nedModel - Fal se}

?Report Level CNLP

ReportLevel CNLP is an option in CNLP. If it is set to 1
then all results are reported in the formof item zed
messages. For the default setting ReportlLevel CNLP -> O,
the solution information is provided only in a list fornmat.



?Conver genceleve

Conver gencelLevel is an option in CNLP. It defines the 10-based
negative exponent paraneter used in the convergence test in
CNLP iterations. (Exanple: ConvergencelLevel -> 6 sets the
convergence test parameter to 107-6.) For well -scal ed nodel s,
this default setting should be appropriate. Increasing
val ues can be expected to | ead to higher precision
but runtimes may becone | onger, and - due to numerica
errors - such precisions may not al ways be attainabl e.

?Pr eci si onLevel

Preci sionLevel is an option in CNLP. It defines the 10-based
negative exponent paraneter used in the constraint
feasibility, Kuhn-Tucker conditions and conpl enentary
sl ackness tests. (Exanple: PrecisionLevel -> 6 sets the
required precision to 10"-6.) For well -scal ed nodels, this
default setting should be appropriate. Increasing val ues
can be expected to lead to higher precision, but runtines
may becone | onger, and - due to nodeling or nunerica
errors - such precisions may not al ways be attainabl e.

?Unconstrai nedMbde

Unconstrai nedvbdel is an option in CNLP. If it is set to True (
and the nunmber of constraint functions is zero indeed)
then the built-in function FindM nimumis |aunched from
within CNLP. Its default setting is False: in this case CNLP
is applied also to unconstrai ned nodels. This may lead to
| onger execution times, and in sonme cases to higher precision

Some General Model Formulation Tips

15

m Explicit Bound Settings and Variable Range Scaling

By results from classical analysis, the existence of finite bounds xlb < x < xub is needed to assure that
the general optimization model form considered indeed has a finite (globally optimal) solution. One can
think of minimizing or maximizing the trivially simple univariate function f(x)=x over the interval (-co,
0) to see that the closedness of the variable range [xlb, xub] is also essential.

It is always good practice to select 'safe', but 'not exaggerated' bounds. In general, global and local search
methods will benefit from well-chosen, reasonable bounds and a good quality initial (nominal) solution
vector. If the bounds are possibly or sometimes binding, then one should add the corresponding bound
constraints also to the explicit list of inequality constraints, at least when also applying local search
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methods. (Let us note here that the global search methods embedded in MathOptimizer will never leave
the interval [xIb, xub]; at the same time, in general they also will run slower when larger intervals and/or
more model constraints are considered).

Evidently, the — generally speaking, multidimensional — interval [x]b,xub] can be simply scaled to the
unit 'box' [0,1] of corresponding dimensionality, by the transformation

x; = xlb; +x,;(xub;- xlb;) i=1,...,n

Here n is the model dimensionality, i denotes the indices of the vector components, and Xs€[0,1] is the
scaled vector.

Again, it is often beneficial and hence advisable to make such a scaling before using MathOptimizer (or
other solvers), to improve algorithmic search efficiency.

m Model Function Scaling

Let us recall the standardized model statement and assume that the model variables are already scaled, if
that was deemed necessary. Below we shall briefly address the numerically important issue of model
function scaling.

To this end, we apply first the following equivalent model transformation: we shall minimize z, and add
f(x) < z to the set of constraints. Furthermore, all constraints will be considered individually. Two cases
will be distinguished regarding whether the constraint considered has a non-zero constant term in it, or
not. For those constraints that do not have such a constant term, a given (preset) tolerance level t > 0 is
introduced. (This parameter should naturally correspond to the parameter PrecisionLevel defined in
connection with the local search component(s) of MathOptimizer.) All equality constraints will be
replaced by the componentwise pair of inequalities -t < g;(x) < t; a similar (but only 'one-sided') transfor-
mation is applied to all constraints that do not have a non-zero constant term.

For simplicity (after all such transformations are completed) we shall denote such an individually consid-
ered constraint function by c(x) < k, instead of using indexed notations for the components of g and h.

Now, constraint ¢(x) < k can be simply replaced by (c(x) - k)/k < 0, if k is 'sufficently large', that is (say)
at least k > 100*t holds. For those constraints in which this is not the case (this will specifically include
all equality relations), one can use instead of the original constraint the approximation (c(x) - k)/(1+k) <
0.

Let us emphasize here that there is no guaranteed recipe regarding the 'best possible' model scaling, and
in many cases some experimentation will help to find good quality numerical solutions even in difficult
models.

Local Nonlinear (and Linear) Optimization: Test Examples

m Getting Started: A Simple Example

The following small-scale example has all ingredients of the model type considered in the framework of
MathOptimizer. (The optimum value in this model is zero at x1 =x2 =1.)



The main steps of the modeling and solution procedure are illustrated below: comments set in blue serve
only for explanation..

(* Define optimzation nodel *)

vars = {x1, x2}; (* decision variables *)

varnom = {8., -14.}; (* nominal (initial) values of variables
*)
varlb = {-10., -15.}; (* lower bounds of variables *)

varub = {20., 10.}; (* upper bounds of variables *)

objf = 10.*(x1"2 - x2)"2 + (x1 - 1)"2; (* objective function
to mnimze *)

eqs = {x1 - x1*x2}; (* equality constraints *)

ineqs = {3.*x1 + 4.*x2 - 25.}; (* inequality constraints,
stated in <=0 form*)

(* Solve nodel *)

Optimze[objf, eqs, inegs, vars, varnom varlb, varub
d obal Sol ver Mode -> 1, Local Sol ver Mode -> 1, ReportlLevel -> 1]

({1., 1.}, 6.91861x107'°, [-1.68423x107°%},
{-18.}, {1.68423x10°°, 7.33364x107%, 0.}}

Setting ReportLevel — 1 allows tracing the solution procedure in the Messages window: the Reader may
like to see these messages now, to familiarize yourself with the output information. This setting is
especially advisable during model development and testing, while ReportLevel — 0 suits better the
'routine’ solution of well-tested models.

m Extracting Result Information

It is easy to extract components from the result list, assuming that we know the list entry position of the
component in question. (Again, consult the itemized sequence of messages, when ReportLevel is set to

1)
result = Optimze[objf, egs, ineqgs, vars, varnom varlb, varub
d obal Sol ver Mode -> 1, Local Sol ver Mode -> 1, ReportlLevel -> 0]

({1., 1.}, 6.91861x107'°, [{-1.68423x107°},
{-18.}, {1.68423x10°°, 7.33364x107%, 0.}}

Notice passing by the identical results of the two runs shown above, due to the default seed (re)setting of
the built-in random number generator.
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varopt = result[[1]];
Print["estimated optinmal solution vector: ", varopt];

estimated optimal solution vector: {1., 1.}

fopt = result[[2]];
Print ["opti mum esti mat e:

, fopt];
optinum estimate: 6.91861x1071°

eqsopt = result[[3]];
Print["equality constraint values at optinmumestimte: ",
eqsopt];

equal ity constraint values at optinumestimte: {-1.68423x107°}

i neqgsopt = result[[4]];
Print["inequality constraint values at optinmmestimte: ",
i negsopt];

inequality constraint values at optinumestimte: {-18.}

viol sopt = result[[5]];
Print["violation |l evels of optimality conditions at optinum

estimate: ", violsopt];

violation levels of optimality conditions at optinum esti mate:
{1.68423x107° 7.33364x107%%, 0.)

The entries of the last list above correspond to the maximal constraint feasibility violation, the violation
of the Kuhn-Tucker conditions, and the violation of the complementary slackness condition (at the
optimum estimate found).

m Unconstrained Nonlinear Optimization

If the constraint (vector) functions g and h are absent, and the bound constraints xlb < x < xub are not
'tight' — i.e., the optimal solution is known to be in the interior of [xlb, xub] — then the model is essen-
tially unconstrained. Recall, however that the existence of bounds is needed to assure that the model
indeed has a finite globally optimal solution.

18

Unconstrained optimization models can be solved in the local sense also by the built-in function FindMini-
mum which, as a rule, should work faster than the more complex CNLP procedure. Therefore FindMini-
mum is made available internally by the CNLP function as an option: this feature will be illustrated

below.

Rosenbrock Test Problem

The following standard test problem is rather easy, although it is not convex. (The optimum value is zero
atxl=x2=1.)

Let us solve this model first by using only the local search model via the package Optimize.
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vars = {x1, x2};

varnom = {8, -4};

varlb = {-10, -10};

varub = {10, 10};

objf = 100*(x17"2 - x2)"2 + (x1 - 1)"2;

eqs = {};

inegs = {};

result = Optinmze[objf, egs, ineqgs, vars, varnom varlb, varub,
d obal Sol ver Mode -> 0, Local Sol ver Mode -> 1, ReportlLevel -> 1]

({1., 1.}, 4.94271x10°%°, (1, {1, {-o, 9.95x107%, 01}
Observe that since the model is essentially unconstrained (except the stated, non-binding lower and upper
bounds), the maximal constraint violation is returned as -co. In presence of bounds, this value will be

non-negative: namely, it is expected to be (approximately) zero for feasible solutions and a 'non-accept-
ably large' positive value for infeasible solutions found.

Let us solve the same model, using only CNLP, and the information that the model is unconstrained.
CNLP[obj f, eqgs, inegs, vars, varnom varl b, varub,
Unconstrai nedvbdel -» True, ReportlLevel CNLP - 1]
{0., {x1-1., x2-1.}}

One can compare the above operations to those of the built-in function FindMinimum.
Fi ndM ni nunf obj f, {x1, 8}, {x2, -4}]
{4.19981x 1072, (x1 - 0.999999, x2 - 0.999998}}

The Reader may notice that — in this particular example, as well as in numerous others — CNLP
produces a more precise result then FindMinimum on its own: this is due to model-dependent accuracy
settings in CNLP. In general, this strategy may also lead to (somewhat or more noticeably) slower
solution procedures: there is an obvious trade-off between solution speed and quality.

One can also notice the difference between the form of results reported by Optimize and FindMinimum.
We think that — at least in the present context — it is simpler to use the resulting output list returned by
Optimize rather than the list of rules returned by FindMinimum.

Internal Verification of Unconstrained Structure

Note that if the model is, in fact, constrained (i.e. the function lists g and/or h are not empty), then CNLP
will be used even if UnconstrainedModel is misspecified. We shall illustrate this feature, by adding a
constraint to the model stated above. (Notice the invalid True setting below.)

inegqs = {x1 +x2 - 10};
result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub,
Unconst rai nedvbdel -True, ReportLevel CNLP-1]

({1., 1.}, 2.27534x10%, {}, {-8.}, {0., 1.60561x107%1 0.}}
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m Model Visualization

The excellent visualization capabilities of Mathematica can become helpful tools, assisting model
development, analysis, corrections and changes: their use is especially justified in case of nonlinear
models.

For instance, three-dimensional and contour plot pictures can be generated at any given input vector x
(including the nominal value and/or the solution point found). The projection subspaces can be interac-
tively selected by the user. (Of course, the pictures shown below are related to the objective function of
the most recently analysed test problem.)



Plot3D obj f, {x1,-1,2}, {x2,-1,2}, ColorFunction-Hue,

Pl ot Poi nt s-50] ;

ContourPlot[objf, {x1,-1,2}, {x2,-1,2}, ColorFunction-Hue,
Pl ot Poi nt s-50] ;

m Linear Programming

Let us consider next a 6-variable, 9-constraint linear programming model. Note that the built-in LP
solver (ConstrainedMin) is most likely to work faster for such models, but Optimize or CNLP also
works. Since linear programming models are convex, there is no need to apply a global search mode.
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(The optimum value is at a location that is perhaps not seen easily even for this small model. )

vars = {x1, x2, x3, x4, x5, x6};
varnom= {1., -2., 3., 2., -3., -1.};
varlb = Table [0, {Length[vars]}]; (* a sinple
way to set bounds *)
varub = Tabl e [1000, {Length[vars]}];
objf = -(3x1 + 2*x2 + 1*x3 + 1*x4 + 2*x5 + 1*x6); (*
transformed froma maxim zation problem*)
eqs = {};
i neqs = {

-x1, -x2, -x3, -x4, -x5, -x6, (* | ower
bounds included as constraints *)

X1 + x2 + x3 + x4 + x5 + x6 - 100,

1*x1 - 2*x2 + 3*x3 - 4*x4 + 5*x5 - 6*x6 - 200,

6*x1 + 5*x2 + 4*x3 + 3*x4 + 2*x5 + 1*x6 - 200};
CNLP[ obj f, eqgs, ineqs, vars, varnom varlb, varub]

[{6.25, -1.39548x10°%, 1.28622x10°, -2.25678x10°%, 68.75, 25.},
-181.25, {}, {-6.25, 1.39548x10°%, -1.28622x10° 2.25678x10°%,
-68.75, -25., -1.85248x10°%, 1.94493x10°°, 4.07945x10°},
{2.25678x10°8, 1.81375x10°7, 3.68772x10°%})

Let us solve now the same model by applying ConstrainedMin: this requires the corresponding constraint
set format as shown below.

inegsCM={ -x1 <0, -x2 <0, -x3<0, -x4<0, -x5<0, -x6
<0,

x1 + x2 + x3 + x4 + x5 + x6 - 100 <O,

1*x1 - 2*x2 + 3*x3 - 4*x4 + 5*x5 - 6*x6 - 200 <O,

6*x1 + 5*x2 + 4*x3 + 3*x4 + 2*x5 + 1*x6 - 200 <0};

Const rai nedM n[ obj f, ineqsCM vars]

{—%, {x1%24_5, x2 0, x3-0, x40, X5+¥, x6 - 25} }

The numerical values obtained are the same, up to a small error in precision; see below. (This is due to
the difference in the algorithmic approaches used by ConstrainedMin and CNLP).

N[ %
(-181.25, {x1 56.25, x2 0., x350., x4-0., X5 68.75, x6>25.})

Observe again the difference in the style of reporting between the MathOptimizer packages and Con-
strainedMin. If one needs to solve only linear models, then in general — at least currently — the use of
the built-in, faster ConstrainedMin can be recommended. On the other hand, if nonlinear models
(versions) are also considered, then the MathOptimizer packages produce a set of internally consistent
results for all such cases.
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m Constrained Nonlinear Optimization: A Small Model

The following is still a fairly simple constrained model which has two variables, two equality and two
inequality constraints. (The optimum value is zero at the vector x = (.)

vars = {x1, x2};

varnom = {10, -10};

varlb = Table [-100, {Length[vars]}];

varub = Table [100, {Length[vars]}];

objf = (2*x1"2-x2)"2 + (x2 - 6*x1"2)"2

eqs = {x1 - 10x2 - x1*x2, x1 - 3*x2};

inegs = {x2 + x1 - 1, x2 - x1 -2};

result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub
Report Level - >0]

{{-1.26272x108 -1.94303x107°%},
7.55072x 1078, (6.8031x107°, -6.7981x107°},
{-1., -2.}, {6.8031x10°°, 7.36977x107, 0.}

m Model Sensitivity to Parameter Changes

Changing the currently formulated model (as stated above) just a little bit may lead to a rather different
solution, or even to infeasible models. This observation indicates that even small NLP models can be
very difficult.

For example, let us change the blue parameter below a few times, and observe the solution changes!
(Some recommended parameter values are: 1, 5, 10, 20, 50, 100,...)

For instance, at parameter value 10 the solution found is infeasible. (The Reader can verify this by setting
the blue parameter to 10.) This finding shows that local search per se may not be sufficient to handle the
resulting model.

egs = {x1 - 10x2 - x1*x2 - 10., x1 - 3*x2};
result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub]

({-1.17537, -1.17239}, 105.006, {-0.829487, 2.34179},
(-3.34776, -1.99701}, {2.34179, 2.90436x10°C, 0.}

m Constrained Nonlinear Optimization: A More Difficult Small Model

In the model formulated below, the objective function as well as the equality constraint lead to non-con-
vex structure. (The global optimum value is zero at x1 =x2 =0.)

Try to change the initial (nominal) solution as suggested below, see comments in blue.
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vars = {x1, x2};

varlb = Table [-10, {Length[vars]}];

varub = Table [10, {Length[vars]}];

varnom= {-4, -2}; (* this leads to an infeasible solution... *)
objf = (2*x1"2-x2"2)"2 + (X2 - 6*x1"2)"2

eqs = {x1 - 10x2 - 100*Si n[ 2x1+3x2] };

inegs = {x2 + x1 - 2};

result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub]

{{-0.897538, -3.4753}, 178.585, {-7.44338x10%},
{-6.37284}, {7.44338x10°%, 5.88178x107'° 0.1}

{-2, -1}; (* this leads to a local optimum.. *)
CNLP[ obj f, eqgs, ineqs, vars, varnom varlb, varub]

{{-0.391571, -1.77519}, 15.3558, {9.73077x107°},
{(-4.16676}, {9.73077x107°, 4.73715x107%?, 0. }}

var nom
resul t

varnom = {1, -1}; (* this '"sufficiently close guess' l|leads to
the gl obal optimm.. *)

result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub
Report Level - >1]

{{-1.5432x10%, -7.05692x102%), 5.18394x10°%°,
(3.07097 %107}, {-2.1}, {3.07097x10°°, 5.82826x10°, 0.}

m Merit Function: Model Visualization and Penalty Scaling Effects

This section illustrates the aggregation of model information in a so-called 'merit function'. This is an
exact penalty function, as shown by its definition below. Such a function is used internally by the global
solver MS.

(* one can introduce a penalty factor, to try better
"enforcing' feasible solutions *)

(* a 'good' paraneter choice nmay need sone subjective
experinmentation... try a few val ues. *)

penmult = 10;

(* aggregated nerit function *)

nmeritfct = objf + pennult*(eqs.eqs + Map[ Max, {i neqs,
0}]. Map[ Max, {inegs, 0}]);

Pictures of the merit function may serve to indicate the potential difficulty of the resulting (approximate,
parameterized) unconstrained optimization problem.To solve this optimization problem, often genuine
global search is needed.



Plot3D[ neritfct,
Pl ot Poi nt s-50] ;
ContourPlot[ neritfct,
Hue, Pl ot Poi nt s-50];
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m Constrained Nonlinear Optimization: A 4-Variable, 4-Constraint Model

This is a bit more 'tricky' model: both the objective and the equality constraints are non-convex. The
global solution is found (by local search only), when the search is started from a good initial 'guess'. (The
optimum value is zero at x = 0.)

vars = {x1, x2, x3, x4};

varnom = {4., -2., 3., 5.};

varl b Tabl e [-100, {Length[vars]}];

varub = Table [100, {Length[vars]}];

objf = 2*(x1 + x3 - x4)"2 + (x2 - x1 + x3 - x4)"2 + (x1*x2 -
X3*x4) "2

eqs = {x1"2 - Sin[x2] - x4, x1*x3 - x2*x4*x1};

inegs = {2*x1 + 5*x2 + x3 + x4 - 10, 3*x1 - 2*x2 + x3 - 4*x4 -
5h;

result = CNLP[objf, eqgs, ineqs, vars, varnom varlb, varub]
{{3.39568x107'%, 6.56941x10"°, 1.00604 x107*?, 1.32411x10*?},

9.24767 %1072, [-1.98105x107'?, 3.41619x102°%},
{-10., -5.3}, {1.98105x107'?, 1.0265x10%3, 0.})

m Constrained Nonlinear Optimization: A 6-Variable, 7-Constraint Model

This model has a non-convex objective function, and four non-convex constraints, as well as three
simple linear inequality constraints. Again, the global solution is found by local search, when starting
from a good initial 'guess’. (The optimum value is zero at x = 0.)
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vars = {x1, x2, x3, x4, x5, x6};
varnom= {1., -2., 1., 2., 1., -1.};
varlb = Table [-100, {Length[vars]}];
varub = Table [100, {Length[vars]}];
objf = (x1 + x2)"2 + (X3 - x5)"2 + (x6 - x4)"2 + 2*(x1 + X3 -
X4 "2 + (x2 - x1 + x3 - x4)"2 +
10*Sin[ x5 - x6 + x1]"2
eqs = {
x17r2 - Sin[x2] - x4 + x5 + X6,
x1*x3 - x2*x4*x1 - x5 - Sin[x6 - x1 - x3],
X2*x6*Cos[ x5] - Sin[x3*x4] + x2 - x5
X1*x2 -x3"2 - x4*x5 - x672
b
i negs = {
2*x1 + 5*x2 + x3 + x4 - 1
3*x1 - 2*x2 + x3 - 4*x4,
X1 + X2 + X3 + x4 + x5 + x6 - 2
s
CNLP[ obj f, eqgs, ineqs, vars, varnom varlb, varub]
{{2.03184x 1077, 1.41507 x1077, 2.32282x107",
1.43425x1077, 5.47783x10°8, 3.2716x107"}, 4.03276x10° %3,
{9.70055x 108, 5.35285x10°8, 8.67291x108, -1.40093x10 1%},
{-0.999999, -1.4881x10°8, -2.},
{9.70055x10°8, 4.21914x10°8, 8.74061x101%}}

Starting from a different initial point, one obtains another (suboptimal, i.e. locally optimal) result.
Observe that the solution is feasible, and the Kuhn-Tucker conditions are satisfied to sufficient — that is,
to the prescribed — precision; however, the solution found is inferior to the previously found one (which
actually is the global optimum).

varnom = {10., -10., 10., 10., 10., -10.};
CNLP[ obj f, eqgs, ineqs, vars, varnom varlb, varub]

{{-0.472344, -0.848764, 0. 469209,

0. 660639, -1.34795, 1.03502}, 7.18862,

{-2.08203x108, -5.70788x108 2.68579x108 -8.2118x107°},
{-5.05866, -1.89285, -2.50419}, {5.70788x10% 9.5235x10°%, 0. }}

A few of the examples shown above already indicate the need for including a suitable global scope
search approach: in the next section we will follow that route.



Global Optimization: Test Examples
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m Standard Univariate Global Optimization Tests

These models are often used in the global optimization literature. In spite of their (typical) simplicity, the
test functions below cover a reasonable variety of model forms met in practice, and hence may serve as
primary illustrations of GO algorithm workings. (For further examples, see for instance, Dixon and
Szegd, 1975; Pintér, 1996; Floudas et al., 1999.) Note that for better — or for more interesting —
visualization, several known test models have been modified for the present purposes.

lllustrative Model Instances
In all simple examples stated in this section, only box-constraints are given.
eqs = {}; inegs = {};

In the following test function, the global (approximate) solution value is -0.999612 (approximately) at
7.85411; notice that the exponential term decreases as x becomes larger.

fl= Exp[-Xx] - (Sin[x])"3; Ibl = -5; ubl = 10; xnonl = 1;

The next one is a standard test model (due to Rastrigin): the global solution value is -1 at x=0.

f2= x"2 - Cos[18x]; Ib2 = -5; ub2 = 5; xnonk= 2;

In the following test function, the global solution value is -1.61642 at x=0.5.22406.
f3= Sin[x](Cos[x] - Sin[x])"2; b3 = 0; ub3 = 10; xnonB = 3;
The following test function is a polynomial: such functions are often used in tests. (The global solution
value is 0 at x=1.)
f4= (2x"4 - 13x"3 + 18x"2 - 10x + 3)"2; |1b4 = -1; ubd = 4
xnom} = 3;
The following is a standard test model (due to Shubert): it is heavily oscillating, and the global solution
value is -14.838 at x=-7.39728.
f5= Sunf k*Si n[ (k+1) x+k], {k,1,5}]; Ib5 = -10; ub5 = 10; xnonb =
3;
The next test function has a number of local solutions, improving 'right to left": the global solution value

is -0.943045 at x=-9.44999.

f6=0.1x + Sqrt[Abs[x]]1*Sin[x]"2; Ib6 = -10; ub6 = 5; xnonb =
_6’



The following test function is again a polynomial, with a quite simple (though non-convex) shape on the
given optimization range. The global optimum is at 6.32565, its value is -4.43673.

f7=0.01*(0. 2*x"5 - 1.6995*x"4 + 0.998266*x"3 - 0.0218343*x"2 -
0.000089248*x); Ib7 = 0; ub7 = 8; xnon¥ = 2;

Here is another polynomial, with several local optima. The global optimum is at 1.75767, its value is
-0.686072.

f8= 2*x72 - 1.05*x"4 + 0.1666667*x"6 - Xx; |1b8 = -2; ub8 = 2.5;
xnonB = 1;

Model Visualization

This is easy in the one-dimensional case. (Again, these models often serve to make the first step in
verifying algorithm concepts.)

Plot[f1, {x, Ibl, ubl}];
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Plot[f2, {x, b2, ub2}];
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Plot[f3, {x, Ib3, ub3}];
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Plot[f5, {x, |b5, ub5}];
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Plot[f6, {x, |b6, ub6}];
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Solving lllustrative Univariate Models by Local and Global Search Procedures

In all the models stated above, we set (an arbitrary) nominal solution; it could also be simply assumed to
be the centre of the search region. (This is often a reasonable choice, if there is no additional information

available, except the stated variable range.)

Below we also show timing information (as an exception), to indicate the relative runtimes.

resultl = CNLP[f1, {}, {}, {x}, {xnonmil}, {IDb1l}, {ubl}]//Tining
resultl = M5[f1, {}, {}, {x}, {xnoni}, {Ibl}, {ubl}]//Timng

resultl = Optimze[f1, {}, {}, {x}, {xnomi}, {lb1},
{ub1}]//Tim ng

{0. 05 Second,
{{1.63604), -0.798881, [}, {}, {-», 1.98452x107', 0}}}

{0. 17 Second,

({7.84478), -0.999481, -0.999578, -0.999481, {}, {}, 490}}

{0. 22 Second,
{{7.85411}, -0.999612, {}, {}, {-», 2.80557x107', 0}}}

From the results shown above, one can see that (in this example)

- the local search per se is not sufficient (it misses the global solution)

- the global search phase already gives a reasonably good approximate solution (notice the small gap

between the solution found and the estimated global bound)

- the combined search effort gives a more precise solution (with a relatively small added computational

effort).

These findings are, in general terms, valid for many other global optimization problems. We shall
illustrate this point, by solving also the other one-dimensional test models. (The Reader may like to

revisit the corresponding pictures, to visually check the solutions found.)

result2 = CNLP[f2, {}, {}, {x}, {(Ib2+ub2)/2}, {Ib2}, {ub2}]
result2 = M5[f2, {}, {}, {x}, {(Ib2+ub2)/2}, {Ib2}, {ub2}]
result2 = Optimze[f2, {}, {}, {x}, {(Ib2+ub2)/2}, {Ib2},
{ub12}]

{{0}, _1'! {}! {}1 {_001 0'! O}}
({0}, -1, -1, -1, {3}, {3, 490}

{{0}, _1'! {}! {}1 {_001 0'! O}}

result3
result3
result3 = Optimze[f3, {}, {}, {x}, {(I1b3+ub3)/2}, {lb3},

({5.22406), -1.61642, {}, {}, {-o, 4.49254x10°8, 0}}
({5.22191}, -1.61641, -1.61705, -1.61641, {}, {}, 490}

({5.22406}, -1.61642, {}, {}, {-o, 3.39045x107'° 0}

ONLP[£3, {}, {}, {x}, {(1b3+ub3)/2}, {Ib3}, {ub3}]
MS[ 3, {}, {}, {x}, {(1b3+ub3)/2}, {Ib3}, {ub3}]

{ub3}]
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result4 =Optinize[f4, {}, {}, {x}, {(Ib4+ubd)/2}, {I b4}, {ub4}]
({1.}, 3.5412x10°%7, [}, {}, {-», 5.9508x10713 0}}

result5=0ptimze[f5, {}, {}, {x}, {(Db5+ub5)/2}, {lb5}, {ub5}]
({-7.39728}, -14.838, {}, {}, {-o, 1.07154x10°° 0})

result6 =Optinmize[f6, {}, {}, {x}, {(Ib6+ub6)/2}, {Ib6}, {ub6}]
{{-9.44999}, -0.943045, {}, {},

(-, [ (-0. 0549709 + 0. 000103404 Abs’ [-9. 44999])2, 0}

result7 =Optimze[f7, {}, {}, {x}, {( b7 +ub7)/2}, {I b7}, {ub7}]
{{6.32565}, -4.43673, {}, {}, {-o, 4. 78973 x 1078, 01}

result8=0ptimze[f8, {}, {}, {x}, {(Ib8+ub8)/2}, {lIb8}, {ub8}]
({1.75767}, -0.686072, {}, {}, {-o, 4.46512x10°8, 0}}

One can conclude that at least these simple one-dimensional models do not pose a difficult challenge to
MathOptimizer. Some more (or far more) difficult models will follow soon below.

m Global and Local Search Approaches in Constrained Nonlinear
Optimization

Model Formulation

This is a non-convex, 2-variable, 2-constraint model. (The global optimum value is zero at x = 0.)

vars = {x1, x2};

varlb = Table [-10, {Length[vars]}];

varub = Table [20, {Length[vars]}];

varnom = {1, -1}; (* this 'sufficiently close guess' leads to
the gl obal optimm.. *)

objf = (2*x1"2-x2"2)"2 + (x2 - 3*x1"2)"2

eqs = {x1 - 4*x2 - 5*Sin[2x1+3x2]};

inegs = {x2 + x1 - 1};

Appplication of Local Search

Let us first try to solve this model using (only) the local search method CNLP: if we have a good 'guess'
of the solution, then — as a rule — a fast local scope search leads to the corresponding (local or maybe
even global) optimum.

Again, solely for the purpose of illustrative comparison, we will also generate timing information.
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result CNLP = CNLP[ obj f, eqs, inegs, vars, varnom varlb,
varub] // Ti m ng

{0.11 Second, {{6.54931x10716, -1.17658x1071"}, 1.38434x1034,
{-5.67083x10%%}, (-1.}, {5.67083x107'° 2.87933x10°%, 0.1}}

Global Search Approach, Without Local Search

Let us try to solve now the same example by using only the global search method MS.

result Ms = M5[objf, eqgs, ineqs, vars, varnom varlb,
varub] // Ti m ng

(1. 43 Second, {{0.146901, -0.0710351}, 0. 0206712,
0. 0304424, 0.0198875, {0.0279942}, ({-0.924134}, 3080})

The solution found by MS (in general) does not have the same precision as the one attained by the local
search method CNLP. Let us try to attain higher precision by enabling a more thorough global search.
This is apparently quite succesful, but the solution time can also be a lot longer...

result M5 = M5[objf, eqgs, ineqs, vars, varnom varlb, varub,
Maxlterations->100, MaxSanpl e->100 ]//Tim ng

{12. 69 Second, {{-0.0489743, 0.0236219}, 0.000352839,
-0.00772462, 0.000287799, {-0.00806477}, {-1.02535}, 27500} }

One can observe the following points.

1. As a general rule, the global scope solution procedure is slower, often much slower (depending on
parameter settings).

2. More search effort does not necessarily lead to better solutions due to the stochastic search component
in MS, since the sample points will be different in each run. Note that this negative feature is remedied,
by using the RandomSeed default option (in which case the random number generator is pre-seeded).

3. Unless a significant (perhaps inordinate) amount of search effort is allocated to the global solution
method, the accuracy of the solution is less than by using local search from a 'good' initial point. In fact,
the global search method does not rely crucially on the initial solution 'guess', as shown below.

Model Sensitivity to Initial Solution Changes: The Importance of Global Search

Let us change the initial solution guess, and observe the solution changes!

varnom = {-2, 3}; (* this leads to a local optinmm when using
CNLP. .. *)

resul t CNLP2 = CNLP[obj f, egs, ineqs, vars, varnom varlb,

var ub] // Ti m ng

(1. 48 Second, {{0.65855, 0.774751}, 0.34837, {-0.0443739},
(0. 433301}, {0.433301, 4.06583x10°°, 49.1793}})
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varnom = {5, -8}; (* this leads to an infeasible solution, when
using CNLP... *)
resul t CNLP3 = CNLP[obj f, egs, ineqs, vars, varnom varlb,
var ub]// Ti m ng
{1. 43 Second, {{-4.28779, -2.81537}, 4192. 59,
{2.13799}, {-8.10316}, {2.13799, 0.000269123, 0. }}}

At the same time, the global search method will return 'reasonable’ solutions (as a rule, at least for
well-scaled models), since in fact it does not depend essentiially on the starting solution.

Let us try to solve the model again, with the current 'bad' starting solution: the solution quality is typi-
cally similar to the one found by a similar global search effort. ( (Actually, the results will be identical, if
the same search options, including the default RandomSeed option are used.)

result M52 = M5[obj f, eqs, inegs, vars, varnom varlb,
var ub]// Ti m ng

{1. 37 Second, {{0.146901, -0.0710351}, 0.0206712,
-0. 0304424, 0.0198875, {0.0279942}, {-0.924134}, 3080}}

Combined Global and Local Search

Let us activate now first the MS global optimization procedure, followed by the local search procedure
CNLP. (Default usage options are used in both cases).
Optinmze[objf, eqs, ineqgs, vars, varnom varlb, varub]//Tinmng
{1.48 Second, {{1.0985x10°!, -3.92067 %1078}, 1.53745x107%,
{-9.88652x107 '}, (-1.}, {9.88652x10%, 5.5676x107'°, 0.1}}

As this example illustrates, prudent combinations of good quality global and local solvers will typically
lead to superior performance (in terms of overall robustness and efficiency) when compared to either
pure global or pure local scope solvers.

B Randomly Generated Global Optimization Test Models

Function Class Definition

It is often useful to test optimization algorithms on randomly generated models with known (preset or
randomly set) solutions. The following example shows such a model class.
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(* decision variables *)
vars = {x1, x2, x3};

(* nunber of decision variables; needed only for easier node
setup *)
nvars = Length[vars];

(* finite | ower bounds; conponent-w se scaling to O is
recomended *)
varl b = Tabl e[0, {nvars}];

(* finite upper bounds; conponent-w se scaling to 1 is
recommended *)
varub = Tabl e[ 1, {nvars}];

(* randomy generated solution to test problem*)
sol = Tabl e[ Randoni], {nvars}];

(* objective function *)
objf = (x1 - sol[[1]])"2 + 2*(x2 - sol[[2]])"2 + 3*(x3 -
sol [[3]])"2;

(* list of equality constraints *)

eqs = {
Sin[5%(x1 - sol[[1]])] - 12*(x3 - sol[[3]])*(x2 -
sol[[2]]),

Exp[ (x1 - sol [[1]])*(x2 - sol[[2]])*(x3 - sol[[3]])]-1
}s

(* list of inequality constraints *)

i negs = {
((x1-sol [[1]])*(x2-sol [[2]])*(x3-sol [[3]]))"2 +
Sin[ 15*(x1*x2*x3 - sol[[1]]*sol[[2]]*sol[[3]]) ] - 0.05
I

(* define nom nal solution; default setting: search range
centre *)
varnom = (varl b+varub)/2

(* penalty nultiplier *)
pennmult = 1;

(* aggregated nerit (exact penalty) function *)
meritfct = objf + pennult * Suni eqs[[i]]"2, {i, Length[eqs]}]
+ pennmult * Sun{ Max[inegs[[i]],0]”2, {i, Length[ineqgs]}];
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Model Verification

Model checking is an important step in the development process, since most of us make mistakes when
building complex models.

The simplest check is to see that the model functions evaluate correctly at least at the given nominal
solution(s). It is also highly recommended to verify model evaluations at the lower and upper bounds,
and at least at a few other 'arbitrary' interior points of the embedding 'box' region.

(* determine nerit function value at nom nal optinumestinmte *)
meritfctnonm = neritfct /. Thread[vars->varnoni;

(* test only: check optinmmvalue at test nobdel solution sol *)

optval = neritfct /. Thread[vars -> sol]

(* test printouts *)

Print["random y generated optimal solution ", sol]
Print["initial nomnal (centre) solution ", varnom;
Print["initial nom nal function value ", neritfctnoni;
Print["globally optimal function value ", optval];

random y generated optimal solution
{0. 370966, 0.782398, 0.597549}

L . . 1 1 1
initial nominal (centre) solution {5” R f?}
initial nom nal function value 0.278018

globally optinmal function value 0.

Model Visualization

Models can be visualized, to analyze expected model complexity. Subspace projections are generated by
the next statements.

Plot3D[rmeritfct /. x1->sol[[1]], {x2,0,1}, {x3,0,1},

Pl ot Poi nt s->50, Col or Function -> Hue];
ContourPlot[neritfct /. x1->sol[[1]], {x2,0,1}, {x3,0,1},
Pl ot Poi nt s->50, Col or Function ->Hue];

Plot3D[nmeritfct /. x2->sol[[2]], {x1,0,1}, {x3,0,1},

Pl ot Poi nt s->50, Col or Function -> Hue];
ContourPlot[neritfct /. x2->sol[[2]], {x1,0,1}, {x3,0,1},
Pl ot Poi nt s->50, Col or Function -> Hue];

Plot3D[nmeritfct /. x3->sol[[3]], {x1,0,1}, {x2,0,1},

Pl ot Poi nt s->50, Col or Function -> Hue];
ContourPlot[neritfct /. x3->sol[[3]], {x1,0,1}, {x2,0,1},
Pl ot Poi nt s->50, Col or Function -> Hue];
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Solving Random Test Examples by Combined Global and Local Search

Although the random models above are not too complicated, they are not trivial either.

Let us solve now the current model instance. A comparison of the result obtained (see below) with the
randomly generated solution (displayed above, in the Model Verification subsection) indicates that the
methods in MathOptimizer seem to work well, at least for these small randomly generated test models.

40
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Optinize[objf, eqs, ineqgs, vars, varnom varlb, varub]

{{0.370966, 0.782398, 0.597549}, 1.53084x102°,
{6.18636x10°° 0.3}, {-0.05}, {6.18636x10710 5.77464x10%, 0.1}

B Constrained Global Optimization: Further Examples

Hock & Schittkowski, Problem 62

The following model is test problem 62 from the collection by Hock and Schittkowski (1981), cited also
in other test collections and studies.

vars = {x1, x2, x3};

varlb = Table [0, {Length[vars]}];

varub = Table [1, {Length[vars]}];

varnom = {0.5, 0.5, 0.5};

objf = -32.174%(255. *Log[ (x1+x2+x3+0. 03)/ (0. 09*x1+x2+x3+0. 03) ]
+ 280*Log[ (x2+x3+0. 03)/ (0. 07*x2+x3+0. 03)] +

290* Log[ (x3+0. 03) /(0. 13*x3+0.03)]);

eqs = {100*(x1 + x2 + x3 - 1)}; (* explicit constraint scaling
is used, to force feasibility *)

inegs = {};

Optinize[objf, eqs, ineqgs, vars, varnom varlb, varub]

{{0.617813, 0.328202, 0.0539851}, -26272.5,
{-1.00975x10° "}, {}, {1.00975x107’, 0.000120306, 0}}

The result found above is in good accordance with the solution cited by Hock and Schittkowski. (The
relative difference of the two results is about 10"-6, in terms of the objective function values found. As
the model visualization exercise below shows, the model is not changing rapidly' around the optimum
estimate: this can also make a precise numerical solution rather difficult.)

Model Visualization

The pictures of an appropriately 'back-scaled' merit function ar shown below.

penmult = 0.01;
meritfct = objf + pennult * Suni eqs[[i]]"2, {i, Length[eqgs]}];
xsol ={0.617813, 0.328202, 0.0539851};

Plot3Dfmeritfct /. x1->xsol[[1]], {x3,0,1}, {x2,0,1},
Pl ot Poi nt s->50, Col or Function -> Hue];
Plot3D[nmeritfct /. x2->xsol[[2]], {x1,0,1}, {x3,0,1},
Pl ot Poi nt s->50, Col or Function -> Hue];
Plot3D[nmeritfct /. x3->xsol[[3]], {x1,0,1}, {x2,0,1},
Pl ot Poi nt s- >50, Col or Functi on -> Hue];
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A Concave Quadratic Programming Model

This classical test problem is due to Hesse (see also, e.g., Floudas et al., p. 24.) The model has 6 variables

1S case

in th

to the range constraints which need to be explicitly considered

ints, in addition

and 6 constra

(since — due to the model structure — several solution vector components are at their lower or upper

bounds).

there are also

1)

The global solution value is -310 which is attained on the boundary of the feasible region

other (local) solutions on the boundary.

Note the penalty multiplier (penmult) used with respect to the set of all constraints, to 'scale them up' to

he local search phase.

helps to avoid 'runaway' solutions in t

ion: this

jective functi

the ob



vars = {x1, x2, x3, x4, x5, x6};

varlb = {0, 0, 1, 0, 1, 0};

varub = {10, 10, 5, 6, 5, 10};

varnom= {1, 1, 1, 1, 1, 1};

objf = -25*(x1-2)"2 - (x2-2)"2 - (x3-1)"2 - (x4-4)"2 - (xb-1)"2
- (x6-4)72;

eqs = {};

inegs = {-x1, x1-6, -x2, x2-6, 1-x3, x3-5, -x4, x4-6, 1-x5
x5-5, -x6, x6-10,

(- (x3-3)"2-x4+4)] 4,

(- (x5-3)"2-x6+4)/ 4,

(x1-3x2-2)/2

(-x1+x2-2)/2,

(x1+x2-6)/6,

(-x1-x2+2)/2};

penmult = 100;

i neqs = pennul t *i neqgs;

meritfct = objf + pennult * Suni eqs[[i]]"2, {i, Length[eqs]}]
+ pennult * Sun{ Max[inegs[[i]],0]”2, {i, Length[ineqgs]}];

As the solution obtained below by CNLP illustrates, local search per se is not sufficient.

varnom= {1, 1, 1, 1, 1, 1};
CNLP[ obj f, eqgs, ineqs, vars, varnom varlb, varub]

({-8.67393x10°%3 2., 1., -2.07525x107*2, 1., -2.07525x10°12},
-132., {3}, {8.67393x10°', -600., -200., -400., 5.30231x101°,
-400., 2.07525x107'°, -600., 5.30231x1071° -400.,
2.07525x1071% -1000., -4.78361x1071° -4.78361x101°,
~400., -5.3535x1071% _-66.6667, 6.2208x10710},
{6.2208x1071° 1.24847x10°°, 1.19936x1071%}}

Optim ze[obj f, eqs, i neqgs, vars, varnom varl b, varub]

({5., 1., 5., -5.19599x107'?, 5., 10. },

-310., {3}, {-500., -100., -100., -500., -400.,
2.41752x10°8, 5.19599x1071° -600., -400.,
-2.51621x10°° -1000., -4.26255x10°, -2.40453x108,
-250., 3.95306x10°°, -300., 9.66259x10°8, -200. },
{9.66259x10°8, 7.41437x1071° 6.53593x10"}}
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Model Visualization

xsol ={5., 1., 5.,0., 5., 10.};
Plot3D[nmeritfct /. Thread[vars->xsol], {x2,0,3}, {x1,3, 6},
Pl ot Poi nt s->50, Col or Function -> Hue];

Plot3D[nmeritfct /. Thread[vars->xsol], {x4,0,2}, {x3,2,6},
Pl ot Poi nt s->50, Col or Function -> Hue];
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Plot3D[nmeritfct /. Thread[vars->xsol], {x5,0,5}, {x6,0, 10},
Pl ot Poi nt s->50, Col or Function -> Hue];

Global Optimization: Some More Difficult Challenges and Other
lllustrative Applications

A Simple Industrial Design Problem

® Model Formulation
This is a standard nonlinear programming test model: consult, for instance, the LINGO
Model Library, maintained by LINDO Systems, Inc.

Our task is to design a box at minimum cost that meets (expected functionality related) area and volume
constraints, as well as certain aesthetic requirements.

Decision variables:
d --- depth of box
w --- width of box

h --- height of box
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Cost min = 0.1*(d*w + d*h) + 0.2*w*h; (by assumption, the material cost is twice as much
for two of the sides, than for all the others)

Surface 2*(h*d + h*w + d*w) >= 888;(should be sufficiently large)
Volume h*d*w >=1512; (should be sufficiently large)
Aesthetics h/w <= 0.718; (proportionality bound)
h/w >=0.518; (proportionality bound)
d*w <=252; (sufficiently small footprint required)
10 <=d <= 300; ('safe' variable range constraints are suggested here:
10 <=w <= 300; it is easy to give more narrow ranges, but these
10 <= h <=300; are also sufficiently 'tight' for successful solution...)

Note that several constraints could be simplified (namely, the proportionality constrains can be linear-
ized); we simply follow here the original model form as given in the LINGO Model Library.

m Numerical Solution

It is straightforward to set up the model, using variables as above.

Clear[d, h, w;

vars = {d, h, w};

varnom = Tabl e[ 50., {3}];

varl b = Tabl e[ 10., {3}];

varub = Tabl e[ 300., {3}];

eqs = {};

inegs = {-2*(h*d + h*w + d*w) + 888, -h*d*w + 1512., h/w -

0.718, -h/w + 0.518, d*w - 252.};

objf = 0.1*(d*w + d*h) + 0.2*wth;

result = Optinize[objf,eqgs,inegs,vars,varnom varl b, varub,
G obal Sol ver Mode -> 1, Local Sol ver Mode -> 1, ReportLevel ->

1]

{{23.031, 6.86566, 9.56219}, 50.9651, {},
{-1.36165x10°8, -3.10472x108, 1.10654x10", -0.2, -31.7734},
{1.10654 x 10", 0.0000888699, 2.53612x10 '}}

The more exact optimal objective function value found above is 50.965074987088876.

The result obtained is essentially identical (to great numerical precision) to the result found by using the
LINGO solver.
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A Sonar Transducer Design Problem

® Summary Description

The electric circuit shown below simulates a piezoelectric flextensional sonar projector. The circuit was
developed by Moffett et al. (1992), to describe the barrel stave projector.

This is an equivalent circuit model: that is, electric circuit components simulate the mass, compliance and
damping of mechanical components by corresponding inductances, capacitances, and resistances.

Cb Ld  Rd Cs
B —IHW ) |
VNC:D % _Lco } { Co L Lp. } {
* RO a . B
Rp

The conversion from mechanical to electrical degrees of freedom is handled by a transformer (the
parameter @ represents its transformer turns ratio); two other transformers (modelled by the turns ratios 8
and vy) represent the flextensional mechanical transformers.

The optimization problem consists of finding a set of design parameters that gives a nice' broad effi-
ciency (versus frequency), measured as the ratio of radiated acoustic power (delivered to the radiation
resistance Rr) to input electric power provided by the voltage source V. The ideal efficiency curve is
taken to be given by a Hamming window function, a distribution commonly seen in signal processing
applications.

For the purposes of this illustrative example, some of the design parameters have been fixed, but 7
parameters have been left 'free’, and hence these have to be optimized. The design parameters have been
normalized so that the frequency range of interest is assumed to be between 0 and 1 Hz. The parameters
belong to given finite ranges; there are no other (equality or inequality) constraints.

The objective function is defined by a somewhat complicated 'black box' system model given below. The
Mathematica code for this model was written by C.J. Purcell, DRDC-Atlantic. Note that — for easier
understanding — some of the key components of the code are shown in blue.

m Model Formulation

C ear[goal, obj f, objective, C0,R0,Rs, R, Rd, Rr, Lr, Ch, Cg, a, B, v, Cs, Ls
,LI,d,Cd, Ld];

Maximized Hamming window function is our goal for the ideal broad band efficiency distribution; this is
combined with the efficiency calculated in the 'black box' module below in an overall objective function.
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Since the standard MathOptimizer model form is aimed at minimizing the objective function, the maximi-
zation objective is simply multiplied by -1.

goal [x_]:=N1-Cos[Pi x]"2];

objective[B ,Cs_,Ls ,LI ,d _,Cd ,Ld ]:=

- Sunfgoal [f] * Modul e

[{Y,w=N2 Pi f],2zr,Zz1,22,273,V1,V2,V3,10,11, VOo=1

power out, powerin},( (* Begin Mdule calculations *)
Zr=1/ (1 Re+1/ (w1l Lr)); (* inpedance to gnd at Rr *)
Z1=1/(wl Cs) + wl Ls + Rs+ Zr/y"2; (* inpedance to gnd at
i nput to Cs *)

(* inpedance to gnd at input to beta transforner *)

Z2=1/(1/ (Ri+w | LI+1/(w !l d)) + pr2/Z1);

z3=1/ (w1l Cg)+ 1/(wl Cb+ 1/(Rd+1l/(w |l Cd)+ wl Ld + Z2));
(* inpedance at input to Cg *)

Y=(1/RO + wl Q0 +a™2/Z3); (* input admttance *)

I0=Y * VO; (* the input current *)

V1= a VO(1-1/(1 w Cg Z3));

V2= V1 * Z2/(Z2+Rd+1/(w | Cd)+w | Ld);

V3=y B V2 *(Zr/¥"2)/(Zr! ¥"2+Rs+w | Ls+1/(w Il GCs));
power out =Re[ V3 Conj ugate[V3/Rr]]; (* acoustic power Watts *)
poweri n=Re[ VO Conjugate[l10]]; (* input electrical power Watts *)
powerout/powerin ) (* return value: relative efficiency *)
1.{f, 0.1, 1., 0.01}]; (* End of Modul e cal cul ations *)

(* Constants *)
{C0, RO} ={.5, 1075};
{Rs,R,Rd}={.01, .01, .01};
{Rr,Lr}={.01, .2};
{Cb, Cg} ={20., 20.};
{a,¥}={.01,.06};

(* Optimzation paraneters: B, Cs, Ls, LI , d, Cd, Ld. *)
vars = {B,Cs, Ls, LI,d, Cd, Ld};

varnom = Tabl e[. 1, {Length[vars]}];

varl b = Tabl e[ 0. 001, {Length[vars]}];

varub = Tabl e[ 5.0, {Length[vars]}];

(* Objective function *)

objf = objective[ Appl y[ Sequence, vars]];
eqs = {};

ineqs = {};
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m Model Verification

It is always good practice to check the model structure by providing first some test input (at least trying
the nominal setting as well as the bounds), just to see that calculations coded lead to meaningful results.
This is especially important in somewhat more complicated models.

obj ecti ve[ Appl y[ Sequence, var nom ]
-0. 0526404

obj ecti ve[Appl y[Sequence, varl b]]
-9. 68541 x 10710

obj ecti ve[Appl y[Sequence, varub]]
-0. 0885071

m Numerical Solution

In order to avoid numerical issues with respect to this particular model (due to symbolic gradient manipu-
lations within the Module above), for illustration we apply here only the (gradient-free) global search
mode MS.

The solution of this numerically rather intensive model takes about 12 minutes on an Intel P4 1.6 GHz
processor based machine. According to the result returned (see below), 7952 MS search steps were
completed during runtime: this means about 10.73 objective function evaluations per second.

resultMs = Optinize[objf, eqs, ineqs, vars, varnom varl b, varub,
d obal Sol ver Mbde » 1, Local Sol ver Mode -» 0] // Ti mi ng

{740. 765 Second,
{{4.43451, 3.08985, 0.539311, 3.09438, 3.27806, 3.58907,
0. 00103298}, -42.794, -43.2231, -42.794, {3}, {}, 7952}}

The globally optimized performance indicator value (changing its sign, since we aimed at maximizing
this value) equals 42.794: note that this is a very significant improvement over the settings tried at the

model verification step. The statistically generated (in the present context, upper) bound value 43.2231
shows that — most likely — the result obtained is close to the global optimum.

A more precise analysis should also incorporate a local search in which numerical gradient approxima-
tions could be utilized.
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A Chemical Equilibrium Problem

m Model Formulation

This model was proposed by Peters, Hayes and Hieftje, and it is often used as a test
problem: consult, for instance, the LINGO Model Library, maintained by LINDO
Systems, Inc.

In chemical equilibrium problems, one needs to determine the contribution rates of various components
to mixtures which have given (known or prescribed) chemical characteristics.

In the example below we want to determine the concentrations of several components of phosphorus acid
such that the resulting pH value equals 8, and the total phosphate concentration is 0.1.

Note that such models are often are (very) poorly scaled. For scaling reasons it is often better to take
logarithms of the equations: however, the suitability of various — theoretically equivalent — formula-
tions may depend significantly also on the solvers applied.

The equilibrium equations are:
Log[H2P]+Log[H]-Log[H3P]=Log[0075];
Log[HP]+Log[H]-Log[H2P]=Log[6.2*10"(-8)];
Log[H]+ Log[P]-Log[HP]=Log[4.8*10"-13];
Log[H]=Log[10"-8];

H3P+H2P+HP+P=0.1;

The approximate solution of this model (according to LINGO Model Library information) is known to be
Log[H]=-18.4207

Log[P] =-12.3965

Log[HP] = - 2.4522

Log[H2P] =-4.2767

Log[H3P] =-17.8045

m Numerical Solution

All variable names will be started (in fact, entirely denoted) by small letters, following Mathematica
conventions.
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Cear[h, p, hp, h2p, h3p];

vars = {p, hp, h2p, h3p};
varnom = Tabl e[. 01, {4}];
varl b = Tabl e[ 10n-20, {4}];
varub = Table[ 0.1, {4}];

h = 107-8; (* deduced directly fromthe fourth equation *)

(* Logarithmc nodel form leads to nunerical errors due to
poor scaling..

eqs = {

Log[ h2p] + Log[h] - Log[h3p] - Log[.0075],

Log[ hp] + Log[h] - Log[h2p] - Log[6.2 * 10"-8],

Log[h] + Log[p] - Log[hp] - Log[4.8 * 10"-13],

h3p + h2p + hp + p - 0.1

H

*)

(* Natural scale nodel form seens to work better for our
current set of solvers... *)

egs =

{h2p*h - 0.0075*h3p,
hp*h - 6.2*107(-8)*h2p,
h*p - 4.8*107(-13)*hp
h3p + h2p + hp + p - 0.1
i

(* inegs = Flatten[{varlb - vars, vars - varub}]; *)

(* One has to add these constraints, to avoid numerical errors
due to poor nodel-scaling... *)

inegs = {varlb - vars};

(* The objective is to satisfy all equations sinultaneously *)
objf = Sum[eqgs[[i]]"2, {i, 6 4}];



Optinmi ze[ obj f, eqgs, i negs, vars, varnom var |l b, var ub,

d obal Sol ver Mbde -> 1, Local Sol ver Mode -> 1, ReportlLevel ->
1,

Conver gencelLevel ->12, Preci sionLevel ->20]

{{0. 0393242, 0.0508666, 0.00980916, 1.27395x10°%}, 1.6462x1071°,

(2.54529x10°%%, -9.95018x10°%!, 3.93218x107'° -9.62085x10?},
{{-0.0393242, -0.0508666, -0.00980916, -1.27395x10%}},
[3.93218 %107,

v ((-8.32932x107*% + ({{-1, 0, 0, 0}}, {{0, -1, 0, 0}},

{0, 0, -1, 0}}, {{0, 0, 0, -1}}}. {0. })° +

(-6.05524x107 %% + [{{-1, 0, 0, O}}, {{0, -1, O, O}},
({0, 0, -1, 0}}, {{0, 0, 0, -1}}}. {0. })° +

(-6.05415x107*% + [{{-1, 0, 0, O}}, {{0, -1, O, 0O}},
{0, 0, -1, 0}}, {{0, 0, 0, -1}}}. {0. })° +

(-6.05366x107*% + [({{-1, 0, 0, O}}, {{0, -1, O, O}},
{{0, 0, -1, 0}}, {{0, 0, O, -1}}}. {O. })2), 0.}}

For comparison with the values from the LINGO Library, take the logarithm of the values found.

Log[{0. 017960613045001034, 0. 047525366787566775,
0. 03451401759870644, 2.5710327551048025*"-9}]

{-4.01957, -3.04649, -3.36639, -19.779}

One can see that the result is visibly (but not qualitatively) different from the values cited above from the
literature. However, as the detailed list returned by the MathOptimizer solvers shows (see above), the
chemical equilibrium equations are satisfied to high precision. This indicates that the model could have a
multitude of 'near-solutions' of similar quality. The individual scaling of the constraints would also most
likely help to improve the precision even further. A potential energy model based genuine objective
function can assist further — and, in fact, is often used — to select the 'absolutely best' solution.

The Hundred-dollar, Hundred-digit Challenge

Problems: Problem 4

H Problem Statement and Preliminary Analysis

This challenge was posted by N. Trefethen, Oxford University, UK in the STAM News January - Febru-
ary 2002; page 3.
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Find the global minimum of the two-variable real function f(x,y) defined below as
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T 2+ y) + 00 —sin(10 (x + y)) +
sin(60 €”) + sin(70 sin(x)) + sin(sin(80 y))

No explicit variable bounds are provided.

One can immediately observe that since the function f(x,y) is made up by two non-negative terms and
four trigonometric terms, its global minimum has to be greater than -4.

A second elementary observation is that the value of this function tends to infinity if the absolute value
of x and/or y becomes large. Therefore the optimum shall be located in a suitable neighbourhood of the
origin.

Let us define our objective function:
Cl ear [x, vy, objf];
objf = EXp[SIin[50%x]] +SIin[60*Exp[y]] +Sin[70%*Sin[x]] +
SIiNn[Sin[80xy]] -Sin[l0% (X+Yy)] + (X"2+y"2) /4
In an attempt to find reasonable bounds for x and y, we shall generate a few pictures of this function.

From a distance, it does not seem to be too difficult...

Pl ot 3D[obj f, {x, -20, 20}, {y, -20, 20},
Pl ot Poi nt s -» 50, Col or Functi on -» Hue];
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The 'fine print', however, shows a very complicated surface. This is a 'rather serious toy problem' —
standard nonlinear optimizers would most likely face a hopeless task, and even for a proper general
purpose global search approach the task is formidable...



Pl ot 3D[obj f, {x, -10, 10}, {y, -10, 103},
Pl ot Poi nt s -» 50, Col or Functi on -» Hue];
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Pl ot 3D[obj f, {x, -3, 3}, {y, -3, 3},
Pl ot Poi nt s -» 100, Col or Functi on -» Hue];

The exact solution could be found, for instance, by using interval-arithmetic tools; however, the associ-
ated computational effort is likely to be rather significant, or even prohibitive for most such solver
implementations...

For illustrative purposes, below we provide an (approximate) numerical solution by using MathOpti-
mizer.

m Numerical Solution

vars ={x, Vy};
varlb = {-3,-3}; (* The bounds are chosen on the basis of the
pi ctures generated above *)
varub = {3, 3};
varnom = {0, 0};
eqs = {};
ineqs = {};
objf = Exp[Sin[50*x]] + Sin[60*Exp[y]] + Sin[70*Sin[x]] +
Sin[Sin[80*y]] - Sin[10*(x + vy)] +
(x"2 + yn2)/ 4,

Verification of code at the given (selected) nominal solution:

N[ obj f /. Thread[vars->varnom]
0. 695189

Let us see first what local search can do on its own.

56
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resul t CNLP = CNLP[obj f, egs, i negs, vars, varnom varl b, varub]

{{-0.0223022, -0.00472762},
~0.713075, {}, {}, {-o, 1.31233x107%2, 0}}

As expected, it gets easily 'trapped' at a local optimum very near the origin. (The objective function value
is -0.713075.)

Let us try next the global scope solver MS on its own:

result Ms = MS[obj f, egs, inegs, vars, varnom varl b, varub]
{{-0.0271588, 0.2191}, -2.96668, -3.71271, -2.96668, {}, {}, 1161}

The objective function value found (-2.96668) is much better than the one found earlier by local search.

Solution with standard solver settings leads to the following result:

resultQpt = Optinize[objf, eqs, ineqs, vars, varnom varlb,
var ub]

({-0.0244031, 0.210612}, -3.30687, {}, {}, {-», 3.90871x10°%, 0}

optval =resultOpt [[2]]
-3. 30687

The more precise optimum value found equals

Set Preci si on[optval , 10]
-3. 306868647
Next, we increase the global search phase sample size, in order to find a (quite possibly) better starting

point, as well as a more reliable lower bound estimate.

As the results (below) show, both the starting solution became better and the bound estimate improved
significantly.

result Ms = M5[obj f, egs, inegs, vars, varnom varl b, varub,
Maxlterations - 1000, MaxSanpl e - 1000]

{{-0.024627, 0.211789}, -3.3, -3.30906, -3.3, {}, {}, 999000}

Now we shall feed this solution into the local scope solver.

varnoms= {-0. 02462697605211417, 0.21178911411097368};
resul t CNLP = CNLP[obj f, eqgs, i negs, vars, varnom varl b, varub]

({-0.0244031, 0.210612}, -3.30687, {}, {}, {-o, 3.17515%x1077, 0}}

The more precise value of the best solution vector found is

varopt = {-0.024403079644709905, 0.21061242716594214};
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N[ objf /. Thread[vars -> varopt]]
-3. 30687
One can compare this value to the (statistically established) global bound estimate -3.30906. The latter is

based on 999,000 function evaluations on a relatively small two-dimensional interval region; hence, it
can be expected to be reasonably tight...

Finally, we calculate the ratio of the optimum estimate found and the lower bound estimate as:

-3. 30687 / -3. 30906
0. 999338
Hence, one can conjecture that the quality of the solution found by MathOptimizer (in a few minutes,

using a not exceedingly powerful laptop PC) is estimated to be within 99.93386 % of the — strictly
speaking, unknown to us — 'true' solution of this small-scale, but rather significant numerical challenge.

Note added upon revision of the User Guide (August 5, 2002)

The true optimum value in this problem, to 10-digit accuracy, is -3.306868647, as cited at the Wolfram
Research web site http://mathworld.wolfram.com/news/2002-05-25 _challenge/.

This implies that the optimum estimate found by MathOptimizer is, in fact, precise to at least 10 digits.
(Recall that the lower bound value stated above has been based on a statistical estimate).

B Posterior Visual Analysis and Concluding Notes

The pictures generated around the optimum estimate (see below) show that the problem is indeed tremen-
dously difficult, at least when perceived as a 'pure' numerical global optimization problem... The first
picture also seems to verify the (local) optimality of the numerical solution found, surrounded by fairly
'similar’ solutions.
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Pl ot 3D[ obj f,
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Note finally that the above analysis serves for illustration only, and that MathOptimizer, in fact, could be
applied to solving this model with (even) higher precision.



The Hundred-dollar, Hundred-digit Challenge

Problems: Problem 9

B Problem Statement and Visual Analysis

This global optimization challenge was also posted by Trefethen, in the SIAM News January - February

2002; page 3.

Find the parameter value a that maximizes the value of

(2 +Sin[10a]) [ x* Sin[ -] dx 0.<a<5.

(The value of the parameter should be determined as precisely as
possible.)

Clear[f, a, X];
fla_, x ]:=(2+Sin[10*a]) * x*a * Sin[a/(2-X)];
Integrate[f[a, x], {x,0,2}]

2
. a .
(anSm[z_X]dlx (2+Sin[l0a])
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This integral is actually known in Mathematica, as a special case of the the Meijer G function family (see

MeijerG in Mathematica's Help system).

For illustrating the use of a global optimization based approach, numerical integration will be applied

below, to obtain (approximate) integral values.

First a simple test: numerical integration at a=0 results in zero, as expected. Observe also the warning

messages in the console window these indicate a (possibly) highly oscillatory integrand.

Nintegrate[f[0., x], {x,0,2}]
0.

Two other integral values:

Nintegrate[f[5., x], {x,0, 2}]
0. 0907006

Nlntegrate[f[2.5, x], {x,0,2}]
-0.167812



61

Next, we shall display a sequence of plots of this parametric integral as a function of its parameter a, on
adaptively chosen, shrinking intervals that we postulate (by simple visual inspection) to enclose the
solution.

One shall notice the perhaps unexpected behaviour of this seemingly not too complicated function: this
eventually leads to an interesting global optimization challenge...

Cear[g];
gla] := Nintegrate[f[a, x], {x,0,2}];
Plot[g[a], {a, 0., 5.}];
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Plot[g[a], {a, 0.782, 0.788}];
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As one can see, the value of the parametric integral heavily oscillates, even on a rather small scale: this
fact indicates the difficulty of this (merely one-dimensional) global optimization problem.

m Numerical Solution

vars = {a};
varlb = {0.};
varub = {5.};
varnom = {2. 5};
eqs = {};
inegs = {};

(* Change of sign, for nmaximzation problem*)

Cl ear[objf];

objf = - Nintegrate[(2+Sin[10*a]) * x*a * Sin[a/(2-x)], {x, O,
2}

resultQpt = Optinize[objf, eqs, ineqs, vars, varnom varlb,
var ub]

{{0.778601}, -3.02822, {}, {}, {-w«, 22.7387, 0}}

Note that the result above is generated together with a large number of warning messages. These mes-
sages are again related to the failure of convergence of the numerical integration routine, due to possible
singularity and oscillatory behaviour. The optimization process takes only a few seconds: the computa-
tional burden mainly comes from the embedded numerical integration, done for all sampled parameter
values.

Observe that the Kuhn-Tucker conditions at the solution found are satisfied only to a (definitely unaccept-
able) precision of ~ 22.7387: this is also a direct consequence of the poor numerical behaviour of the
model (objective) function.
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Dr. Frank Kampas suggested to use a modified definition of the objective function, and he observed that
this leads to a more precise solution.

Cl ear [obj f ];
obj f [a_?NunberQ] : =
-Nintegrate[(2+Sin[10xa]) *xx™*a*xSin[a/ (2-x)]1, {X, 0, 2}7;

result Opt =
Optinmize[objf [a], eqs, ineqs, vars, varnom varlb, varub]

({0. 786714}, -3.04498, {}, {}, {-=, 0.0109141, 0}}

The true solution argument of the optimization model is a* ~ 0.7859336743... as cited in the July -
August 2002 issue of SIAM News, p. 3.

Let us evaluate the relative difference between this exact and the approximate solution found by
MathOptimizer:

(0. 785934 - 0. 786714) /0. 785934
-0. 00099245

The corresponding objective function values are also close: compare the (imprecise) result below to the
(imprecise) result of the optimization runs, 3.02822 and 3.04498.

NI nt egrat e[f [0. 785934, x], {x, 0, 2}]
3. 02697

This shows that in spite of the significant numerical difficulties outlined — which result in some rather
imprecise function values during the entire optimization process — MathOptimizer generates an approxi-
mate solution that is precise to about 99.9 percent in the argument.

This numerical example can serve as another motivation to use a proper, globally scoped search
approach, even in unavoidably 'noisy' models.

B Concluding Notes

In an attempt to solve this interesting example, one could find an approximate solution simply by visual
'bracketing', clearly, this would be much harder or impossible to do in higher dimensions...

Interval arithmetic-based methods would provide an exact answer, but the cost of applying such methods
easily becomes prohibitive as model dimensionality increases. In presence of numerical errors such as the
integration issues mentioned above, such methods may also fail to produce exact answers, unless special
remedies are (or can be) implemented.

As this — perhaps not even too complicated — example also indicates, the need for global optimization
may occur in 'surprising' contexts.

A large variety of global optimization applications in the sciences and engineering are discussed in some
of the references listed in the next section.
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