Wolfram Technology Guide: Dynamic Graphical Input  previous | next 
Use Forms Directly as Evaluatable Input
Mathematica lets you create arbitrary forms, which can then be used as input--evaluating immediately to the settings they are given.
In[1]:=

Click for copyable input
{\!\(\*

TagBox[

DynamicModuleBox[{$CellContext`f$$ = 

     Sin[$CellContext`x^2], $CellContext`min$$ = 

     0, $CellContext`max$$ = 2 Pi}, 

InterpretationBox[

PanelBox[

TagBox[GridBox[{

{

StyleBox["\<\"Instant Plot\"\>",

StripOnInput->False,

FrontFaceColor->RGBColor[0.6, 0., 0.],

BackFaceColor->RGBColor[0.6, 0., 0.],

GraphicsColor->RGBColor[0.6, 0., 0.],

FontWeight->Bold,

FontSlant->Italic,

FontColor->RGBColor[0.6, 0., 0.]], "\[SpanFromLeft]"},

{"\<\"function:\"\>", 

InputFieldBox[Dynamic[$CellContext`f$$]]},

{"\<\"min:\"\>", 

InputFieldBox[Dynamic[$CellContext`min$$]]},

{"\<\"max:\"\>", 

InputFieldBox[Dynamic[$CellContext`max$$]]}

}],

"Grid"]],

Plot[$CellContext`f$$, {$CellContext`x, $CellContext`min$$, \

$CellContext`max$$}]],

DynamicModuleValues:>{}],

Setting[#, {0}]& ]\), \[Integral]Sin[x^2] \[DifferentialD]x, \!\(\*

TagBox[

DynamicModuleBox[{$CellContext`f$$ = 

     Sin[$CellContext`x] + Sin[5 $CellContext`x], $CellContext`min$$ =

      0, $CellContext`max$$ = 10 Pi}, 

InterpretationBox[

PanelBox[

TagBox[GridBox[{

{

StyleBox["\<\"Instant Plot\"\>",

StripOnInput->False,

FrontFaceColor->RGBColor[0.6, 0., 0.],

BackFaceColor->RGBColor[0.6, 0., 0.],

GraphicsColor->RGBColor[0.6, 0., 0.],

FontWeight->Bold,

FontSlant->Italic,

FontColor->RGBColor[0.6, 0., 0.]], "\[SpanFromLeft]"},

{"\<\"function:\"\>", 

InputFieldBox[Dynamic[$CellContext`f$$]]},

{"\<\"min:\"\>", 

InputFieldBox[Dynamic[$CellContext`min$$]]},

{"\<\"max:\"\>", 

InputFieldBox[Dynamic[$CellContext`max$$]]}

}],

"Grid"]],

Plot[$CellContext`f$$, {$CellContext`x, $CellContext`min$$, \

$CellContext`max$$}]],

DynamicModuleValues:>{}],

Setting[#, {0}]& ]\), \[Integral](Sin[x] + 

     Sin[5 x]) \[DifferentialD]x}
Out[1]=