
WOLFRAM WHITE PAPER

CUDA Programming Using
Wolfram Finance PlatformTM

Introduction
CUDA, short for Common Unified Device Architecture, is a C-like programming language developed
by NVIDIA to facilitate general computation on the Graphical Processing Unit (GPU). CUDA allows
users to design programs around the many-core hardware architecture of the GPU. And, by using
many cores, carefully designed CUDA programs can achieve speedups (1000x in some cases) over a
similar CPU implementation. Coupled with the investment price and power required to GFLOP (billion
floating-point operations per second), the GPU has quickly become an ideal platform for both high-
performance clusters and analysts wishing for a supercomputer at their disposal.

Yet while the user can achieve speedups, CUDA does have a steep learning curve—including learning
the CUDA programming API and understanding how to set up CUDA and compile CUDA programs.
This learning curve has, in many cases, alienated many potential CUDA programmers.

Wolfram Finance Platform’s CUDALink simplified the use of the GPU by introducing dozens of
functions to tackle areas ranging from linear algebra to option pricing using Monte Carlo methods.
CUDALink also allows the user to load their own CUDA functions into the kernel.

By utilizing Wolfram Finance Language’s language, mirroring function syntax, and integrating with
existing programs and development tools, CUDALink offers an easy way to use CUDA. In this doc-
ument we describe the benefits of CUDA integration in Wolfram Finance Platform and provide some
applications for which it is suitable.

Motivations for CUDALink
CUDA is a C-like language designed to write general programs around the NVIDIA GPU hardware. By
programming the GPU, users can get performance unrivaled by a CPU for a similar investment. The
following graph shows the performance of the GPU compared to the CPU:

Today, GPUs priced at just $500 can achieve performance of 2 TFLOP (trillion operations per
second). The GPU also competes with the CPU in terms of power consumption, using a fraction of
the power compared to the CPU for the same GFLOP performance.

Because GPUs are off-the-shelf hardware, can fit into a standard desktop, have low power con-
sumption, and perform exceptionally, they are very attractive to users. Yet a steep learning curve has
always been a hindrance for users wanting to use CUDA in their applications.

Wolfram Finance Platform’s CUDALink alleviates much of the burden required to use CUDA. CUD-
ALink allows users to query system hardware, use the GPU for dozens of functions, and define new
CUDA functions to be run on the GPU.

CUDA Programming Using Wolfram Finance PlatformTM | 1

Wolfram Finance Platform’s CUDALink alleviates much of the burden required to use CUDA. CUD-
ALink allows users to query system hardware, use the GPU for dozens of functions, and define new
CUDA functions to be run on the GPU.

How CUDALink Makes GPU Programming Easy
CUDALink offers a high-level interface to the GPU built on top of Wolfram Finance Platform’s de-
velopment technologies. It allows users to execute code on their GPU with minimal effort. By fully
integrating and automating the GPU’s capabilities using Wolfram Finance Platform, users experience
a more productive and efficient development cycle.

Automation of development project management

Unlike other development frameworks that require the user to manage project setup, platform
dependencies, and device configuration, CUDALink makes the process transparent and automated.

Automated GPU memory and thread management

A CUDA program written from scratch delegates memory and thread management to the pro-
grammer. This bookkeeping is required in lieu of the need to write the CUDA program.

With Wolfram Finance Platform, memory and thread management is automatically handled for the
user.

The Wolfram Finance Platform memory manager handles memory transfers intelligently in the
background. Memory, for example, is not copied to the GPU until computation is needed and is
flushed out when the GPU memory gets full.

2 | CUDA Programming Using Wolfram Finance PlatformTM

Wolfram Finance Platform’s CUDA support streamlines the whole programming process. This allows
GPU programmers to follow a more interactive style of programming:

Integration with Wolfram Finance Platform’s built-in capabilities

CUDA integration provides full access to Wolfram Finance Platform’s native language and built-in
functions.

With Wolfram Finance Platform’s comprehensive symbolic and numerical functions, built-in appli-
cation area support, and graphical interface-building functions, users can write hybrid algorithms
that use the CPU and GPU, depending on the efficiency of each algorithm.

Ready-to-use applications

CUDA integration in Wolfram Finance Platform provides several ready-to-use CUDA functions that
cover a broad range of topics such as mathematics, image processing, financial engineering, and
more. Examples will be given in the section CUDALink Applications.

Zero device configuration

Wolfram Finance Platform automatically finds, configures, and makes CUDA devices available to the
users.

Multiple GPU support

Through Wolfram Finance Platform’s built-in parallel programming support, users can launch CUDA
programs on different GPUs. Users can also scale the setup across machines and networks using
gridMathematica®.

GPU Programming with CUDALink
CUDALink provides a powerful interface for using CUDA within Wolfram Finance Platform. Through
CUDALink, users get carefully tuned linear algebra, Fourier transform, financial derivative, and image
processing algorithms. Users can also write their own CUDALink modules with little effort.

Accessing system information
CUDALink supplies functions that query the system’s GPU hardware. To use CUDALink operations,
users have to first load the CUDALink application:

Needs@"CUDALink`"D

CUDA Programming Using Wolfram Finance PlatformTM | 3

CUDAQ tells whether the current hardware and system configuration support CUDALink:

CUDAQ@D

True

SystemInformation gives information on the available GPU hardware:

SystemInformation@D

Example of a report generated by SystemInformation.

Integration with Wolfram Finance Platform functions
CUDALink integrates with existing Wolfram Finance Platform functions such as its import/export
facilities, functional language, and interface building. This allows you to build deployable programs
in Wolfram Finance Platform with minimal disruption to the GPU task. This section showcases how
you can build interfaces as well as use the import/export capabilities in Wolfram Finance Platform.

Manipulate: Wolfram Finance Platform’s automatic interface generator

Wolfram Finance Platform provides extensive built-in interface-building functions. Users can cus-
tomize controls using its highly declarative interface language.

One fully automated interface-generating function is Manipulate, which builds the interface by
inspecting the possible values of variables. It then chooses the appropriate GUI widget based on the
interpretation of the variable values.

4 | CUDA Programming Using Wolfram Finance PlatformTM

Here, we build an interface that performs a morphological operation on an image with varying radii:

ManipulateBoperationB , xF,

8x, 0, 9<, 8operation, 8CUDAErosion, CUDADilation<<F

Using the same technique, you can build more complicated interfaces. This allows users to choose
different Gaussian kernel sizes (and their angle) and performs a convolution on the image on the
right:

Example of a user interface built with Manipulate.

Support for import and export

Wolfram Finance Platform natively supports hundreds of file formats and their subformats for
importing and exporting. Supported formats include: common image formats (JPEG, PNG, TIFF, BMP,
etc.), video formats (AVI, MOV, H264, etc.), audio formats (WAV, AU, AIFF, FLAC, etc.), medical
imaging formats (DICOM), data formats (Excel, CSV, MAT, etc.), and various raw formats for further
processing.

CUDA Programming Using Wolfram Finance PlatformTM | 5

Any supported data formats will be automatically converted to Wolfram Finance Platform’s unified
data representation, or an expression, which can be used in all Wolfram Finance Platform functions,
including CUDALink functions.

Users can also get data from the web or Wolfram-curated datasets. The following code imports an
image from a given URL:

image = Import@
"http:êêgallery.wolfram.comê2dêpopupê00_contourMosaic.pop.jpg"D;

The function Import automatically recognizes the file format and converts it into a Wolfram Finance
Platform expression. This can be directly used by CUDALink functions, such as CUDAImageAdd:

output = CUDAImageAddBimage, F

All outputs from Wolfram Finance Platform functions, including the ones from CUDALink functions,
are also expressions and can be easily exported to one of the supported formats using the Export
function. For example, the following code exports the above output into PNG format:

Export@"masked.png", outputD

masked.png

CUDALink programming
Programming the GPU in Wolfram Finance Platform is straightforward. It begins with writing a CUDA
kernel. Here, we will create a simple example that negates colors of a three-channel image:

kernel = "
__global__ void cudaColorNegateHmint

*img, mint *dim, mint channelsL 8
int width = dim@0D, height = dim@1D;
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int index = channels * HxIndex + yIndex*widthL;
if HxIndex < width && yIndex < heightL 8

for Hint c = 0; c < channels; c++L
img@index + cD = 255 - img@index + cD;<<";

6 | CUDA Programming Using Wolfram Finance PlatformTM

Pass that string to the built-in function CUDAFunctionLoad, along with the kernel function name
and the argument specification. The last argument denotes the CUDA block size:

colorNegate = CUDAFunctionLoad@kernel, "cudaColorNegate",
88_Integer, "InputOutput"<,
8_Integer, "Input"<, _Integer<, 816, 16<D;

Several things are happening at this stage. Wolfram Finance Platform automatically compiles the
kernel function and loads it as a Wolfram Finance Platform function. Now you can apply this new
CUDA function to an image:

img = ;

colorNegate@img, ImageDimensions@imgD, ImageChannels@imgDD

: >

System requirements
To use Wolfram Finance Platform’s CUDALink, the following is required:

† Operating System: Windows, Linux, and Mac OS X 10.6.3+, both 32- and 64-bit architecture.

† NVIDIA CUDA-enabled products.

† For CUDA programming, a CUDALink-supported C compiler is required.

CUDA Programming Using Wolfram Finance PlatformTM | 7

CUDALink Applications
In addition to support for user-defined CUDA functions and automatic compilation, CUDALink
includes several ready-to-use functions ranging from image processing to financial option valuation.

Financial engineering
CUDALink’s options pricing function uses the binomial or Monte Carlo method, depending on the
type of option selected. Computing options on the GPU can be dozens of times faster than using the
CPU.

This generates some random input data:

numberOfOptions = 32;
S = RandomReal@825.0, 35.0<, numberOfOptionsD;
X = RandomReal@820.0, 40.0<, numberOfOptionsD;
T = RandomReal@80.1, 10.0<, numberOfOptionsD;
R = RandomReal@80.03, 0.07<, numberOfOptionsD;
Q = RandomReal@80.01, 0.04<, numberOfOptionsD;
V = RandomReal@80.10, 0.50<, numberOfOptionsD;

This computes the Asian arithmetic call option with the above data:

CUDAFinancialDerivative@8"AsianArithmetic", "Call"<,
8 "StrikePrice" Ø X, "Expiration" Ø T<, 8 "CurrentPrice" Ø S,
"InterestRate" Ø R, "Volatility" Ø V, "Dividend" Ø Q<D

85.15341, 7.45667, 0.0895437, 8.6807, 0.00231528, 0.629001,
3.82846, 6.21568, 9.5776, 6.85937, 3.43729, 0.000196773,
9.39402, 3.23904, 6.70806, 0.916565, 3.19008, 1.95835,
1.92784, 1.14869, 0.845791, 1.69902, 3.97125, 9.50727, 6.29223,
2.47507, 4.85501, 2.95033, 0.969712, 4.32193, 9.78511, 6.11466<

Black–Scholes

For options with no built-in implementation in CUDALink, users can load their own. Here, we will
show how to load the Black–Scholes model for calculating the vanilla European option and in the
next section we will show how to load code to compute the binary call and put of an asset-or-
nothing option.

Recall from above that the call option in the Black–Scholes model is defined by:

CHS, tL = NHd1L S ‰-qHT-tL - NHd2L X ‰-r HT-tL

with

d1 =
HT - tL Jr - q + s2

2
N + LogJ S

X
N

T - t s
.

d2 = d1 - s T - t

NHpL is the cumulative distribution function of the normal distribution.

8 | CUDA Programming Using Wolfram Finance PlatformTM

The following CUDA code computes the call option when t = 0:

code = "
Òdefine NHxL HerfHHxLêsqrtH2.0LLê2+0.5L
__device__ Real_t iBlackSholesHReal_t & S, Real_t &

X, Real_t & T, Real_t & R, Real_t & Q, Real_t & VL 8

Real_t d1 = HlogHSêXL + HR - Q + V*Vê2L*TLêHV*sqrtHTLL;
Real_t d2 = d1 - V*sqrtHTL;
Real_t call = S*expH-Q*TL*NHd1L - X*expH-R*TL*NHd2L;
return call > 0 ? call : 0;

<

__global__ void blackScholesHReal_t *
call, Real_t * S, Real_t * X, Real_t * T, Real_t
* R, Real_t * Q, Real_t * V, mint lengthL 8

int ii = threadIdx.x + blockIdx.x*blockDim.x;
if Hii < lengthL 8

call@iiD =
iBlackSholesHS@iiD, X@iiD, T@iiD, R@iiD, Q@iiD, V@iiDL;
<

<";

This loads the above code into Wolfram Finance Platform:

CUDABlackScholes =
CUDAFunctionLoad@code, "blackScholes", 88_Real<, 8_Real, "Input"<,

8_Real, "Input"<, 8_Real, "Input"<, 8_Real, "Input"<,
8_Real, "Input"<, 8_Real, "Input"<, _Integer<, 128D;

Here we generate some random input data for the model. We are only computing 32 options:

numberOfOptions = 32;
S = RandomReal@825.0, 35.0<, numberOfOptionsD;
X = RandomReal@820.0, 40.0<, numberOfOptionsD;
T = RandomReal@80.1, 10.0<, numberOfOptionsD;
R = RandomReal@80.03, 0.07<, numberOfOptionsD;
Q = RandomReal@80.01, 0.04<, numberOfOptionsD;
V = RandomReal@80.10, 0.50<, numberOfOptionsD;

This allocates memory for the call result:

call = CUDAMemoryAllocate@Real, numberOfOptionsD;

This calls the function:

CUDABlackScholes@call, S, X, T, R, Q, V, numberOfOptionsD

8CUDAMemory@<10008>, FloatD<

This retrieves the CUDA memory back into Wolfram Finance Platform:

CUDAMemoryGet@callD

811.129, 4.38379, 6.52147, 5.49432, 11.5947, 11.9229, 8.12619, 9.09809,
15.2792, 3.28516, 5.08137, 8.62249, 10.0763, 4.54254, 7.91241, 1.03392,
1.50925, 2.75238, 3.28798, 7.01667, 8.48418, 4.26581, 5.73602, 10.906,
4.10028, 9.03023, 6.01691, 8.70756, 1.06836, 2.56222, 10.6502, 9.37264<

CUDA Programming Using Wolfram Finance PlatformTM | 9

Binary option

Using the same Black–Scholes model, we can calculate both the asset-or-nothing call and put for the
binary/digital option model:

code = "
Òdefine NHxL HerfHHxLêsqrtH2.0LLê2+0.5L
__device__ void iBinaryAssetOptionHReal_t

& call, Real_t & put, Real_t & S, Real_t & X,
Real_t & T, Real_t & R, Real_t & Q, Real_t & VL 8

Real_t d1 = HlogHSêXL + HR - Q + V*Vê2L*TLêHV*sqrtHTLL;
call = S * expH-Q * TL * NHd1L;
put = S * expH-Q * TL * NH-d1L;

<

__global__ void binaryAssetOptionHReal_t * call,
Real_t * put, Real_t * S, Real_t * X, Real_t * T,
Real_t * R, Real_t * Q, Real_t * V, mint lengthL 8

int ii = threadIdx.x + blockIdx.x*blockDim.x;
if Hii < lengthL 8

iBinaryAssetOptionHcall@iiD,
put@iiD, S@iiD, X@iiD, T@iiD, R@iiD, Q@iiD, V@iiDL;
<

<";

This loads the function into Wolfram Finance Platform:

CUDABinaryAssetOption = CUDAFunctionLoad@code, "binaryAssetOption",
88_Real, "Output"<, 8_Real, "Output"<, 8_Real, "Input"<,
8_Real, "Input"<, 8_Real, "Input"<, 8_Real, "Input"<,
8_Real, "Input"<, 8_Real, "Input"<, _Integer<, 128D;

This creates some random data for the strike price, expiration, etc.:

numberOfOptions = 32;
S = RandomReal@825.0, 35.0<, numberOfOptionsD;
X = RandomReal@820.0, 40.0<, numberOfOptionsD;
T = RandomReal@80.1, 10.0<, numberOfOptionsD;
R = RandomReal@80.03, 0.07<, numberOfOptionsD;
Q = RandomReal@80.01, 0.04<, numberOfOptionsD;
V = RandomReal@80.10, 0.50<, numberOfOptionsD;

The call memory and put memory are allocated:

call = CUDAMemoryAllocate@Real, numberOfOptionsD;
put = CUDAMemoryAllocate@Real, numberOfOptionsD;

This calls the function, returning the call and put memory handles:

CUDABinaryAssetOption@call, put, S, X, T, R, Q, V, numberOfOptionsD

8CUDAMemory@<17941>, FloatD, CUDAMemory@<17645>, FloatD<

10 | CUDA Programming Using Wolfram Finance PlatformTM

Both the call memory and put memory can be retrieved using CUDAMemoryGet:

CUDAMemoryGet@callD

810.081, 19.8343, 24.916, 15.8739, 16.1053, 20.9529, 21.1403, 20.1766,
11.6614, 15.0135, 19.413, 14.3981, 22.8407, 21.4579, 13.5464, 16.4192,
17.2243, 16.9844, 21.422, 19.9588, 14.1371, 29.3712, 20.5797, 14.0867,
17.4331, 16.4028, 10.359, 24.0818, 10.6085, 18.5223, 12.7078, 26.5564<

CUDAMemoryGet@putD

818.0516, 4.14473, 0.770478, 11.5232, 6.08763, 8.3997,
4.83071, 5.32312, 8.5637, 6.14408, 11.5159, 9.26106, 9.74336,
4.77558, 15.315, 10.1546, 12.2944, 7.02279, 2.64413, 12.0883,
10.3472, 0.702504, 11.0442, 13.5412, 12.4254, 8.10019,
12.5802, 2.04422, 17.2133, 6.06415, 12.2815, 8.12901<

Random number generators
One of the difficult problems when parallelizing algorithms is generating good random numbers.
CUDALink offers many examples on how to generate both pseudorandom and quasirandom
numbers. Here, we generate quasirandom numbers using the Halton sequence:

src = "
__device__ int primes@D = 8

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97,101,103,107,109,113,
127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229<;
__global__ void HaltonHReal_t * out, int dim, int nL 8

const int tx = threadIdx.x, bx = blockIdx.x, dx = blockDim.x;
const int index = tx + bx*dx;

if Hindex >= nL
return ;

Real_t digit, rnd, idx, half;
for Hint ii = 0,

idx=index, rnd=0, digit=0; ii < dim; ii++L 8
half = 1.0êprimes@iiD;
while Hidx > 0.0001L 8
digit = HHmintLidxL%primes@iiD;
rnd += half*digit;
idx = Hidx - digitLêprimes@iiD;
half ê= primes@iiD;

<
out@index*dim + iiD = rnd;

<

<

";

CUDA Programming Using Wolfram Finance PlatformTM | 11

This loads the CUDA source into Wolfram Finance Platform:

CUDAHaltonSequence = CUDAFunctionLoad@src, "Halton",
88_Real, "Output"<, "Integer32", "Integer32"<, 256 D

CUDAFunction@<>, Halton, 88_Real, Output<, Integer32, Integer32<D

This allocates 1024 real elements. Real elements are interpreted to be the highest floating precision
on the machine:

mem = CUDAMemoryAllocate@Real, 81024<D

CUDAMemory@<11521>, DoubleD

This calls the function:

CUDAHaltonSequence@mem, 1, 1024D

8CUDAMemory@<11521>, DoubleD<

You can use Wolfram Finance Platform’s extensive visualization support to visualize the result. Here
we plot the data:

ListPlot@CUDAMemoryGet@memDD

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Some random number generators and distributions are not naturally parallelizable. In those cases,
users can adopt a hybrid GPU programming approach—utilizing the CPU for some tasks and the GPU
for others. Using this approach, users can use Wolfram Finance Platform’s extensive statistics
capabilities to generate or derive distributions from their data.

Here, we simulate a random walk by generating numbers on the CPU, performing a reduction (using
CUDAFoldList) on the GPU, and plotting the result using Wolfram Finance Platform:

ListLinePlot@
Thread@List@CUDAFoldList@Plus, 0, RandomReal@8-1, 1<, 500DD,

CUDAFoldList@Plus, 0, RandomReal@8-1, 1<, 500DDDDD

-8 -6 -4 -2 2 4

-8

-6

-4

-2

2

12 | CUDA Programming Using Wolfram Finance PlatformTM

Linear algebra
You can perform various linear algebra functions with CUDALink, such as matrix-matrix and matrix-
vector multiplication, finding minimum and maximum elements, and transposing matrices:

Nest@CUDADot@RandomReal@1, 8100, 100<D, ÒD &,
RandomReal@1, 8100<D, 1000D;

Fourier analysis
Find the logarithmic power spectrum of a dataset using the Fourier analysis capabilities of the
CUDALink package, which include forward and inverse Fourier transforms that can operate on a list
of 1D, 2D, or 3D real or complex numbers:

ArrayPlot@Log@Abs@CUDAFourier@Table@
Mod@Binomial@i, jD, 2D, 8i, 0, 63<, 8j, 0, 63<DDDD, Frame Ø FalseD

PDE solving
This computational fluid dynamics example is included with CUDALink. This solves the Navier–
Stokes equations for a million particles using the finite-element method:

CUDA Programming Using Wolfram Finance PlatformTM | 13

OpenCL Integration
Wolfram Finance Platform also includes the ability to use the GPU using OpenC via OpenCLLink. This
is a vendor-neutral way to use the GPU and works both on NVIDIA and non-NVIDIA hardware.
OpenCLLink and CUDALink offer the same syntax, and the following demonstrates how to compute
the one-touch option:

code = "
Òdefine NHxL HerfHHxLêsqrtH2.0LLê2+0.5L
Òifdef USING_DOUBLE_PRECISIONQ
Òpragma OPENCL EXTENSION cl_khr_fp64 : enable
Òendif ê* USING_DOUBLE_PRECISIONQ *ê
__kernel void onetouchH__global Real_t * call, __global

Real_t * put, __global Real_t * S, __global Real_t *
X, __global Real_t * T, __global Real_t * R, __global
Real_t * D, __global Real_t * V, mint lengthL 8

Real_t tmp, d1, d5, power;
int ii = get_global_idH0L;
if Hii < lengthL 8

d1 = HlogHS@iiDêX@iiDL + HR@iiD - D@iiD + 0.5f
* V@iiD * V@iiDL * T@iiDL ê HV@iiD * sqrtHT@iiDLL;

d5 = HlogHS@iiDêX@iiDL - HR@iiD - D@iiD + 0.5f *
V@iiD * V@iiDL * T@iiDL ê HV@iiD * sqrtHT@iiDLL;

power = powHX@iiDêS@iiD, 2*R@iiDêHV@iiD*V@iiDLL;
call@iiD = S@iiD < X@iiD

? power * NHd5L + HS@iiDêX@iiDL*NHd1L : 1.0;
put@iiD = S@iiD > X @iiD ? power * NH-d5L

+ HS@iiDêX@iiDL*NH-d1L : 1.0;
<

<";

This loads the OpenCL function into Wolfram Finance Platform:

OpenCLOneTouchOption = OpenCLFunctionLoad@code, "onetouch",
88_Real, "Output"<, 8_Real, "Output"<, 8_Real, "Input"<,
8_Real, "Input"<, 8_Real, "Input"<, 8_Real, "Input"<,
8_Real, "Input"<, 8_Real, "Input"<, _Integer<, 128D;

This generates random input data:

numberOfOptions = 64;
S = RandomReal@820.0, 40.0<, numberOfOptionsD;
X = RandomReal@820.0, 40.0<, numberOfOptionsD;
T = RandomReal@80.1, 10.0<, numberOfOptionsD;
R = RandomReal@80.02, 0.1<, numberOfOptionsD;
Q = RandomReal@80.0, 0.08<, numberOfOptionsD;
V = RandomReal@80.1, 0.4<, numberOfOptionsD;

This allocates memory for both the call and put results:

call = OpenCLMemoryAllocate@Real, numberOfOptionsD;
put = OpenCLMemoryAllocate@Real, numberOfOptionsD;

This calls the function:

OpenCLOneTouchOption@call, put, S, X, T, R, Q, V, numberOfOptionsD

8OpenCLMemory@<19661>, DoubleD, OpenCLMemory@<28475>, DoubleD<

14 | CUDA Programming Using Wolfram Finance PlatformTM

This retrieves the result for the call option (the put option can be retrieved similarly):

OpenCLMemoryGet@callD

81., 0.398116, 1., 1., 1.00703, 0.909275, 1., 1., 1., 0.541701, 0.631649,
1., 0.702748, 1., 1., 1., 0.626888, 1., 1., 0.827843, 0.452237,
0.998761, 0.813008, 1., 1., 0.96773, 0.795428, 1., 1.79325, 1.,
1., 1., 1., 1., 0.547425, 0.968162, 1., 1., 0.907489, 1., 1.90031,
0.316174, 1., 0.998824, 0.383825, 1., 0.804287, 0.977305,
1., 1., 0.855764, 1., 0.952568, 0.573249, 0.239455, 0.635454,
0.917078, 0.624179, 1., 0.679681, 1., 1., 0.968929, 0.712148<

Summary
Due to Wolfram Finance Platform’s integrated platform design, all functionality is included without
the need to buy and maintain multiple tools and add-on packages.

With its simplified development cycle, multicore computing, and built-in functions, Wolfram Finance
Platform’s built-in CUDALink application provides a powerful high-level interface for GPU computing.

Notes

Technologies underlying CUDALink
GPU integration in Wolfram Finance Platform has only been possible due to advancements in system
integration introduced in recent versions of the software. Features such as C code generation,
SymbolicC manipulation, dynamic library loading, and C compiler invocation are all used internally
by CUDALink to enable fast and easy access to the GPU.

C code generation
Wolfram Finance Platform introduces the ability to export expressions written using Compile to a C
file. The C file can then be compiled and run either as a Wolfram Finance Platform command (for
native speed), or be integrated with an external application. Through the code-generation mech-
anism, you can use Wolfram Finance Platform for both prototype and native-speed deployment.

To motivate the C code generation feature, we will solve the call option using the Black–Scholes
equation. The European call option in terms of the Black–Scholes equation is defined by:

CHS, tL = NHd1L S ‰-qHT-tL - NHd2L X ‰-r HT-tL

with

d1 =
HT - tL Jr - q + s2

2
N + LogJ S

X
N

T - t s
.

d2 = d1 - s T - t

NHpL is the cumulative distribution function of the normal distribution.

CUDA Programming Using Wolfram Finance PlatformTM | 15

Here, we define the equation for t = 0:

d1 =
T Jr - q + s2

2
N + LogA S

X
E

T s
;

d2 = d1 - s T ;
BlackScholes = CDF@NormalDistribution@0, 1D, d1D S ‰-q T -

CDF@NormalDistribution@0, 1D, d2D X ‰-r T

1

2
‰-q T S ErfcB-

T J-q + r + s2

2
N + LogA S

X
E

2 T s
F -

1

2
‰-r T X ErfcB

T s -
T K-q+r+

s2

2
O+LogB

S

X
F

T s

2
F

The following command generates the C code, compiles it, and links it back into Wolfram Finance
Platform to provide native speed:

cf = Compile@88S, _Real<, 8X, _Real<, 8s, _Real<,
8T, _Real<, 8r, _Real<, 8q, _Real<<, BlackScholes,

CompilationOptions Ø 8"InlineExternalDefinitions" Ø True<,
CompilationTarget Ø "C"D;

The function can be used like any other Wolfram Finance Platform function. Here we call the above
function:

cf@50.0, 50.0, 0.4, 1.0, 0.05, 0.02D

8.39968

LibraryLink
LibraryLink allows you to load C functions as Wolfram Finance Platform functions. It is similar in
purpose to MathLink, but by running in the same process as the Wolfram Finance Platform kernel, it
avoids the memory transfer cost associated with MathLink. This loads a C function from a library; the
function adds one to a given integer:

addOne = LibraryFunctionLoad@"demo", "demo_I_I", 8Integer<, IntegerD

LibraryFunction@<>, demo_I_I, 8Integer<, IntegerD

The library function is run with the same syntax as any other function:

addOne@3D

4

CUDALink and OpenCLLink are examples of LibraryLink’s usage.

16 | CUDA Programming Using Wolfram Finance PlatformTM

Symbolic C code
Using Wolfram Finance Platform’s symbolic capabilities, users can generate C programs within
Wolfram Finance Platform. The following, for example, creates macros for common math constants:

<< SymbolicC`

These are all constants in the Wolfram Finance Platform system context. We use Wolfram Finance
Platform’s CDefine to declare a C macro:

s = Map@CDefine@ToString@ÒD, N@ÒDD &, Map@ToExpression,
Select@Names@"System`*"D, MemberQ@Attributes@ÒD, ConstantD &DDD

8CDefine@Catalan, 0.915966D,
CDefine@Degree, 0.0174533D, CDefine@E, 2.71828D,
CDefine@EulerGamma, 0.577216D, CDefine@Glaisher, 1.28243D,
CDefine@GoldenRatio, 1.61803D, CDefine@Khinchin, 2.68545D,
CDefine@MachinePrecision, 15.9546D, CDefine@Pi, 3.14159D<

The symbolic expression can be converted to C using the ToCCodeString function:

ToCCodeString@sD

"Òdefine Catalan 0.915965594177219\nÒdefine Degree
0.017453292519943295\nÒdefine E 2.718281828459045\nÒdefine
EulerGamma 0.5772156649015329\nÒdefine
Glaisher 1.2824271291006226\nÒdefine
GoldenRatio 1.618033988749895\nÒdefine Khinchin
2.6854520010653062\nÒdefine MachinePrecision
15.954589770191003\nÒdefine Pi 3.141592653589793\n"

By representing the C program symbolically, you can manipulate it using standard Wolfram Finance
Platform techniques. Here, we convert all the macro names to lowercase:

ReplaceAll@s, CDefine@name_, val_D Ø CDefine@ToLowerCase@nameD, valDD

8CDefine@catalan, 0.915966D,
CDefine@degree, 0.0174533D, CDefine@e, 2.71828D,
CDefine@eulergamma, 0.577216D, CDefine@glaisher, 1.28243D,
CDefine@goldenratio, 1.61803D, CDefine@khinchin, 2.68545D,
CDefine@machineprecision, 15.9546D, CDefine@pi, 3.14159D<

Again, the code can be converted to C code using ToCCodeString:

ToCCodeString@%D

"Òdefine catalan 0.915965594177219\nÒdefine degree
0.017453292519943295\nÒdefine e 2.718281828459045\nÒdefine
eulergamma 0.5772156649015329\nÒdefine
glaisher 1.2824271291006226\nÒdefine
goldenratio 1.618033988749895\nÒdefine khinchin
2.6854520010653062\nÒdefine machineprecision
15.954589770191003\nÒdefine pi 3.141592653589793\n"

CUDA Programming Using Wolfram Finance PlatformTM | 17

C compiler invoking
Another recent Wolfram Finance Platform innovation is the ability to call external C compilers from
within Wolfram Finance Platform. The following compiles a simple C program into an executable:

<< CCompilerDriver`

exe = CreateExecutable@"
Òinclude \"stdio.h\"
int mainHvoidL 8

printfH\"Hello from CCompilerDriver.\"L;
return 0;

<", "foo"D;

Using the above syntax, you can create executables using any Wolfram Finance Platform-supported
C compiler (Visual Studio, GCC, Intel CC, etc.) in a compiler-independent fashion. The above
command can be executed within Wolfram Finance Platform:

Import@"!" <> exe, "Text"D

Hello from CCompilerDriver.

By using the Wolfram Finance Platform enhancements mentioned earlier in this section, CUDALink
and OpenCLLink facilitate fast and simple access to the GPU.

Pricing and Licensing Information
Wolfram Research offers many flexible licensing options for both organizations and individuals. You
can choose a convenient, cost-effective plan for your workgroup, department, directorate, uni-
versity, or just yourself, including network licensing for groups.

Visit us online for more information:
www.wolfram.com/finance-platform/contact-us

Recommended Next Steps
Watch videos about Wolfram Finance Platform
www.wolfram.com/broadcast/video.php?channel=249

Request a free trial or schedule a technical demo
www.wolfram.com/finance-platform/contact-us

Learn more about Wolfram Finance Platform
US and Canada Europe
1-800-WOLFRAM (965-3726) +44-(0)1993-883400
info@wolfram.com info@wolfram.co.uk

Outside US and Canada (except Europe and Asia) Asia
+1-217-398-0700 +81-(0)3-3518-2880
info@wolfram.com info@wolfram.co.jp

© 2013 Wolfram Research, Inc. Mathematica and gridMathematica are registered trademarks and Wolfram Finance Platform is a
trademark of Wolfram Research, Inc. All other trademarks are the property of their respective owners. Mathematica is not associated
with Mathematica Policy Research, Inc.

18 | CUDA Programming Using Wolfram Finance PlatformTM

