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It is known that the Frenet-Serret apparatus of a space curve in three-dimensional Euclidean
space determines the local geometry of curves. In particular, the Frenet-Serret apparatus specifies
important geometric invariants, including the curvature and the torsion of a curve. It is also ac-
knowledged in quantum information science that low complexity and high efficiency are essential
features to achieve when cleverly manipulating quantum states that encode quantum information
about a physical system.

In this paper, we propose a geometric perspective on how to quantify the bending and the twisting
of quantum curves traced by dynamically evolving state vectors. Specifically, we propose a quantum
version of the Frenet-Serret apparatus for a quantum trajectory in projective Hilbert space traced
by a parallel-transported pure quantum state evolving unitarily under a stationary Hamiltonian
specifying the Schrodinger equation. Our proposed constant curvature coefficient is given by the
magnitude squared of the covariant derivative of the tangent vector |T") to the state vector |¥) and
represents a useful measure of the bending of the quantum curve. Our proposed constant torsion
coefficient, instead, is defined in terms of the magnitude squared of the projection of the covariant
derivative of the tangent vector |T'), orthogonal to both |T") and |¥). The torsion coefficient provides
a convenient measure of the twisting of the quantum curve. Remarkably, we show that our proposed
curvature and torsion coefficients coincide with those existing in the literature, although introduced
in a completely different manner. Interestingly, not only we establish that zero curvature corresponds
to unit geodesic efficiency during the quantum transportation in projective Hilbert space, but we also
find that the concepts of curvature and torsion help enlighten the statistical structure of quantum
theory. Indeed, while the former concept can be essentially defined in terms of the concept of
kurtosis, the positivity of the latter can be regarded as a restatement of the well-known Pearson
inequality that involves both the concepts of kurtosis and skewness in mathematical statistics.
Finally, not only do we present illustrative examples with nonzero curvature for single-qubit time-
independent Hamiltonian evolutions for which it is impossible to generate torsion, but we also discuss
physical applications extended to two-qubit stationary Hamiltonians that generate curves with both
nonzero curvature and nonvanishing torsion traced by quantum states with different degrees of
entanglement, ranging from separable states to maximally entangled Bell states. In an appendix,
we examine the different curvature and torsion characteristics of the three qubit |GHZ) and |W)
states under evolution by a quantum Heisenberg Hamiltonian.

PACS numbers: Quantum Computation (03.67.Lx), Quantum Information (03.67.Ac), Quantum Mechanics
(03.65.-w), Riemannian Geometry (02.40.Ky).

I. INTRODUCTION

Geometric reasoning is a powerful tool in theoretical physics to improve our description and, to a certain extent, to
sharpen our comprehension of physical phenomena in both classical and quantum settings by providing deep physical
insights [I]. For instance, it is acknowledged that the classical Frenet-Serret apparatus of a space curve in three-
dimensional Euclidean space determines the local geometry of curves and specifies important geometric invariants,
including the curvature and the torsion of a curve [2]. In classical mechanics, the concepts of curvature and torsion
introduced within the Frenet-Serret apparatus can be helpful in studying geometric properties of classical Newtonian
trajectories of a particle. For instance, curvature and torsion can be used to specify the geometry of the cylindrical
helix motion of an electron in a homogeneous external magnetic field [3]. It is also known that the clever manipulation
of quantum states that encode quantum information about a physical system is an extremely valuable skill in quantum
information science [4]. In quantum mechanics, motivated by the problem of parameter estimation, the concept of
curvature of a quantum Schrédinger trajectory was originally introduced in Ref. [5] as a generalization of the notion
of curvature of a classical exponential family of distributions of relevance to statistical mechanics. In the context of
geometry of quantum statistical inference of Ref. [5], the curvature of a curve can be expressed in terms of the suitably
defined squared acceleration vector of the curve and is a measure of the parametric sensitivity [6] that specifies the
particular parametric estimation problem being under consideration. In Ref. [7], instead, Laba and Tkachuk proposed
a definition of both curvature and torsion of quantum evolutions for pure quantum state undergoing a time-independent



Hamiltonian evolution. In their work, focusing on single-qubit quantum states, curvature measured the deviation of
the dynamically evolving state vector from the geodesic line on the Bloch sphere. Instead, their proposed torsion
concept quantified the deviation of the dynamically evolving state vector from a two-dimensional subspace specified
by the instantaneous plane of evolution. Interestingly, building on the formalism developed in Ref. [7], the concepts
of curvature and torsion have been recently used to study the geometric properties of different types of graph states
of spin systems evolving under Ising-like interactions in Ref. [g].

In this paper, we are interested in quantifying the concepts of curvature and torsion of a quantum trajectory for
several reasons. First, we are interested in understanding how to bend and twist quantum-mechanical evolutions of
quantum states that encode relevant quantum information about the physical systems being observed. This is not
only important from a conceptual standpoint, it can also be especially relevant in experimental quantum laboratory
settings [9 [10]. Second, we are interested in comprehending the possible link between the curvature (and/or the
torsion) and the complexity of a path traced out by a quantum state driven from a source state to a target state
[11L 12]. Finally, we are interested in finding out if we can suitably manipulate via bending and twisting a trajectory
traced out by a quantum state in an efficient manner so that one optimizes the travel time, maximizes the speed
of evolution and, possibly, minimizes possible dissipative effects of thermodynamical origin that can emerge in the
physical system being analyzed [T3HIH].

In this paper, we present a geometric approach to characterize the bending and the twisting of quantum curves
traced out by evolving state vectors. More precisely, we offer a quantum version of the classical Frenet-Serret apparatus
for a quantum trajectory on the Bloch sphere traced out by a parallel-transported pure quantum state developing
unitarily subject to a time-independent Hamiltonian that specifies the Schrédinger equation. Indeed, we remark that
our formalism is not limited to single-qubit two-dimensional complex Hilbert spaces and to quantum curves on the
standard Bloch sphere CP! = §3/S! = 82 with S* denoting the k-sphere. Instead, it applies in principle to any
N-dimensional complex Hilbert space and to quantum curves on generalized “Bloch spheres” CPN~! = §2N-1/81
[16]. We propose a curvature coefficient defined as the magnitude squared of the covariant derivative of the tangent
vector to the state vector and represents a suitable measure of the bending of the quantum curve. We also suggest a
concept of torsion coefficient, instead, specified by means of the magnitude squared of the projection of the covariant
derivative of the tangent vector, orthogonal to the state vector as well as to the tangent vector to the state vector. Our
proposed torsion coefficient is a good measure of the twisting of the quantum curve. Remarkably, as a by-product,
we demonstrate that our proposed curvature and torsion coefficients are identical to those proposed by Laba and
Tkachuk in Ref. [7], although we justify our proposals inspired by the classical Frenet-Serret apparatus. Finally, not
only we consider illustrative examples for pedagogical purposes, we also discuss the generalization of our theoretical
construct to time-dependent quantum-mechanical scenarios where both curvature and torsion coefficients play a key
role.

The layout of the rest of this paper is as follows. In Sec. II, we present some background material that focuses
on the curvature and torsion coefficients of a quantum evolution as originally proposed by Laba and Tkachuk in
Ref. [7]. In Sec. III, in preparation of our newly proposed theoretical construct in Sec. IV, we recall the essential
ingredients of a classical Frenet-Serret apparatus with special emphasis on the notions of bending and twisting as
captured by the curvature and the torsion of a curve in three-dimensional Fuclidean space. In Sec. IV, we present
our quantum version of the classical Frenet-Serret apparatus suitable for quantifying the bending and the twisting
of a quantum curve traced out by a parallel-transported unit state vector that evolves under the action of a time-
independent Hamiltonian. Remarkably, although obtained from an alternative perspective that mimics a classical
apparatus, we find that our proposed curvature and torsion coeflicients coincide with the ones proposed by Laba and
Tkachuk in Ref. [7]. In Sec. V, we present several points of discussion. First, we discuss the statistical interpretation
of the curvature and torsion coefficients. Second, we illustrate the usefulness of recasting the expressions of these
two coefficients in terms of the Bloch vector for two-level systems. Third, we elaborate on several challenges that
can emerge in higher-dimensional Hilbert spaces with quantum evolutions governed by nonstationary Hamiltonians.
Finally, we present in Sec. V a comparison between our proposed quantum apparatus and the classical Frenet-Serret
one. In Sec. VI, we demonstrate simple illustrative examples of the behavior of curvature and torsion coefficients
for quantum evolutions specified by single-qubit and two-qubit time-independent Hamiltonians. In Section VII, we
present our conclusive remarks. Finally, an illustrative example on how to frame a quantum curve can be found in
Appendix A, a link between the concept of geodesic curvature [I7HI9] and our proposed curvature coefficient appears
in Appendix B and, lastly, in Appendix C we report on the behavior of curvature and torsion coefficients for quantum
curves traced by three-qubit quantum states evolving under a quantum Heisenberg model Hamiltonian.



II. THE QUANTUM LABA-TKACHUK FRAMEWORK

In this section, we report on some relevant background material that puts the emphasis on how to introduce suitable
measures of curvature and torsion of a quantum evolution. Specifically, we revisit the work that was originally proposed
by Laba and Tkachuk in Ref. [7].

A. Curvature

In Ref. [7], Laba and Tkachuk propose a concept of curvature coefficient for a Schrédinger quantum-mechanical
evolution specified by a time-independent Hamiltonian H. The curvature coefficient proposed in Ref. [7] emerges by

quantifying the departure of the unit evolution vector [t (t)) = (=™t |4 (0)) with 0 < ¢ < ¢; from the geodesic path

|t (€)) connecting the initial state |t (0)) &f |¢;) and the final state | (t5)) €of |f). The real parameter & € [0, 1]

and |¢ (£)) is given by [7],

def 1 (v |93)

v (§)) = (L =& i) + &7 | [¥r) - (1)
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More specifically, the focus about the temporal evolution that occurs during the temporal interval [0, ¢f] is on two

stages. In the first stage, the state evolves from |1 (0)) to |1 (At)) = e(=/MHAL 14 (0)) with 0 < At < t;. In the

second stage, the state evolves from [i) (At)) to | (At + At')) = e(Zi/MH(At+AY) 1 (0)) = e=H/MHAY |4y (A)) with
At >0 and 0 < At + At' < t;. Then, setting At’ = At for simplicity, Laba and Tkachuk argue that a departure of
the actual quantum-mechanical evolution from the geodesic evolution from |1;) to |1f) can be detected by considering
the minimal squared distance d2,; between | (At)) and | (€)) in Eq. ,

min
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Note that 7 is an arbitrary real constant that, for convenience, can be set equal to v = 2. Moreover, d? () is the
squared Fubini-Study distance between | (At)) and |¢ (£)). Performing a Taylor series expansion in At and keeping
terms up to the fourth order, it is found in Ref. [7] that
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The subscript “LT” means Laba and Tkachuk. The quantity xpr in Eq. is the so-called curvature coefficient
introduced by Laba and Tkachuk in Ref. [7] and is given by,
ef 2
rir © ((AH)') = (AH)?)”, (4)

where AH %' 1 — (H) with (H) being the expectation value of the constant Hamiltonian H. For completeness, we

emphasize that it is possible to define a unitless curvature coefficient Ry def KLt/ <(AH)2>2, that is

2
s ((AH)") — ((ARP?)
(AH)2)?
Finally, to offer an alternative geometric interpretation of the unitless curvature coefficient sy, Laba and Tkachuk
use a classical analogy. Indeed, any classical trajectory in physical space between two neighboring points can be

approximated with a circular trajectory between the two neighboring points. From simple trigonometric arguments,
it can be shown that the circle has a radius Rjassical that satisfies

()
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Recall that the curvature of a circle is the reciprocal of its radius. Note that d in Eq. @ is the distance between the
middle point of an arc and the cord joining the two neighboring points. The quantity s, instead, denotes the length of

the circular curve connecting the two points. In the quantum setting, one replaces d in Eq. @ with dpi, in Eq.

and, in addition, s in Eq. with Sgeo = 20AT¢ where v = (v 1s the speed of quantum evolution. en,
d, in addition, s in B ith sge0 = 20At where v %' (v/h) \/{(AH)?) is the speed of lution. Th

from Eqgs. and @, one arrives at the conclusion that Fpr can be regarded as a quantum analogue of 1/R?, . |
(i.e., the squared curvature in a classical setting).

Having discussed the concept of curvature coefficient proposed in Ref. [7], we discuss in the next subsection the
notion of torsion coefficient of a quantum evolution.




B. Torsion

In Ref. [7], Laba and Tkachuk propose a concept of torsion coefficient for a Schrédinger quantum-mechanical
evolution specified by a time-independent Hamiltonian H. The torsion coefficient quantifies how much the evolving
state vector |1 (t)) = e~@/MHt |4y (0)) with 0 < ¢ < t; deviates from the plane of evolution II at a given time.
This plane II, in turn, is a two-dimensional subspace spanned by two neighboring linearly independent unit state
vectors {|¢ (0)), ¥ (At))} with 0 < At < ¢, that belong to the plane II. Observe that |/ (0)) and |¢ (At)) are
not orthogonal and, in general, (¢ (0) [¢) (At)) = ae’® # 0 with a, a € R. From the set {|1)(0)), | (At))}, Laba
and Tkachuk construct a set of orthonormal vectors {|¢1), |¢2)} and use it to define an orthogonal projection

operator Pr; ' [41) (1] + |#2) (#o| onto the plane I Then, the magnitude of the deviation of |¢ (t)) from the

plane II is characterized by the scalar quantity 1 — pg with pr def (Y (At + At) |Pr| ¢ (At + At')), At > 0, and

0 < At+At’ < ty. Given the definition of Py, note that pr = [(¢1 [¢ (At + A2+ |(ha |1 (At + At'))|*. Therefore,
when prr = 1, there is no deviation from the plane of evolution since the three vectors |¢1), |¢2), and |1 (At + At'))
are on the same plane. Therefore, in this case, the torsion coefficient is expected to vanish. More specifically, Laba
and Tkachuk introduce the torsion coefficient 711 in an approximate setting where they Taylor expand 1 — pry up to
the fourth order in At and A#’. Assuming without loss of generality that At = A¢’, it is reported in Ref. [7] that

4

—+o(ath), (7)
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where 717 is a constant coefficient that is independent from At and At’ and is given by,

> ((AHP)’ (AH)?)?

def
T = <(AH)4> - <(AH)2> - W = KLT — W (8)

Recall that AH %' 1 — (H) with (H) denoting the expectation value of the time-independent Hamiltonian H. For

completeness, we remark that it is possible to introduce a unitless torsion coefficient 71 def T/ <(AH)2>27 that is

det ((AH)*) — <(AH)2>2 (

LT = -

AH
(AH)?) ((AH
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Finally, to provide an additional geometric interpretation of the torsion coefficient 711 in Eq. (8, Laba and Tkachuk
show that the scalar quantity 1 — py; happens to be proportional to the squared distance of |[¢ (At + At')) to the
plane II. Therefore, they conclude that 1 — pr; has a clear geometrical interpretation and is a suitable indicator of the
presence of torsion during the quantum-mechanical evolution.

Having discussed this relevant background material, in the next section we present some preliminary material on
the classical Frenet-Serret apparatus. This, in turn, will inspire our own newly proposed measures of curvature and
torsion of a quantum curve.

III. THE CLASSICAL FRENET-SERRET APPARATUS

In this section, in preparation of our newly proposed theoretical construct in Sec. IV, we recall the basic ingredients
of a classical Frenet-Serret apparatus with special focus on the concepts of bending and twisting as captured by the
curvature and the torsion of a curve in three-dimensional Euclidean space.

A. Essentials

We limit our presentation here to unit speed regular curves in R3. In this context, the so-called Frenet-Serret
apparatus is the main tool to study curves since it completely determines the geometry of the curve. This apparatus
consists of three unit vector fields along the curve and two scalar-valued functions. The three vector fields are the
tangent vector field 7', the principal normal vector field N, and the binormal vector field B. The two scalar-valued
functions, instead, are given by the curvature kpg and the torsion 7ps. The subscript “F'S” means Frenet and Serret.

The set {T, N , B} is known as the Frenet-Serret frame. It is a very convenient set of three orthonormal vectors that

reflects the geometry of the curve and, thus, can be used to fully characterize the geometric properties of a curve in



R3. Although the Frenet-Serret apparatus can be applied to non-unit speed curves as well, we focus on unit speed
curves here. In this latter case, it is possible to show that three vectors specifying the Frenet-Serret frame satisfy the
so-called Frenet-Serret equations given by [2]

7:_', 0 KRFS 0 7:_'
N | =| —krs 0 7Trs N |. (10)
B 0 —-7mrs O B

The relations in Eq. describe the dynamics of {T, N . B } in terms of how they move and twist as one walks

along the curve. In other words, the Frenet-Serret frame is a classical example of a “moving” frame. The prime in
Eq. denotes differentiation with respect the parameter chosen to parametrize the curve, i.e., the arc length s
along the curve defined as,
S
def
s /
0

with 7 : (a, b) — R3 being a unit speed regular curve with ||dy/dt|| = 1. Note that dy/dt is the velocity vector field

along 4. The tangent vector field T (t), instead, is the unit vector in the direction of the velocity vector and is defined

as T (t) e (d¥/dt) / ||d7/dt||. For completeness, we observe that curves can be parametrized with parameters other

than the arc length s and, in addition, the satisfaction of the regularity condition of the curve requires d¥/dt # 0.
For a more general discussion on the geometry of curves in R?® extended to irregular and/or non-unit speed curves,
we refer to Ref. [2].

Finally, we shall define the vectors N and B in the following subsections where the focus is on the concepts of
curvature and torsion of a curve in R3.

@
— || dt 11
\dtH 7 (1)

B. Curvature

It is generally stated that the curvature of a straight line is equal to zero and that of a circle is constant since it
assumes the same value at each point along the curve. These statements suggest that the notion of curvature should
provide a measure of the bending of a curve. Assuming a unit-speed regular curve, a reasonable measure of the
bending of the curve can be specified by the rate of change T (s) of the tangent vector field T' (s) with respect to the
arc length s. Indeed, the curvature kg (s) of a unit-speed regular curve ¥ (s) is defined as

def
ks (5) =

]T’ (S)H . (12)

Note that, in general, Kpg is non-constant and depends on s. Furthermore, observe that kpg equals 0 and 1/R
for a straight line and a circle of radius R, respectively. To better understand the significance of kpg in Eq.
and in preparation of the introduction of the concept of torsion, it is convenient to define at this point the vectors

N and B. The principal normal vector field N to a unit-speed curve 7 (s) is given by N (s) E (8) /kps with

A N A 2 . A
T (s) L N (s) since HT (S)H = 1. Then, the binormal vector B (s) is defined as the cross product between 7' (s) and

A def

N (s), B(s) = T (s) x N (s). We are now ready to introduce the torsion mrg in the next subsection.

C. Torsion

The torsion 7rg of a unit-speed curve 7 (s) is formally defined as,

Trs (5) & —B (s) - N (s). (13)
From a geometric standpoint, 7ps measures how far the curve ¥ (s) is from lying in the osculating plane spanned by
the orthonormal vectors 7' (s) and N (s). In particular, if a curve lies in a plane at all times, 7rg = 0 and the plane is
the osculating plane. When 7rg # 0, 7rg quantifies the twisting of the curve out of the osculating plane. Furthermore,
this twisting does not need to be constant as one walks on the curve. Unlike the curvature xpg, the torsion 7pg can
be both positive and negative. Its sign has a clear geometric meaning. It is positive (or, negative) when the curve
twists toward (or, toward the opposite) the side B (s) points to as s increases.



In the next section, taking inspiration from what we presented in Sec. III, we propose our definitions of curvature
and torsion coefficients of a quantum curve. Remarkably, we recover the curvature and torsion coefficients as presented
in Sec. II as originally proposed by Laba and Tkachuk in Ref. [7].

IV. A QUANTUM VERSION OF THE FRENET-SERRET APPARATUS

In this section, we propose a quantum version of the classical Frenet-Serret apparatus. In particular, we propose
novel measures of bending and twisting of a quantum curve traced out by a parallel-transported pure quantum state
that evolves under the action of a time-independent (Hermitian) Hamiltonian operator.

A. Parallel-transported unit state vectors: {|¥)}

We begin by introducing the parallel-transported unit state vectors {|¥)} with (¥ |¥) = 1 and <\Il }\IJ> = 0.
Consider the normalized state vector |¢ (¢)) with (¢ (¢) | (t)) = 1 that satisfies the Schrédinger evolution equation,

oy [y (1)) = H (1) [¢ (1)) - (14)

In what follows, the Hamiltonian H(¢) in Eq. is assumed to be constant in time, i.e., H(t) = H for any
t > 0. Obmmmthm;W4@> ©F 9 (1) = —(i/B)H Y () grmtommgmm1u>qu>smaa<w@)me> -
—(i/h) (¥ (t) [H| ¢ (t)) # 0, in general. Note that (¢ (t) [H| ¢ (¢)) is time-independent since (¢ (¢) [H| ¢ (t)) =
(W(0)[etHt/ [ e=iHt/R |y (0)) = (3 (0) [H| ¢ (0)) = E =constant. Let us define |W (¢)) % e#8®) |4 (¢)) with

s [y

| (W) [H$ () dt’. (15)
0

In our case, B(t) = £t and |V (1)) = et (1)), that is, |1 (t)) = e "%|¥(t)). By construction, we have
<\Il (t) ’\I/ (t)> =0 and |¥ (¢)) satisfies the Schrédinger evolution equation

ihd, W (t)) = AH | (1)) . (16)

In Eq. , AH € H - (H), with (H) and AH being time-independent quantities when H is assumed to be time-
independent. Having introduced the state vector | (¢)), we are ready to introduce the unit tangent vector in the
next subsection.

B. Unit tangent vectors: {|T)}

In this subsection, we introduce the unit tangent vectors {|T>} such that (T'|T') =1 and (¥ |T') = 0. To begin, let

us consider the time derivative of the normalized state vector | (¢ |T > def Oy \‘1/ . Note that we use the upper
bar symbol, like the one in |T >, to indicate unnormalized Vectors Using Eq. , we have

ﬁww>:aAW@»::—%AHuﬂu». (17)

Note that |T'(t)) is orthogonal to |¥ (t)), (¥ () |T(t)) = 0, since (¢ (t)|AH[% (t)) = 0. However, |T'(t)) is not
normalized to one since

N 2 2
(T(t)|T(t)) =~ (;) (U (1) |(AR)?| W (1)) = % def 2, (18)

The quantity v in Eq. is constant in time and can be used to define the arc length s given by

t
s d:ef/ vdt = vt. (19)
0



For completeness, note that [t]ycqa = sec, [v]yxsa = sec™!, and [s]yga is adimensional (i.e., unitless). MKSA
denotes meters, kilograms, seconds, and amperes within the International System of Units. From Eq. , the
relation between ¢-derivatives and s-derivatives is given by 05 = (1/v)0;. Using s-derivatives, we can introduce a
properly normalized tangent vector |T' (s)) defined as

T (s)) = 0, |9 (5)) = W (s)) = —iAR ¥ (s)), (20)

where |V (s)) & |W (t(s))). Observe that |T'(s)) = —iAh|¥ (s)), where the unitless operator Ah is defined as

N AH/ (hw). By construction, |T'(s)) in Eq. is such that (T'(s)|T'(s)) = 1. In addition, it can be
rewritten as |7 (s)) = P [¥ (s)) = |¥/(s)), with P(¥) Ly |¥) (¥| being a Hermitian projector onto states
orthogonal to the unit state vector |¥) such that PP = P(¥) and (P(‘I’))Jr =P For completeness, using this
definition of the tangent vector in terms of the projector operator P™Y), we get (T (s)|T (s)) = ((AH)?) / (h*v?) =1
since v? &' ((AH)?) /h?. Lastly, notice that |T'(s)) is orthogonal to |¥ (s)). Indeed, using Eq. , we have
(U (s)|T (s)) = —i (W (s)|AR| T (s)) = —i (Ah) = 0 since Ah < AH/ (hw) = AH//(AH?) with (AH) = 0. In
summary, {|¥(s)), |T(s))} is a pair of orthonormal state vectors. Moreover, |T (s)) is the projection of |¥’ (s))

normal to |V (s)) and specifies the so-called covariant derivative of |¥ (s)), |T (s)) = |DW (s)) L pw) [P’ (s)). The

covariant derivative operator D is defined as D def p(w) (d/ds) and represents the projection onto a state perpendicular

to |¥ (s)) of the ordinary derivative d/ds with s being the arc length [I5] 20, 21]. The set of vectors {|¥ (s)), |T (s))}
can be viewed as spanning the instantaneous “osculating” plane that contains the quantum curve traced out by the
state vector | (s)). This plane will play a key role when introducing the concept of torsion of a quantum evolution.
Before doing so, we introduce in the next subsection a concept of curvature for quantum evolutions.

C. Curvature

In our approach, inspired by the classical Frenet-Serret apparatus, we propose that the curvature coefficient n%c is
given by the magnitude squared of the covariant derivative of the tangent vector |T'(s)) to the state vector | (s)),

K2 & <T’ (s) (P(‘I’))TP(‘I’) T (s)>, (21)

with D |T(s)) cip) |T"(s)) and D Lof P L — (I — W) (V]) L [15, 20, 21]. The subscript “AC” means Alsing and

Cafaro. Since |T" (s)) = [¥” (s)) and P™Y) |T'(s)) = |T (s)), x% in Eq. can be regarded as specified by the second
covariant derivative D? |¥ (s)) of the state vector |¥ (s)) (i.e., a form of acceleration vector) and can be recast as
def 2 2
kac = [IDIT(s))I° = [|D* ¥ (s))]”- (22)

Note that while x% in Eq. is the squared magnitude of the second covariant derivative of the state vector |¥ (s))
that traces out the quantum Schrodinger trajectory, kg in Eq. is the magnitude of the second derivative of the
vector position 7(s) that traces out the unit-speed curve ¥ (s) in the FS apparatus. Thus, our proposed curvature
coefficient "‘Cic can be regarded as a quantum analogue of "912?3' To find an explicit expression of Iﬁ:ic in Eq. (, we

use Eq. (20) to obtain P(Y) [T7 (5)) = — {(Ah)2 - <(Ah)2>} |V (5)). Indeed, dropping the “s” in |¥ (s)) and |T (s)),
we have

_ P(‘I’)as (—tAR|T))

= —iP™ (AR|0,T))

= —iP™) (AL |T))

— P (i (AR \‘1’>>

=~ (1 ) (] [(An)* |9)]

= [can® jw) - (w|an?| v) )]

- [l () .
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From Eq. , we finally get an expression of the curvature coefficient k3 in terms of expectation values of powers
of the adimensional operator Ah,

Kho = ((A0)*) - <(Ah)2>2 = {(@an) -1, (24)

where we have used ((Ah)?) (AH /V(AH)?)) ) ) = 1. Interestingly, we note that % in Eq. coincides with

def

the unitless curvature coeflicient introduced by Laba and Tkachuk given by Rpr = kpr/ <(AH)2>2 in Eq. 1) with

krr given in Eq. once we recall that Ah = AH/\/{(AH)?). We are now ready to introduce our proposal for a
concept of torsion for a quantum evolution.

D. Torsion

We begin by recalling that in the classical Frenet-Serret apparatus, the definition of the torsion coefficient requires
the introduction of the binormal vector field B (s) that is orthogonal to the instantaneous osculating plane spanned by

the other two orthonormal vectors T (s) and N (s). In our quantum framework, the instantaneous motion of the curve
belongs to the plane spanned by the orthonormal state vectors |¥ (s)) and |T (s)). This plane can be viewed as the
quantum analogue of the osculating plane that appears in the Frenet-Serret apparatus. Furthermore, it corresponds
to the plane spanned by the state vectors [¢ (t)) and |[¢ (t + At)) in the quantum Laba-Tkachuk framework once one
recognizes that the linear approximation of |1 (¢t + At)) is given by |4 (¥) ’w > At+0 (At?) with ’w (t)> = |0 (1))

with O def 0/0t. However, we need to identify a suitable quantum analogue of B (s). We start by recalling that while

{|¥ (s)), |T(s))} forms an orthonormal set of state vectors and P(¥) |T” (s)) is orthogonal to |¥ (s)), we have two
issues. First, P(¥)|T” (s)) and |T (s)) are not orthogonal since (T(s) |P(‘1’)| T'(s)) = —i <(Ah)3> # 0. Interestingly, as
we shall see better later, <(Ah)3> corresponds to the so-called skewness coefficient in statistical mathematics [22H24].

Second, P(¥) |T” (s)) is not properly normalized to one. This latter matter is a minor concern. To address the first
issue, we propose to consider the (not normalized) state vector |N (s)) defined as,

N (5)) € POPW |T(s)), (25)

that is, [N (s)) = LfpMp IT(s)). By construction, |N (s)) in Eq. is orthogonal to both |¥ (s)) and |T (s)). Clearly,
one can construct a properly normalized vector |N (s)) from |N (s)) given by |N (s)) 2ef |N(5)) /|| N (s)|| so that
{J¥ (s)), |T'(s)), |N(s))} forms a useful set of orthonormal state vectors. Interestingly, {|¥ (s)), |T'(s)), |N (s))}
can be regarded as the outcome of an ordinary Gram-Schmidt orthonormalization procedure applied to the input set of
(linearly independent) vectors given by {|¥ (s)), |¥’(s)), |¥” (s))} or, equivalently, {|¥ (s)), D |¥ (s)), D |¥ (s))}.
We show in Fig. 1 a graphical depiction of the Frenet-Serret frame {Zf’, N, B} for the vector spaces along a
curve in three-dimensional Euclidean space R? along with a pictorial representation of our proposed quantum frame

{IT(s)), |T(s)), |N(s))} for the three-dimensional subspaces along a curve on a generalized Bloch sphere. At this
point, we can finally propose of notion of torsion coefficient 73 given by,

def i
e S INEE = (7' ()| (POP©) PP

T (s)> - <T’ (5) ‘P(‘I’)P(T)P(‘I’)’T’ (3)>. (26)

In terms of the state vector [N (s)) Lrp@p) |T" (s)), T3 can be recast as

def / < 2
e @ (N () [N (5)) = [PTDT(s)] (27)
Observe that since |N(s)> in Eq. (25) can be recast as P()D? |V (s)) with D? [¥ (s)) = P |77 (s ), |N (s)) can

be viewed as the projection of the second covariant derivative D?|W (s)) of the state vector |¥ (s )) onto a state
orthogonal to |T (s)). Therefore, by construction using PT P¥ we have that |N (s)) is a vector that is orthogonal to
the “osculating” plane spanned by |¥ (s)) and |T (s)). Therefore, by construction, 73 measures how far the quantum
curve traced out by |V (s)) is lifting off from the instantaneous “osculating” plane spanned by the orthonormal set
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FIG. 1: (a) Graphical depiction of the Frenet-Serret frame {T, N, B} for the vector spaces along a curve in three-dimensional
Euclidean space R3. (b) Pictorial representation of our proposed quantum frame {|¥ (s)), |T(s)), |N (s))} for the three-
dimensional subspaces along a curve on a generalized Bloch sphere CPY ! = §2V-1! /S* where S* denotes a k-sphere and N
is the dimensionality of the complex Hilbert space. For N = 2, the quantum curve is on the Bloch sphere CP' = S3/S' = S?
and |N (s)) is identically zero. A set of three orthonormal vectors is sufficient to define the first two generalized curvature
functions, i.e. the curvature and the torsion coefficients.

of vectors |W (s)) and |T (s)). Thus, T3 is a measure of the twisting of the Schrédinger type quantum-mechanical
evolution under investigation and is, by construction, a quantum analogue of 7/ with 71 in Eq. introduced in
the classical FS apparatus. To find an explicit expression of 73 in Eq. , we first substitute Eq. into Eq.
(26). Then, recalling that (U (s) |[Ah| T (s)) = 0, we get

o = (V) |[(A0)? = (AR)2) - Ab (0] ¥ () > 0. (28)

where the last inequality follows since the argument of the expectation value is the square of a Hermitian operator.
i reduces to

Then, expanding Eq. 1' and noting that (Ah) = 0 and <(Ah)2> =1, 73¢ in Eq.

720 = ((AR)*) — ((ARP) — 1 = k% — ((AR)%)2. (29)

Interestingly, we note that 734 in Eq. coincides with the unitless torsion coefficient introduced by Laba and
Tkachuk given by 7,1 def LT/ <(AH)2>2 with v in Eq. once we observe that Ah = AH/\/((AH)2). Finally,
combining Egs. (24) and 7 we also recover the same constraint relation as in the Laba-Tkachuk framework, i.e.,
2
Kic = TAc T ((AR)%)".
In the next section, we present several points of discussion that emerge from our newly proposed concepts of
curvature and torsion of a quantum evolution.

V. DISCUSSION

We begin this section with a discussion on the statistical interpretation of the curvature and torsion coefficients
in Egs. and , respectively. We then show the utility of rewriting the expressions of these two coefficients
in terms of the Bloch vector for two-level systems. We proceed by elaborating on several challenges that can arise
in higher-dimensional Hilbert spaces with quantum evolutions governed by nonstationary Hamiltonians. We finally
conclude with a comparison between our proposed quantum apparatus and the classical Frenet-Serret one.

A. Statistical interpretation of curvature and torsion

In mathematical statistics, the skewness and the kurtosis are two quantities used to characterize the shape of
a probability distribution. The skewness involves the third moment of the distribution and is a measure of the
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“asymmetry” of the probability distribution. It is defined as a unitless coefficient a3 given by [22 23],
def m% ms (30)
a3 = —_— =
i

m. d:"fEZ(xi -z, (31)

where m,. is the rth central moment,

and Z is the arithmetic mean of n real numbers x; with 1 < i < n. Therefore, mz and ms in Eq. are the third
moment and the variance of the data set. The kurtosis, instead, involves the fourth moment of the distribution and
is a measure of the “tailedness” of the probability distribution (i.e., a quantifier of how often outliers occur). It is
defined as the unitless coefficient oy defined as [22] 23],

def T4
oy = —. 32
: m3 (32)

A well-known inequality in mathematical statistics is the so-called Pearson inequality [24],

For later use, we employ Egs. and to recast the Pearson inequality ay — 1 — a3 > 0 as

2 2

myqg —m m
2 3>, (34)

my my

Interestingly, our proposed curvature and torsion coefficients k3 and 73, respectively, have a neat mathematical
statistics interpretation. Indeed, we point the attention to the following correspondences,
2

o (amf) - <(AH)2>2 ma — m3

RAac = <—>a4—1:72, (35)

<(AH)2>2 my

and,

Tac = — —ou—1—0g=—-——-—5. (36)

From Egs. and we note that the curvature and the torsion coefficients can be regarded in terms of statistically
2

meaningful quantum quantities, HQAC +—— as— 1 and Tgc <— a4 — 1 — of. In particular, the difference nio — 7'12\0
between the curvature and the torsion coefficient is captured by the square of the skewness coefficient, a3 = Ii%c —Tgc.
This last inequality can be interpreted as follows. Let us convey to denote a quantum state “symmetric” if (AH)3

is vanishing under the quantum evolution governed by the stationary Hamiltonian H. Then, the curvature and the
torsion of a quantum curve traced out by a symmetric state are identical. The symmetry encoded in the quantum

state for a given Hamiltonian manifests itself in the vanishing third moment <(AH)3>, whose presence signifies the

existence of asymmetric quantum behavior of statistical nature. Finally, the validity of the Pearson inequality in Eq.
is a straightforward consequence of the positivity of 73 in Eq. (36].

B. Curvature, torsion, and the Bloch vector for 2-level systems

Although our geometric approach is formally valid for arbitrary d-level quantum systems with d > 2, we focus here
def _
= [I+ a(t)-0] /2 that evolves

under the traceless stationary Hamiltonian H% m.&. The vectors a and m denote the Bloch vector and the magnetic

on two-level systems. Consider a physical system specified by the density operator p ()
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vector, respectively. For the case of pure states considered here, a-a = 1 is a unit vector on the Bloch sphere. Recall
that an arbitrary qubit observable Q = gol +q-& with ¢y € R and q € R? has a corresponding expectation value given
by (@) p =0 +a-q. In what follows, we would like to express the curvature and the torsion coefficients k3, and

T3, respectively, in terms of the vectors a and m.
Recall that,

whe 2 ((am*) - ((an?) = . (37)

By brute force expansion and using the fact that H2 = m?I, we get

((AH)") = (H') — 4 (H®) (H) + 6 (H2) (1) — 3 ()"
= (H*) — 4 (%) (H)” + 6 (H) (H)” — 3 ()"
= (H) + 2 (H%) (H)* - 3(H)", (38)

where we have used H® = m? H = (H?) H and in addition,
2
<(AH)2> = (H2)? 4+ (H)* — 2 (H2) (). (39)

Combining Egs. and and using the fact <H4> = <H2>2 = m*, we arrive at

<(AH)4> - < > <<H4> +2 <H2> —3 <H>4) - (<H2>2 + () — 2 (12) <H>2>

- ) st a0

= 4(H)” (< 2 —()°)

= 4(H)* (A1), (40)
that is,

<(AH)4> - <(AH)2>2 — 4(H)? <(AH)2> : (41)
Using Eq. , k4c in Eq. becomes

Kag =4 <(fé)2> (42)

Then, observing that (H)* = (a-m)® and <(AH)2> = m?—(a-m)’, we finally arrive at the expression for Kic (a, m),

o fa, m) = 4—Em_ (43)

m? — (a-m)

Remember that the torsion coefficient 73 is given by,

o= {(@an?) — {@an?) —{@an?) = — - =Ro -ty ()

Observe that <(AH)3> can be recast as,

<(AH)3> — (H%) — 3(H?) (H) + 2 (H)®. (45)
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Then, noting that H?> = m?I and H? = m? (m~6),<(AH)3> in Eq. reduces to

<(AH)3> — 2 (H) <(AH)2>. (46)

For later use, we emphasize that in terms of the vectors a and m, <(AH)3> in Eq. can be rewritten as

—2(a-m) [m2 —(a- m)z}. We reiterate that Eq. has been obtained when the single-qubit quantum state

evolves under a traceless stationary Hamiltonian of the form H= m - . Finally, employing Egs. , , and ,
we obtain

Tic (a, m) = 0. (47)

Interestingly, the vanishing of the torsion coefficient in the case of motion on a Bloch sphere can be explained in
terms of the projector formalism as well. Recall that 73 is formally defined as the norm squared of the vector

[N (5)) & PP |T'(s)). Note that I=L; < [U) || + |T)|T| with dime H3 = 2. Clearly, H} denotes here the

Hilbert space of single-qubit (k = 1, superscript) quantum states of dimension d = 2 (subscript). Furthermore, given
that PV €' 1 — |0) (¥|, PO L1 |7) (7], and PWPT) = PP = O (with O being the null operator) since
|¥) and |T") are orthonormal, we have

PUOPM) — (1—|T) (1) (1 - W) (¥])
=1—|0) (¥ - [T) (T
=1-1
~0. (48)

Observe that for higher-dimensional systems, P(")P(T) is not necessarily the null operator O since since {|¥), |T)}
is not a complete set (in other words, the resolution of the identity cannot be obtained by simply using |¥) and |T'),
in general higher-dimensional scenarios).

As a final remark, we observe that geodesic motion occurs when "Cic (a, m) =0, i.e., when a L m from Eq. .

In this case, the kurtosis assumes its minimum value of one (since ay = 1 > <(Ah)4> = 1) and the skewness

vanishes (since ag = 0 « <(Ah)3> = 0). Therefore, we conclude that geodesic quantum motion specified by a

stationary Hamiltonian on the Bloch sphere occurs, from a statistical standpoint, with minimal sharpness together
with maximal symmetry.

C. Extension to higher-dimensional state spaces

In our current investigation, the expressions for % and 73 are formally valid for arbitrary d-level quantum systems
evolving under stationary Hamiltonians. In our illustrative examples, however, we shall limit the use of the notion of
Bloch vectors to Bloch spheres for 2-level systems. Interestingly, the concept of Bloch vector can be formally extended
to 4-level two-qubit systems [25] and to arbitrary d-dimensional quantum systems with d > 2 (i.e., qudits) [262§].
For single-qubit systems, the usefulness of the Bloch vector formalism is twofold. First, the unitary time evolution of
a single-qubit quantum state can be captured as an orbit on the Bloch spheres. The orbit gives a clear visualization
of the quantum mechanical time evolution. Second, the Bloch vector has real components that can be expressed as
expectation values of experimentally measurable observables specified by Hermitian operators (i.e., the Pauli operators
in the single-qubit scenario). When moving from single-qubit quantum systems to higher dimensional systems, the
physical interpretation of the Bloch vector preserves its usefulness. Unfortunately, its geometric visualization is
not as clear as in the 2-level systems. Indeed, bizarre properties of quantum theory emerge in higher-dimensional
systems, including the simplest but non-trivial case represented by 3-level systems (i.e., qutrits) [28]. These bizarre
quantum features make it difficult to reveal the geometry of multidimensional quantum systems [29] [30]. A significant
departure between single-qubit systems and higher-dimensional quantum systems is the following. For qubits, any
point on the Bloch sphere or inside the Bloch ball corresponds to a physical state (i.e., a pure and a mixed quantum
state, respectively). For d-dimensional qudit systems, instead, not every point on the “Bloch sphere” in dimensions
d? —1 corresponds to a physical state. Although it is possible to construct a unique Bloch vector for any physical state,
not every Bloch vector corresponds to a quantum state. In particular, there is in higher-dimensions the emergence
of Bloch vectors that correspond to unphysical states specified by density matrices with negative eigenvalues (though
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still of trace one, [28]). Thus, one must also enforce the non-trivial condition of the positivity of the corresponding
density matrix for these states [I6]. For an interesting discussion on Bloch vector representations of single-qubit
systems, single-qutrit systems, and two-qubit systems in terms of Pauli, Gell-Mann, and Dirac matrices, respectively,
we refer to Ref. [3I]. We shall attempt to extend our geometric intuition beyond the simplest quantum systems
together with considering the physical significance of the concepts of curvature and torsion coefficients in relation to
generalized “Bloch spheres” in forthcoming scientific endeavors.

D. Extension to nonstationary quantum evolutions

We have limited here our investigation to stationary Hamiltonian evolutions and time-independent expressions for
the coefficients "Lic and Tic. In the stationary scenario, the exact calculation of the dynamical trajectory traced
out by the source state does not present any significant problem. Although our geometric formalism yielding time-
dependent expressions for k34 and 73 can be formally extended to the time-dependent setting [32], we expect that
finding analytical expressions for the dynamical trajectories traced out by source states evolving under arbitrary
time-dependent Hamiltonians will be generally rather challenging. Indeed, it is known that it is very difficult to find
exact analytical solutions to the time-dependent Schrodinger equation even for two-level quantum systems. The first
examples of analytically solvable two-state time-dependent problems were presented by Landau-Zener in Refs. [33] [34]
and Rabi in Refs. [35] 36]. The effort of finding analytical solutions has been very intense throughout the years. For
a partial list of relevant works on two-state time-dependent problems that have appeared in the last ten years, we
suggest [37H41] and references therein. Finally, for a relatively recent work on finding exact analytical solutions for
specific classes of non-stationary Hamiltonians for d-level quantum systems (i.e., qudits), we suggest Ref. [42]. We
shall further investigate these issues in Ref. [32].

E. Comparison with the Frenet-Serret apparatus

As previously mentioned, our proposed geometric construction of curvature and torsion coefficients for quantum
evolutions takes its original inspiration from considering curves in three-dimensional Euclidean space framed in terms
of the Frenet-Serret frame [2] 43]. However, it is important to emphasize that the classical Frenet-Serret apparatus
formalism can be extended to study curves in the higher-dimensional Euclidean space R™ [44] and, more interestingly,
there is a freedom in constructing frames and corresponding apparatuses when studying the local geometry of curves in
R™ [45]. The Frenet-Serret “moving frame” is just one geometrically nice orthonormal basis for the vector spaces along
a curve, where the basis vectors move and twist as one moves along the curve. Clearly, there is more than one way to

. . . . A A A oy def . def
frame a curve in R3. For instance, the canonical orthonormal basis of R?, {é1, é5, é3} with é; = (1, 0, 0), éx = (0,
def

1, 0), and é3 = (0, 0, 1) is a legitimate basis for the vector spaces along a curve. However, {é;, é3, é35} reflects the
geometry of R? rather than the geometry of the curve. The Frenet-Serret frame, instead, is an intrinsically geometric
basis that reflects the geometry of the curve. It has the peculiarity that the frame is adapted to the curve, that is,
its members are either tangent to or perpendicular to the curve. We recall that moving frames are orthonormal basis
fields that can be used to express the derivatives of the frame with respect to the curve parameter in terms of the frame
itself. Due to orthonormality, the coefficient matrix (also known as, the Cartan matrix) that relates the derivatives of
the frame to the frame itself is always skew-symmetric. Therefore, this matrix has three nonzero entries, in general.
The Frenet-Serret frame has only two nonzero entries which are specified by two scalar-valued functions (i.e., the
curvature kpg and the torsion 7pg coefficients). As previously mentioned, it is possible to show that there exist other
adapted frames which have only two nonzero entries in their Cartan matrices as well [45]. Despite the fact that these
alternative frames (constructed, for instance, within the so-called normal development of a curve [45]) yield geometric
invariants that do not posses an equally nice geometric interpretation as the one available for the Frenet invariants,
they only require 2-times continuously differentiable curves with a nonzero first derivative 7’ of the curve v in R3. A
Frenet-Serret apparatus of a curve 7 in R?, instead, requires 3-times differentiability along with nondegeneracy (i.e.,
the first and second derivatives of the curve, 74" and 4", respectively, must be linearly independent).

Unlike what happens in the quantum setting being considered here, the curve is given a priori in the classical
Frenet-Serret apparatus. Indeed, the curve is not generated by any Hamiltonian and is not necessarily a solution
of any specific differential equation of motion. From the curve, one can construct the set of orthonormal vectors
(i.e., the Frenet-Serret frame) from the derivatives of the curve. However, if the curve is a non-unit speed curve
which is parametrized by ordinary time rather than the arc length, the curvature and the torsion coefficients can
be expressed in terms of more complicated functions of derivatives of the curve up to third order [2]. In general,
the classical Frenet-Serret apparatus is built for curves in n-dimensional (real) Euclidean spaces R™ equipped with
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a real inner product. Our proposed quantum apparatus, instead, is formally constructed for curves on generalized
“Bloch spheres” CPN~! = §2V-1/61 The space CPY~! can be viewed as the quotient of the unit (2N — 1)-sphere
in the N-dimensional complex space C under the action of S' = U (1). For instance, in the case of the two-
dimensional complex Hilbert space for single-qubit quantum states, we consider curves on the usual Bloch sphere.
Despite these differences, in analogy to the classical Frenet-Serret apparatus, we propose a quantum apparatus for
curves to which is given (in principle, at least) a unit speed parametrization by means of the arc length parameter.
Moreover, similarly to the Frenet-Serret frame, our proposed quantum frame is determined by applying the Gram-
Schmidt (GS) orthonormalization process. However, while for space curves in R3, the GS procedure is applied to
{Y (5), 7" (s), 7" (s)}, in our case we apply it to the set {|U (s)), [P’ (s)), |¥” (s))}. Therefore, in analogy to the
above-mentioned alternative frames for curves in R™, we only require 2-times continuously differentiable quantum
curves with a nonvanishing first derivative |U’ (s)) of the state vector |¥ (s)). For clarity, recall that the quantum

curve, s — | (s)), is the one traced by the state |¥ (s)). More specifically, in the Frenet-Serret case of a space curve

(FS)
9, (Frame)—Frame

to the curve parameter s in terms of the frame itself is given by [2]

in R3, we recall that the coefficient matrix M that expresses the derivatives of the frame with respect

0 RFS 0
—kps 0  7Trs |. (49)
0 —TFS 0

(F'S) —
s (Frame)—Frame ~—

In our quantum scenario, instead, focusing on the three-dimensional subspace of CY spanned by the quantum frame
{IT(s)), |T(s)), |N(s))}, the analog of Eq. is generally given by

0 1 0
AC . i / i} ,
M rame)sbrame = | —1 Am(e?0/RE = TEe) ¢TI ] (50)
0 e W) 1 iTm ((N |N"))

Note that in Eq. we used the usual exponential representation of a complex number, z = |z| e??s with ¢, being the
(real) argument of 2. In addition, Tac = (N |T")], k3¢ = (T [T +|(N |T")|?, and (T |T")| = \/#3¢ — T2 Finally,

observe that Re [M(af(SF)\rame) _)Frame} is skew-symmetric and, more generally, M(aﬁ(CFLame) — Frame

Essentially, skew-Hermitian matrices are the complex versions of the real skew-symmetric matrices. Moreover, while
MEFS) (AC) in Eq. 1) has generally three

05 (Frame)—Frame 9, (Frame)—Frame
nonzero (complex) entries. Finally, although using a different frame as evident from Egs. (49)) and 7 we also
propose good measures to quantify the failures of linearity and planarity in terms of suitable curvature kac and
torsion Tac coefficients, respectively. For illustrative purposes, we provide an explicit example of the construction of
a quantum frame for a quantum curve traced by a two-qubit quantum state on a generalized “Bloch sphere” in C*
in Appendix A. For clarity, we present in Fig. 2 a sketch of two orthonormal position vectors locating two points on
a 2 -sphere viewed as the boundary of a 3-ball in R? and, in addition, we draw two orthonormal unit Bloch vectors
locating two orthogonal quantum states. Finally, before presenting our conclusive remarks in Sec. VII, we show some
illustrative examples in the next section.

is skew-Hermitian.

in Eq. has only two nonzero (real) entries, M

VI. ILLUSTRATIVE EXAMPLES

We exhibit in this section simple illustrative examples of the behavior of curvature and torsion coefficients in
Eqgs. and , respectively, for quantum evolutions specified by single-qubit and two-qubit time-independent
Hamiltonians.

Recall that in classical physics, the force that appears in Newton’s second law depends only on the gradient of the

potential and a constant additive term is physically irrelevant. Potential differences, instead, have physical significance.

Analogously, in the quantum setting, there is no absolute energy and the physics of H; def mol+m-& and Hy m.

for a single qubit is the same. In particular, although (H;) = mg # 0 and (Hz2) = 0, we have that AH; L, — (Hy)

equals AH, d:eng —(Hy) with AHy = m-&. Therefore, the curvature coefficients that emerge from the Hamiltonians H;
and Hy are identical. Interestingly, the expectation value of a traceless Hamiltonian such as Hy can be different from
zero. When this happens, we have a nonvanishing curvature of the quantum evolution. For a traceless Hamiltonian to
generate geodesic motion, its expectation value must be zero. Indeed, the most general single-qubit geodesic evolution
defined by a traceless time-independent Hamiltonian is given by H = Fy |Ey) (E1|+ E2 | E2) (Es|, with H |E;) = E; |E;)
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FIG. 2: (a) Sketch of two orthonormal position vectors locating two points on a 2-sphere viewed as the boundary of

a 3-ball in R3. (b) Drawing of two orthonormal Bloch vectors locating two orthogonal quantum states. Antipodal

states on the Bloch sphere |1 (6, ¢)) L cos (0/2)0) + €*?sin(6/2) [1) and [¢ (7 — 0,7 + ¢)) with Bloch vectors ajy(o,4) =

(sin (0) cos (¢) , sin (0)sin (v), cos (0)) and d|y(x—6,7+4)) = — @|y(6,0)), Tespectively, are orthogonal. The Bloch sphere is not
to be regarded as the usual sphere in three-dimensional coordinate space R®. In particular, the latter can be viewed as the
“double cover” of the former.

for 1 <i<2and E; = —E; = E, acting on a source state |[4) = (1/v2) [|E1) + €' |E3)] with ¢ € R [46]. In this
case, the evolved state is given by

e—i(El/h)t
V2

A straightforward calculation shows that (H) = 0 and, thus, “?&c vanishes for the quantum curve traced out by the

state [¢ (t)) in Eq. (51)). However, it is possible to have a non-traceless Hamiltonian that exhibits geodesic motion

even if its expectation value is different from zero. Finally, the torsion coefficient 73 vanishes for any traceless time-
independent single-qubit Hamiltonian of the form H= m - &, regardless of the expectation value of the Hamiltonian.

(1)) = (1) 4 eife 52 E0/Me gy (51)

1. Zero curvature and zero torsion: single qubit

Consider the spin precession that specifies the evolution of a spin-1/2 particle (an electron, for instance) with
magnetic moment efi/(2m.c) (with e < 0, for an electron) subjected to a stationary magnetic field B. Clearly, c is

—

the speed of light and m. denotes the mass of the electron. Then, the Hamiltonian of the system becomes HY m.7

with m < le| B/(2mec). In this first example, let us assume m = (0, 0, m) with m def le] B./(2mec). The quantum

trajectory is assumed to be traced out by the state |¢ (t)) = U (¢) |¢ (0)) with U (¥) L exp [— (¢/h) Ht] being the

unitary evolution operator and |¢ (0)) the chosen initial state vector. We assume that the unit states |9 (t)) with
tya <t <tp are given by

e—i(m/h)t 4
¥ (O = — 75— [lo) + e ] (52)

These states in Eq. can be regarded as states on the Bloch sphere that can be parametrized in spherical coordinates
as |t (0, ¢)) = cos(0/2)]0) + e*?sin(6/2) |1) with a corresponding Bloch vector a = (sin (6) cos (¢), sin (8) sin (),
cos (9& The initial and terminal states are given by |A) Lef [ (04, pa)) and |B) ef [¥ (0B, ¢B)), respectively. From

Eq. (52), it is clear that we choose (04, pa) def (7/2,0), (0B, ¢B) def (m/2, w/2), and 0 < t < hr/4m. Therefore, the

initial and final states |A) = [|0) + |1)] /v/2 and |B) = [|0) + i |1)] /v/2 are specified by Bloch vectors ainitial = (1, 0, 0)
and agna = (0, 1, 0), respectively. A simple calculation yields k% = 4(a- m)?/[m? — (a-m)?] = 0 since the traceless
Hamiltonian H= mo, has a vanishing expectation value, (H) = a-m = 0 with a = aj,jtja. This, in turn, is a
consequence of the fact that the Bloch vector ajniia1 of the source state is orthogonal to the applied magnetic field

B %' 2mec/ |e|)m.
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cos(6;) D

() (b)

FIG. 3: (a) The tick solid line is a graphical depiction of the circular path on the Bloch sphere traced out by evolving the
initial state [ (0)) %' (1/v/2) [0) + (1/+/2) |1) under the Hamiltonian HX' fweo.. In this case, | (s)) = (e [0) + ™ [1))/v/2,
IT (s)) = (—ie " [0) +ie* [1)) /V2, Gus)y = (cos(2s), sin(2s), 0), and dr(s) = —@jw(s)), With s 4 ot. In this case,
kac = 0. (b) The tick solid line represents the circular path on the Bloch sphere traced out by evolving the initial state |1 (0)) &f
cos (0¢/2) |0) + sin(f¢/2) |1) under the Hamiltonian HY fwo.. Note that case (a) assumes 0 = 7/2. In case (b), |V (s)) =
cos (B¢ /2) e~ 2 (0c/2)% |0y + sin (0e/2) et (Pe/2)2 1) |T(s)) = —isin(0e/2)e ™ (%/2)%|0) + 4cos (B¢ /2) e < (%e/2)s |1y,
Gjw(s)) = sin (0g) cos {[tan (0¢/2) + cot (0¢/2)] s} & +sin (6¢) sin {[tan (8¢ /2) + cot (0¢/2)] s} G+ cos (0¢) 2, and Gjr(s)y = —G|w(s))s
with s % wot. Unlike case (a), in this case the curvature coefficient is nonzero since kic = 4 [cos®(6¢)/sin® (f¢)] # 0 when

O # /2.

2. Nonzero curvature and zero torsion: single qubit

In analogy to the vanishing curvature case, we consider the quantum evolution under the traceless Hamiltonian

HY m - & where m = (0, 0, m) with m def le] B./(2mcc). Again, the quantum trajectory is assumed to be traced out

by the state |¢ (¢)) = U () |4 (0)) with U (¢) ef exp [— (i¢/h) Ht] being the unitary evolution operator and |t (0)) the

chosen initial state vector. Unlike the previous case, we assume now that the unit states |¢ (¢)) with t4 <t < tp are
given by

¥ (t) =

o—i(m/h)t 2+\/§ +ei(2m/ﬁ)tﬂ|1> ) (53)

0) _

These states in Eq. can be regarded as state on the Bloch sphere that can be parametrized as |¢ (6, ¢)) =
cos(0/2) 10) +e"?sin(0/2) |1) with corresponding Bloch vector a = (sin (0) cos (¢) , sin (0)sin (¢), cos(#)). The initial

(source) and final (target) states are |A) def |t (04, ©a)) and |B) 2ef | (0B, vB)), respectively. From Eq. 1} it is
clear that we choose (64, va) e (r/4,0), (0B, ¢vB) &ef (r/4, m/2), and 0 < ¢ < hm/4m. Therefore, the initial and

final states |A) = (V2 +v/2/2)|0) + (V2 —+/2/2)|1) and |B) = (V24 v/2/2)[0) + i(v/2 — v/2/2) |1) are specified
by Bloch vectors ainiial = (1/v/2, 0, 1/ V2) and agna = (0, 1/v2 \f , 1/3/2), respectively. A simple calculation yields
kic = 4(a-m)?/[m? — (a-m)?] = 4 # 0 since the traceless Hamiltonian H= mo, has a nonvanishing expectation

value, (H) = a-m = m/\f # 0 with a = ajpjja- This, in turn, is a consequence of the fact that the Bloch vector

ajnitial Of the source state is not orthogonal to the applied magnetic field B def (2mec/ |e])m

8. Link between curvature and geodesic efficiency: single qubit

We emphasize that the temporal evolutions in Egs. and can be regarded as special cases of the evolution
given by

[ (£)) = e M [€]0) + @M/ T2 1)) (54)

with & = cos (0¢/2) € [0,1] and 6¢ € [0, 7] such that a = <2§\/1 —£2,0,262 — 1), cos (0¢) = 26% — 1, and sin (0;) =
264/1 —£2. The vanishing and nonvanishing curvature cases previously discussed correspond to £ = 1/ V2 and
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= /24 V/2/2, respectively. In this more general case, the curvature coefficient k2. is given by
AC

_ (-2 cos? (6)
€2 (1—¢2) sin” (0¢)

We show in Fig. 3 a graphical depiction of the circular path on the Bloch sphere traced out by evolving the initial states

1 (0)) €' (1/v/2)10) + (1/v/2) 1) and |16 (0)) " cos (6¢/2) |0) + sin(0e/2) |1) with ¢ # 7/2 under the Hamiltonian

! hwpo,. Motivated by the expression of r%¢ (€) in Eq. l) we present a discussion on the link between the

concept of geodesic curvature in classical differential geometry and our proposed curvature coefficient for quantum
li

Kac (6) (55)

evolutions in Appendix B. Clearly, k3 (£) in Eq. assumes its minimum value of zero at £ = 1/v/2 ~ 0.71 (i.e.,
polar angle ¢ = 7/2 ~ 1.57). We observe that the local behavior of k3 (§) as a measure of the deviation from
geodesic motion is consistent with that exhibited by the so-called geodesic efficiency as introduced in Refs. [14] [47],

As  2cos 1[|(A|B)]]
1- s 2];155 AEﬁ(t')dt, ’ (56)

A

def

In Eq. , 0<n<1, As def o S0, So denotes the distance along the shortest geodesic path that connects the
distinct initial | A) ef |t (ta)) and final | B) ef | (tB)) states on the projective Hilbert space, AFE (t) ef \/ <(AH (t))2>

and finally, s is the distance along the dynamical trajectory traced out by the state vector |¢ (¢)) with t4 <t < tp.
Indeed, from the evolution specified in Eq. , the efficiency 7 in Eq. reduces to

n(t: ) = arccos <\/C052 (%) + (262 = 1)"sin (%”)) _ arccos (\/0052 (%t) + cos? (f¢) sin? (%t)) | 57
264/1 — €2 (%t) sin (0¢) (%t)

assuming t4 = 0 and tg = ¢t. In particular, taking tg = hw/4m as in the previous two examples, the efficiency 7 (¢; £)
in Eq. reduces to

9 Arccos (m) , Areeos <\/1+°°;72WE)>
"0z EV1-¢ 7 sin (0) : (58)

As expected, n(§) € [0, 1] in Eq. assumes its maximum value of one at & = 1/y/2 ~ 0.71 (i.e., polar angle
0 = 7/2 ~ 1.57) where k3 (€) in Eq. (55)) achieves its minimum of zero. In conclusion, we reiterate that the local
behavior (for detecting geodesicity) of k4o (€) in Eq. is consistent with that exhibited by n(¢) in Eq. (58). In
Fig. 4, we present a visual comparison between the geodesic efficiency and the curvature coefficient for the example
discussed here. Moreover, we also show a visualization of a quantum-mechanical realization of the Pearson inequality
(i.e., as > a2 + 1) in mathematical statistics between the kurtosis (ay) and the skewness (as3) of a probability
distribution function.

4. Nonzero curvature and nonzero torsion: two qubits

As previously mentioned, the torsion coefficient 73 vanishes for any traceless time-independent single-qubit Hamil-
tonian of the form H= m - &, regardless of the expectation value of the Hamiltonian. In what follows, we present two
examples of nonzero torsion curves traced out by two-qubit quantum states evolving under two-qubit time-independent
Hamiltonians. Recall that a general bipartite Hamiltonian H can be written as [48],

3

def 1 2

HHO 010 110 @ HO + Y Ms® o 5@, (59)
i,j=1

where {3;}, ;4 is a basis for traceless Hermitian operators and {M;;}, _, <3 are coupling coefficients that correspond

to the pairwise interaction terms {Egl) ® E§2)} iy From Eq. ll the most general purely nonlocal two-qubit
1<i,5<3
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FIG. 4: (a) Plot of the geodesic efficiency 7 (¢;€) 4 arccos (\/c052 (wot) + (262 — 1)*sin? (wgt)) / [25\/ 1-—¢2 (wot)] Q) =

n (1;€), black dashed line) and the normalized curvature coefficient 3¢ (€) Lef (1- 252)2 /€2 (1 —€%)] = 4[cos®(0e)/ sin” (0¢)]
(Q (&) Lof kac (€), black solid line) as a function of the parameter & € [0, 1] with & def cos(f¢/2) where 0¢ is the polar angle
such that 0 < §; < m. The quantum evolution is assumed to be described by the time-independent Hamiltonian H huwoo
that evolves the initial state [ (€, ¢)) S |0) + e /1 — £2|1) with ¢ = 0 (i.e., xz-plane). When plotting the efficiency,
we set wo and t equal to one. (b) We exhibit a quantum-mechanical realization of the so-called Pearson inequality (i.e.,
a4 > a3 + 1) in mathematical statistics between the kurtosis (a4) and the skewness (a3) of a probability distribution function.
We plot the kurtosis cy <(AH)4> / <(AH)2>2 =(1-32+3¢")/[€(1-8)] (a(®) ECIP (€), black dashed line) and the
skewness (squared) o3 Lof <(AH)3>2 / <(AH)2>3 =(1- 252)2/ [ (1-¢)] («(&) f 02 (&), black solid line) as a function of
the parameter £ € [0, 1] with & Lef cos(f¢/2) where 0 is the polar angle such that 0 < ¢ < 7. The quantum evolution in (b) is
the same as in (a). The geodesic evolution occurs for £ = 1/y/2. From (a), we note that si¢ (1/v2) =0 and 1 (1;1/v2) = 1.

Finally, we observe from (b) that au (1 / \/5) =1, o? (1 / \/5) = 0, and the Pearson inequality saturates becoming the identity
2
ag = a3z + 1.

Hamiltonian Hyonlocal (i-€., Hnonlocal 7 HO 1@ + 10 g H(2)) can be written as

3
Hnonlocal d:ef Z mijagl) oy 0_5‘2)5 (60)
ij=1
where {0;},.,.5 are the Pauli operators with o def Oy 02 def Oy, 03 def o.. The terms H® @ I and IV @ H®

in Eq. represent local interaction Hamiltonians since they act non trivially only on one of the two qubits in
the two-qubit quantum state. Clearly, I) and I(?) denote the identity operators on the first and second subsystems,
respectively.

In our first example, we consider the curvature and the torsion of a quantum curve traced out by the initial separable
state |00) under an Hamiltonian H expressed in terms of a superposition of nonlocal two-qubit Hamiltonians,

¥ (000 0) s (o) o) 1 ma (o) 002 4 (o0 5.07). @

A straightforward calculation yields distinct curvature and torsion coefficients k3o = K% (m1, ma2, ms, my) and
Tio = Tac (ma, ma, ms, my), respectively, given by
2,2 2,2 2,2 2 2 2
2 _y, (m3m3 + m3m3 + m3m3) dr2. -1 (m3 +m3) (mima — mamy)
Fac = 2 2 2 A Tac = 2 2 23
(mi +m3 +mj) (mi +m3 +mj)

: (62)

with 0 < 73 < K3 for any choice of the real coupling parameters my, ma, mg, and my. Interestingly, we remark

that the quantum curve traced out by the maximally entangled Bell state |®7,,) def (]00) + |11)) /v/2 under the

Hamiltonian in Eq. is characterized by a nonvanishing curvature coefficient k3o = 4 [(m1 +ms) / (ms — my 2
and a vanishing torsion coefficient TXC = 0. Indeed, it can be checked that under the Hamiltonian in Eq. (61,

no curve traced out by any of the remaining three maximally entangled Bell states |®g) Lef (]00) — |11)) /V/2,

L) Lef (101) + [10)) /v/2, and |¥g,) def (J01) — |10)) /+/2 exhibits nonzero torsion. For this reason, one may
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wonder which might be a suitable two-qubit Hamiltonian to observe some twisting of a quantum curve traced out by
evolving a maximally entangled Bell state. We address this question in the next illustrative example.

In our second example, we consider a quantum evolution governed by a two-qubit Hamiltonian H expressed as a
superposition of local two-qubit Hamiltonians,

H % m, (I(l) ® 03(52)> +mo (03(01) ® 1(2)) +ms (I(l) ® 022)) + my (Ugl) ® 1(2)> . (63)
We consider the curvature and the torsion of a quantum curve traced out by the maximally entangled Bell state
|DE ) Lof (J00) + [11)) /v/2. A simple calculation leads to identical curvature and torsion coefficients k3o =

2 2 2 : .
Kic (m1, ma, ms, my) and 75 = Taic (M1, ma, ms, my), respectively, given by

2 2
2 (m1m4 - m2m3) (m1m4 - mzms)

K/AC:4 5 22,andT§C:4 ; 22
(m1+ma)” + (mg +ma) } [(ml +m2)” + (m3 + my)

(64)

The presence of identical expressions for k3¢ and 73 in Eq. (64) is a consequence of the fact that the skewness
coefficient vanishes in this case (i.e., ag = 0 + (Ah)3 = 0). For completeness, we remark that the curvature

“ic = K2AC (mq, ma, ms, my4) and the torsion TE\C = Tf\c (mq, ma, mg, my) coefficients of the quantum curve obtained
by traced out by the separable state |00) under the Hamiltonian in Eq. are distinct. They are given by

2,2 2 o 2
(mim3 + mim3 + mjm3) ) mim; {m1 +m3 + (m3 — ma) }
,and Tho =4

Kac = 4 ; (65)

(m3 +m3)* (m3 +m3)*
respectively, with k3o — T3 = 4 (mgm% + m4m§)2 / (m% + m%)3 and 0 < 735 < K3c. As evident from Eqgs. ||
and , the way the curvature and torsion coefficients vary with respect to the tunable (Hamiltonian) parameters
depends on both the chosen source state and the selected driving Hamiltonian. This observation paves the way to
several intriguing exploratory questions. For instance, in addition to being interested in (shortest length) geodesic
quantum evolutions as pointed out in the previous subsubsection, one may be interested in driving a source state
along a pre-selected (nongeodesic) path [49, [50]. In this case, the coefficients k3 and 73 can be of help in providing
useful insights into the behavior of the quantum evolution from a geometric perspective and, in principle, can assist in
singling out the proper driving Hamiltonian for the chosen source state that is optimal for the task at hand. Roughly
speaking, by tuning the Hamiltonian parameters, one can bend and twist the trajectory traced out by the source state
so to avoid obstacles along the path and reach the target state in an optimal manner. Moreover, one could use k3¢
and TXC to geometrically characterize the effects of different degrees of entanglement of quantum states under different
quantum Hamiltonian evolutions. In particular, one could find out how difficult and/or easy is to bend and/or twist
quantum curves traced out by quantum states with different degrees of entanglement. In Appendix C, we present an
example that considers the curvature and torsion coefficients for a quantum curve traced by evolving a three-qubit
quantum state, including the |GHZ)-state and the |W)-state, under a three-qubit stationary Hamiltonian belonging
to the family of the quantum Heisenberg models. For the time being, keeping in mind Feynman’s attitude on the use
of geometric methods in the study of quantum evolutions [51], we leave a quantitative discussion of these intriguing
exploratory lines of investigations to future scientific efforts.

VII. FINAL REMARKS

In this paper, we proposed a quantum version of the Frenet-Serret apparatus for a quantum trajectory on the
generalized Bloch sphere traced out by a parallel-transported pure quantum state |¥ (s)) of arbitrary dimension
parametrized in terms of the arc length s that evolves unitarily under a time-independent Hamiltonian specifying
the Schrédinger equation (Eq. ) Given this parallel-transported unit state vector, we introduced in a proper
sequential fashion a suitable pair of two projector operators (i.e., P and P(T)P(‘I’)) to construct an intrinsically
geometric set of three orthonormal vectors specifying a moving frame associated with the quantum curve v (s) :
s — |U(s)) with s; < s < sy. First, we introduce the unit tangent vector as the covariant derivative of the

parallel-transported unit state vector (Eq. ), |T(s)) Lipw) [T’ (s)) =D|¥(s)). The covariant derivative operator

D ©'P(¥)(d/ds) is defined as the composition of P(¥) and d/ds. The quantity P(¥) is a projection operator onto a
state orthogonal to the parallel-transported state vector |¥ (s)), while d/ds denotes the ordinary differential operator
with respect to the arc length s. Then, the parallel-transported unit state vector |¥ (s)) and the unit tangent
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vector |T'(s)) span a two-dimensional space that can be regarded as the quantum analogue of the instantaneous
osculating plane in the Frenet-Serret apparatus. Finally, the curvature 3¢ (s) (Egs. (21)) and . of a quantum

curve is defined as the squared magnitude ||D |T(s))||* of the covariant derivative of the unit tangent vector |T(s))
and measures the bending of a quantum curve. Second, to introduce the concept of torsion, we construct a non-

normalized vector

N (s)> (Eq. ) that is orthogonal to the instantaneous quantum version of the osculating

plane. This third vector is defined as PP |T7(s)) = P(ID|T(s)), the projection of the derivative with respect
to the arc length of the unit tangent vector onto a state that is orthogonal to the plane spanned by the parallel-
transported unit state |¥ (s)) and the unit tangent vector |T'(s)). Finally7 the torsion 73, (Egs. . and .

of a quantum curve is defined as the squared magnitude HP(T D|T(s) || of the projection onto a state orthogonal
to the unit tangent vector of the covariant derivative of the unit tangent vector and measures the twisting of a
quantum curve. In conclusion, the parallel-transported unit state vector |¥ (s)), the unit tangent vector |T'(s)),
and the normalized version of the projection onto a state orthogonal to the unit tangent vector of the covariant

derivative of the unit tangent vector, |N (s f ‘N > / H‘N (s)> , form a quantum version of the Frenet-Serret

frame {T, N, B } When adding our proposed concepts of curvature 52AC and torsion Tgc to the three orthonormal
vectors {|¥ (s)), |T(s)), [N (s))}, we have the set {|¥ (s)), |T(s)), |N (s)), KQAC( ), Tac (s)}, a quantum version

of the Frenet-Serret apparatus {T N, B, kps (s), Trs (s )} Recall that kg (s) = HT’ , Tig (8) = ‘ B (s

formally defined in Egs. and ., respectively. We emphasize that unhke the Frenet-Serret apparatus we do
not have in our theoretical proposal an exact quantum version of the Frenet-Serret equations (Eq. (| . ) specified by a

2
are

closed set of dynamical equations for the FS frame {T , N , B}. However, we do have a clear correspondence between

our pair (k3o D TP = [ID? ¥ ()]*, 7o © [PODIT(s)]|” = [[PTID? | (5))*) and the Frenet-Serret
pair < 2 [ S)H , TI%S = HB’ (S)H ) Remarkably, when focusing on time-independent Hamiltonian quantum

evolutions, our curvature coefficient % and our torsion coefficient 73 correspond to the dimensionless curvature

and torsion coefficients Ry def ,%LT/< (AH) > (with kpT in Eq. ) and T df T/ <(AH)2>2 (with 77 in Eq. ),
respectively, proposed by Laba and Tkachuk in Ref. [7].

Keeping in mind the limitations of our proposed approach as discussed in part of Section V, what is the relevance
of our investigation?

[i] Tt provides a useful set of tools (i.e., quantum frames (Appendix A) along with curvature and torsion coefficients)
to characterize quantum evolutions in terms of geometrically intuitive concepts such as bending (related to

curvature, Egs. and (22)) and twisting (related to torsion, Eqs. and (27).

It leads (Egs. and ) to relevant physical insights into the underlying statistical structure of quantum
theory via concepts like kurtosis, skewness, and Pearson inequality. In particular, geodesic quantum motion
specified by a stationary Hamiltonian on the Bloch sphere occurs, from a statistical standpoint, with minimal
sharpness (i.e., minimal kurtosis) together with maximal symmetry (i.e., zero skewness). For illustrative details,
we refer to Fig. 4.

—-
—-

[iii] It provides an alternative way of quantifying geodesic motion in projective Hilbert space in the framework of
geometric quantum mechanics. For instance, curvature (Eq. (22)) as well as geodesic efficiency (Eq. (56)))
can be equally used to detect geodesic motion (Egs. and (b8)). For a discussion on the link between
the concept of geodesic curvature in classical differential geometry and our proposed curvature coeflicient for
quantum evolutions, we refer to Appendix B.

[iv] It can provide a way to help to control and manipulate higher-dimensional quantum spin systems by analyzing
how the bending and the twisting caused via the application of a given driving Hamiltonian specified by ex-
perimentally tunable driving parameters. This can be accomplished by examining the changes in the curvature
and torsion depending on the specific degree of entanglement of the quantum state that traces out the curve in

projective Hilbert space (Egs. , , and )

[v] It can represent a useful platform to study the effects of entanglement on the behavior of curvature and torsion
coefficients of curves traced out by quantum states with different degrees of entanglement. For example, from
our exploratory investigations (for instance, Egs. , , , and Appendix C), it seems to be generally
false that it is harder to bend and/or twist curves traced out by highly entangled quantum states as one may
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be inclined to believe. Indeed, it seems to be the case that the degree of bending and twisting of a quantum
curve depends on the specific matching of the pair (source state being driven, driving Hamiltonian).

[vi] Unlike the existing approaches [7} [§], our theoretical construct allows to extend the notions of curvature and
torsion coefficients to nonstationary quantum Hamiltonian evolutions in a relatively straightforward manner

32].

In conclusion, regardless of its current limitations, we hope our work will stimulate other researchers and open
the way toward further explicit investigations on the interplay between geometry and quantum mechanics. For
the time being, we leave a more in-depth quantitative discussion on these potential geometric extensions of our
analytical findings, including generalizations to mixed state geometry and time-dependent quantum evolutions of
higher-dimensional physical systems, to future scientific endeavors.
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Appendix A: Framing a quantum curve

In this Appendix, following our suggestion in Section V, we present an illustrative example on how to frame a
quantum curve. Specifically, we wish to construct the frame for the quantum curve traced by evolving the two-qubit

quantum state |¢ (0)) = |00) under the stationary Hamiltonian Hd—ef a(l) o + oM g, Using the statistical
approach based upon the calculation of expectation values in Egs. and ., it is straightforward to verify that
K2 Ao = TAC = 1 in this case. Since the Hilbert space H3 of two- qublt quantum states is four-dimensional, we want

to get a frame specified by a set of orthonormal vectors given by {|¥ (s)), |T(s)), |N( ), |V( ))}. We begin by

observing that the unitary time evolution operator U (t) = def o—iHt ghat corresponds to H= Ly ) ® 022) + agl) ® 03(02) is
given by,
2 .
e (% +1)° e (9= 1) —ghe (¢4 = 1) —ghe (e2¢ 1)
4it 1 2it 1 (2t 4it
Ut) = 462“ (e —1) dea (62; + 1)2 4z (62; ) 452” (64; 1) 7 (A1)
462” ( —1 4e2tt (6 - 1) 4e2tt ( + 1) 462“ (6 )

—gr (1) e (=) e (M -1) e (24 1)

where we have set /i equal to one. From Eq. (A1), the evolved state [¢ (t)) = U (t) |3 (0)) becomes
¥ (£)) = cos? (¢) [00) — %sin (2t)01) — %sin (2t) |10) + sin? (£) [11) . (A2)

We note that since (H) = 0, we have |¥ (¢)) = |1 (t)). Moreover, since ((AH)?) = 2, we have s = v/2t. Therefore,
t = s/v/2 and |¥ (s)) becomes

—cos? 2 _ g n2(( 2
|¥ (s)) = cos (\/§> |00) 5 Sin (\/58) |01) 5 Sin (\/is) [10) + sin ((\/5> [11). (A3)
Using Eq. (A3), the expressions for |T (s)) and |T” (s)) are given by

T (s)) = ——sm (\fs) |00) — cos (\fs) |01) —

7 cos (\fs) |10) + —= sin (\[s) [11), (A4)

7 7 7

and
IT' (5)) = — cos(v/2s) |00) + isin(v2s) [01) + i sin(v'25) [10) + cos (V2s) [11), (A5)

respectively. For completeness, we remark that |¥ (¢)) and |7 (s)) are normalized to one and they are orthogonal.
We need to find now |N (s)) = L p@D)pv )T (s)) / HP P T (5))||- Therefore, we need to calculate the projectors
p(v) &f Lyz — [¥) (¥] and p() Lz — |T) (T'|. Using Eqgs. 1) and 1’ we get that P(Y) and P(™) are given by

1 — cos* (%) —% sin (\/ﬁs) cos? (%) —% sin (\/§s) cos? (%) — sin? (%) cos? (%)

p(¥) _ 5 (\fs) cos? % 1-— l sin® (\/is) —i sin® (\/53) %sin (\/ﬁs) sin® %
L sin (\[s) cos? % —sin (\fs) 1 — §sin (\fs) L sin (\/53) sin? % ’
— sin? (%) cos? <%> —% sin (\[s) sin ((%) 75 sin (\fs) sin ((7) 1 —sin? (%) "
and

_ 1-— 2 sin (\fs) %sin (\/is) cos (\/53) %sin (1 25) cos (\/is) . %sin2 (\/58)
P _ —% sin (\fs) cos (\fs) 1—= cos2 (\fs) —5 cos (\fs) %sm (\/is) cos (\/53) (A7)
—% SiI} (\/528) cos (\/is) cos2 (\fs) L (3052 (\[s) % sin ( / 2s)2cos (\/53) ’
5 sin (ﬂs) -1 sm (fs) cos (\fs) - sm (fs) cos (fs) 1 — 5sin (\/ﬁs)

respectively. As a consistency check, we verified that P(Y) and P(T) are proper orthogonal pI‘OJeCtOI‘S. Additionally,

to evaluate r% by using the definition itself of curvature coefficient (i.e., kK3 = HP(‘I’) T (s H we note that
b o8
17qQ] 23
PO (s)) = | 3.°0 A8
T = fmivey | (A8)
%cos \/is) + %
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and, thus, k3o = 21, In addition, to evaluate 73 by using the definition itself of torsion coefficient (i.e., T3¢ =
|[PTPMW T (s5))]|"), we note that

e )
T wa
L cos (v2s) + §

that is, 72 = 1. Finally, the vector |N (s)) reduces to

ST TR R AR
def s zisin (v2s
IV () = [POP® T ()] ~ | Sisin(v2s) | (A410)
1 cos (V2s) + 3
that is
[N (s)) = {1 - 1cos (\@s)} |00) + 3‘sin (\/55) |01) + 3'sin (\/55) |10) + {1 cos (\/55) + 1} [11). (A11)
2 2 2 2 2 2

We point out that we checked that |N (s)) is normalized to one and orthogonal to both |¥ (s)) and |T'(s)). To find
an orthonormal basis of H3, we note that (by educated guess) {|¥ (s)), [T (s)), |N (s)), |01)} is a set of linearly

independent vectors. Then, applying the Gram-Schmidt procedure, we find that an orthonormal basis of H3 is given
by {|W (s)), [T (s)), [N (s)), [V (s))} with [V (s)) given by

IV (s))

def_[01) — (W (s) [01) [W (s)) + (T'(5) [01) | T (s)) + (N (s)[01) [N (s)) _ [01) — [10) (A12)
N

—101) = (@ () [01) [W () + (T (5)[01) [T (5)) + (N () [01) [N (s))]] V2o

For completeness, we point out that we checked explicitly that {|¥ (s)), [T (s)), |N(s)), |V (s))} is a set of four
orthonormal vectors. Finally, restricting our attention to the three-dimensional subspace of H3 spanned by the
orthonormal quantum frame {|¥ (s)),|T (s)), |N (s))} with |¥ (s)) in Eq. (A3), |T'(s)) in Eq. (A4), and |N (s))
in Eq. , we have that the coefficient matrix Mg:(sgrame) L Frame that expresses the derivatives of the frame with
respect to the curve parameter s in terms of the frame itself is given by

S
S

0 W (s)) 0 10 W (s))
O[T (s)) | =| -1 0 1 T (s)) (A13)
95 [N (s)) 0 -10 [V (5))

(FS)
095 (Frame)—Frame

in Eq. (A13) is real and exhibits the skew-symmetric property, de-
spite the fact that curvature and torsion coefficients are nonzero in this case. Indeed, the generally skew-Hermitian

Interestingly, we note that M

matrix M(;;(S%rame) S Frame 1 EQ. becomes the skew-symmetric one in Eq. 1) in this scenario because

Kic = Tac = 1, ¢vjrry = 0, and Im ((N|N')) = 0. Finally, we point out that Span{|¥ (s)), |T'(s)), |N (s))}
is equal to Span{ds |V (s)), Os|T (s)), Os |N (s))}. This is an important remark since we are formally considering
curves on “generalized Bloch spheres” embedded in the four-dimensional complex Hilbert space H2 and the three-
dimensional subspace spanned by the frame fields is big enough to accommodate the derivatives of the frame fields
as well.

Appendix B: Link between geodesic curvature and k3¢

In this Appendix, we point out the connection between the concept of geodesic curvature xge, in differential geometry
and our proposed curvature coefficient k3. We begin by remarking that care is required when studying curvature
aspects of a curve [I7]. For example, the curvature of a circle on a plane is an intrinsic property of the circle. Instead,
the curvature of a circle on a spherical surface is an extrinsic property of the circle. Consider a circle of radius R.
When this circle is considered as a great circle on a sphere, it has geodesic curvature rgeo equal to zero. Clearly, if
the circle lies on the sphere but is not a great sphere, its geodesic curvature rge, differs from zero. For a discussion
on spherical curves on a sphere embedded in three-dimensions, we refer to Refs. [18| [19]. Moreover, when the circle
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is viewed as a curve in a plane, its curvature kpg is 1/R, with kpg as introduced within the Frenet-Serret apparatus
for a curve in three-dimensional physical space [I7]. The curvature xrg and torsion coefficients 7rg for a curve v in
three-dimensional Euclidean space defined by the vector relation ¥ = #(s) with s being the arc length of v are given
by

! H

def |7 x 7 X
———, and 7ps ($)
I7)° 17

KFs (s) = , (B1)

respectively, with 7 ef dr’/ds. Alternatively, consider a curve 4 on a surface S embedded in a three-dimensional
Euclidean space specified by the vectorial relation 7 = F(ul (s), u? (s)) with s being the arc length of 4. Let n and

t be the unit normal and unit tangent vectors to S at a point P of 7, respectively. Let b € i x £ be the unit vector
orthogonal to both 7 and ¢. Then, the curvature vector K of 4 at P is the vector sum of the normal curvature vector
kn and the geodesic curvature vector kgeob and is defined as,

Q.

R &t KpT + ngoi). (B2)

The scalar quantities &, (s) 5 and Kgeo (5) 4. b are the normal and the geodesic curvatures, respectively.
As an illustrative example, consider a spherical curve 7 on a sphere of radius R > 0 and centered at the origin.
More specifically, using spherical coordinates (with 6¢ € [0, 7] being the polar angle as in the main paper), assume to
consider a circle at z = cos (f¢) and parametrized by the arc length s as

7(s) = (Rsin (B¢) cos( ), Rsin (6¢) sin(m), Rcos (0£)> . (B3)

s
Rsin (6;)
Note that 7(s) in Eq. yields a unit-speed parametrization since || (s)||*> = 1. Substituting Eq. into Eq.
leads to rg (s) = 0 and kps (s) = 1/ [Rsin(0)]. Moreover, use of 7(s) into Kgeo () L5 b with b = 7/ |7
gives Kgeo = cot(fe)/R, that is, k2., ~ cos®(6¢) /sin® (0¢). Thus, k2., ~ k3¢ in Eq. (55). With this interesting

geo g
conclusive remark, we end our discussion here.

Appendix C: Curvature, torsion, and the quantum Heisenberg model

In this Appendix, in addition to the illustrative examples discussed in Section VI, we report an example that
considers the curvature and torsion coefficients for a quantum curve traced by evolving a three-qubit quantum state,
including the |GHZ)-state (Greenberger-Horne-Zeilinger) and the |W)-state (Wolfgang Diir), under a three-qubit
stationary Hamiltonian belonging to the family of the quantum Heisenberg models.

The quantum Heisenberg model (QHM) is a model of magnetic spin systems used in statistical mechanics to study
thermodynamics aspects of the system [52]. In this model, magnetic spins are treated quantum-mechanically and,
therefore, they are expressed by quantum operators and not by classical vectors. For a system of N spin-1/2 particles

with a nearest-neighbours interaction and immersed in a uniform magnetic field B= hz, the QHM is given by

N
H < (Jxag(cj)aa(:jﬂ) + chréj)aéjﬂ) + LoWoUth hagj)) , (C1)

j=1
where i) = 199120 @18N-7 q € {z,y, 2}, 1 < j < N, Lis the 2 x 2 identity matrix, and o1 = o1 is the usual
periodic boundary condition. The real quantities J,, Jy, and J, are the coupling constants. When J, # J, # J;,
one has the Heisenberg XY Z model. Furthermore, when J, = J, # J, one has the Heisenberg XXZ model. Finally,
when J, = J, = J., one has the Heisenberg X X X model. For the XXX model, J, > 0 and J, < 0 correspond to

the antiferromagnetic and ferromagnetic scenarios, respectively. In our explicit example, we focus on a special case
of Eq. (C1)) specified by the Hamiltonian

)
)

+h (Ugl) ® 1(2) ® 1(3) 4 I(l) ® 09) ® 1(3) 4 I(l) ® 1(2) ® 0’2 )) , (CQ)

H ( 1) 5 6@ 13 461 @1? g o® 410 g 4 )®03>)
+J< 1)®0()®I(3)+0?§) 1(2)®J(3)+I(1)®02)®0

+ Jz (O'gl) ® 0’2,2) ® 1(3) + 0-( ) ® 1(2) ® 0-(3) 4+ 1(1) ® 0-(2) X 0-



26

that is, in the canonical (8 x 8)-matrix notation,

3h+3J. 0 0 Ju—=dy, 0  Ju—d, Jo—J, 0O
0 h—J. Jo+J, 0  J.+J, 0 0 Ju—J,
0 Jot+J, h=J. 0  J,+J, 0 0 Ju—J,
ao | = 0 0 —h—J. 0  Ju+d, JotJ, O (C3)
0  Jutdy JutJd, 0O  h—J. 0 0 Ju—J,
Je—Jy 0 0  Jut+J, 0 —h—J. J.+J, 0
Je—J, 0 0  Jo+J, 0  Ju+d, —h—J. 0
0 Jo—dy Ju—=dy 0  J.—J, 0 0 3J.-3h

In our first sub-case, assume that H in Eq. (C3) is the driving Hamiltonian and the source state to be driven is

the entangled quantum state of three qubits given by |GHZ) f [[000) + [111)] /v/2. Then, after some tedious but

straightforward calculations, it happens that the curvature ,%2AC and torsion TE\C coefficients are given by

4 2 T -2 z ?
K:QAC (Jl’ Jy, JZ’ h)zg(Jx—Jy)Qh +[(J —|—Jy) J2] , (04)
[3h2 + (- Jy)Q]
and,
4 h2 + [(Jp + J,) — 2.7 4 Jo + J,) — 2]
Tic (Ja:; Jy, Jz7 h) _ g (Jz . Jy)2 [( y) ] o 5 (Jz _ Jy)4 [( y) ] =, (05)

302 + (J, — J,)° ’ 3h2 + (Jp — Jy)?
| ) |

respectively. As a sanity check, note from Eqs. (C4) and (C5) that 0 < 73 (Ju, Jy» Jzy h) < kAo (Jzy Jy, J5, h) since
we have the following chain of inequalities,

4 W2+ ((Jp + Jy) — 2.7 4 Jo+Jy) 2L 4 T+ Jy) — 2.)°
[3h2 + (Jy — Jy) } [3h2 + (Jo — Jy) } 3h2 + (J, — J) }
The last inequality in Eq. is true since it is equivalent to
2
Ve m ) oy, (c7)

302+ (Jp — J,)° ~

which is obviously satisfied since 3h2 > 0. In our second sub-case, assume that H in Eq. (C3) is the driving

Hamiltonian and the source state to be driven is the entangled quantum state of three qubits given by |W) def

[[001) 4+ ]010) + |100)] /v/3. Again, after some tedious but straightforward calculations, it turns out that the curvature
k4 and torsion 73 coefficients become

42h+ Jo + g, - 2J.)°

HQAC (Jw’ Jy’ Iz, h) = 3 (J T )2
T Yy

, and Tac (Ju, Jy, oy h) =0, (C8)

respectively. From the expressions of the curvature coefficients in Eq. and the first relation in Eq. , we see
that curves traced by the |GH Z)-state and the |[W)-state are differently bent by the driving Hamiltonian. Moreover,
from Eq. and the second relation in Eq. we observe that while the driving Hamiltonian in Eq. can
twist the quantum curve traced by the |GH Z)-state, it cannot twist the curve traced by the |W)-state. These distinct
curvature and torsion behaviors under the same driving Hamiltonian are interesting. Indeed, it is known that the
|GH Z)-state and the |W)-state cannot be transformed into each other by local quantum operations. Therefore, they
represent very different types of tripartite entanglement. The curvature and torsion coefficients seem to detect this
difference. However, a more comprehensive investigation would be necessary to fully understand these behaviors.
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