# Wolfram Mathematica

Calcule el calor que transporta un disipador de calor.

 In[1]:= Xbmesh = \!\(\* Graphics3DBox[ TagBox[ DynamicModuleBox[{Typeset`mesh = HoldComplete[ BoundaryMeshRegion[CompressedData[" 1:eJxtl09o1gUYx18dLJEOHhwmiGggiU5q2B+rZa+zlX9Wc3PTLRCGMIUuXSxE ooYioR68xRCixcCDggy8Cepghw6FhzavlgkhIXgI0UEHSd+Hej6fZyf58OXh +3x/P9/f811/+PPB8aWNRuOrJY1GW+PZ30T3N6Oz//5j4OjIbOO/v4m5iZFm xVv6iS9mDlZ68Za+eWHxQKUXb+lnb/SUevHwc+/ccOmHPPZddnuo3Jc8/HSu LfXise/A0f3lvuTh58uZwdIPeex7YXGg3Jc8/NzsKfXise+9c/vKfclb+t9X XOqv9OKx76fdn5T7krf066Zv9VV68dj3wdjecl/yln7sjb93V3rxyP/r07sq vXhLP/XTqo8qvXjkv+JSb6UXj/xHuz+o9OKR//StnkovHvk/GNtR6cUjn8/+ fL/Si8e+/yx/r9yXPPyff/Wd0j95vA/rh96q9OLh/+rx10v/5OG/9/uu0j95 +J85taX0Tx5+Fn55pfRDHvMXO14u55OH/t0bL5V68shz2Y/LK714zF/ovHOz mk8e8+c72prVfPLIZ+rJykovHs9r89Z1lV483v8X/tpQ6cXDzx9Tm0s/5JHP b5dfq/Ti4b/v262lf/Lwc+3wm6Uf8sh/4/a3K714+P9udXfpnzz8tz3aXvon D/22+81STx6/tw+Heyq9eORzcW5npReP78Whrt5KLx55rvzhw0ovHu/bzy/u qvTikf/JE7srvXh8L7bd31PpxSP/h8N9lV488r8493GlF4/8D3X1V3rxyPNs /75KLx7zx9sHyvnkkeeO66VePPysOTZY+iGPPB9v2l/pxcPP/N1SLx77Xpkc KvclDz9n+odLP+Sx73j7gXJf8vDTvF7qxWPfNccOlvuSh5/Hm0ZKP+Sx7693 S714+LkyOVr6IXefevb9KfrUc+4+lfTi7lNJL+4+lfTi7lPZD7n7VN6X3H0q +yF3n8r7krtPZT/k7lN5X3L3qeyH3H0q70vuPpX04u5TeV9y96mkF3efyvuS u08lvbj7VM6f3H0q6cXdp3L+5O5TOX9y96mcP7n7VM6f3H0q50PuPpX3JXef yv7J3afy+0DuPpX9k7tPZf/k7lPZP7n7VPZD7j6V55O7T2U9uftUzpPcfSrP J3efyvPJ3adyPuTuU/l5kbtP5fef3H0q+yF3n8r5kLtPZf/k7lPZD7n7VM6f 3H0q+yd3n8r+yd2nsp7cfSr/3pK7T+V8yN2n8veC3H0q50nuPpXfN3L3qZw/ uftU/l6Qu0/l/Mndp3L+5O5TOX9y96mcJ7n7VJ5P7j6V8yR3n8p+yN2ncp7k 7lPZD7n7VN6X3H0q+yF3n8r7krtPZT/k7lN5X3L3qeyH3H0q70vuPpX9kKNP jR050pn05OhT1IujH1Evjn6k+eToO5pPjr5DvTj6i/yQo79oPjn6CPXi6CN6 XuToF/JDjn5BvTj6AvXi6At6XuS4/7UvOe5/6sVxz8sPOe55+SHHfa73hxz3 ufyQ497WfHLc2/JPjvtZ7w857mfNJ8c9LP/kuIeVDznuW80nx30r/+S4VzWf HPeq8iTH/al9yXF/Sk+Oe1L+yXFP6veBHPeh/j+S4z5U/uS497QvOe49/V6R 437T8yLH/aY8yXGPaT457jHtS477Sn7IcV9pPjnuJc0nx72k50uO+0d+yHH/ aP7/+VNDl36z "], { Polygon[CompressedData[" 1:eJxNmXnYl2Mahp+XFtqUKKXdUpG1UlIqlT1SlkhaUGkv7TUGY4wxZsgWki3Z txBCWiyFka2kiCxlSbIUkuI+e677+N1/nD7veR/Pe1Df993Pdf0a9h/RffhO KaVN9o+d7WuR8tcyYqfgyhrlRJngyhu7iHLB7WpUELsEV9GoJCoEV9moIioF t5tRVVQJrpqxu6gaXHVjD7F7cHsaNcQewdU09hI1gqtl1BZ7Bbe3UUfUDq6u UU/UCa6+0UDUC66h0Ug0CG4fY1/RKLj9jP3FvsE1NpqI/YNrahwgmgR3oNFM HBDcQcbBollwhxiHioODO8w4XBwaXHOjhTg8uJbGEaJFcK2M1uKI4I402ojW wR1ltBVtgmtnHC3aBtfe6CCODq6jcYzoEFwno7M4JrguxrGic3DHGceLY4M7 wThRHB/cScbJ4sTguhqniJODO9XoJk4J7jSju+gWXA/jdNE9uDOMM8XpwZ1l 9BRnBne2cY7oGVwv41xxTnC9jfPEucH1MfqK84LrZ/QXfYM737hA9A/uQmOA uCC4gcYgMSC4i4zBYlBwQ4yhYnBww4zhYmhwI4yRYnhwo4zRYmRwFxtjxOjg xhrjxJjgxhsTxLjgJhqTxITgJhtTxKTg/mZcIqYE93fjUnFJcJcZl4tLg/uH cYW4PLh/GleKK4L7l3GVuDK4fxtXi6uC+49xjbg6uP8a/xPXyNW15VPPaCDq F9lNtdn1xo3ihpTdDXq+Wdwk19DONDL2FfsU2U2z2S3GbeLWlN2ter5dTJfb z87sbzQRjYvsZtjsDuMucWfK7k493yPulmtqZw4wmokDi+xm2uxe4z4xK2U3 S88PiPvlDrIzBxuHikOK7B602UPGI+LhlN3Den5MPCp3mJ053GghmhfZPW6z J4wnxeyU3Ww9Py2ekmtpZ44wWotWRXZzbPaM8Zx4NmX3rJ6fF3PljrQzbYy2 4qgiuxds9qLxkpiXspun5wVivlw7O3O00UG0L7JbaLNFxivi5ZTdy3p+Tbwq 19HOHGN0Fp2K7BbbbInxhng9Zfe6nv8v3pTrYmeONY4XxxXZvWWzpcY74u2U 3dt6fk+8K3eCnTnROFmcVGT3vs2WGR+I5Sm75Xr+UKyQ62pnTjG6iVOL7Fba bJXxsfgoZfeRnj8Rq+VOszPdjdNFjyK7T222xvhcfJay+0zPX4ov5M6wM2ca PcVZRXZrbbbO+Fp8lbL7Ss/fim/kzrYz5xjnil5Fdutt9p3xvdiQstug5x/E RrneduY8o6/oU2T3o81+MjaJn1N2P+v5F7FZrp+d6W9cIM4vsvvVZr8Zv4st Kbstev5DbJW70M4MMAaJgUV222y23dhxWTf+TNn9KbeTKDS7yL4ONoaKIUV2 OxtljHKirFxZPe8iyssNM4YbI8UIuV2NCkYlUVGuop6riMpyo4zRxhhxsdxu RlVjd1FNrpqe9xDV5cYa44wJYrzcnkYNYy9RU66mnmuLWnITjUnGFDFZjj9e MtF14tpUcmSi68V1wZGJfE9dHxyZyPfUjcGRiW4RNwdHJvI9dUtwZCLfU7cF Rya6Q9weHJnoLnFHcGQi31N3BUcmulfcExyZyPfUvcGRiXxP3Rccmegh8UBw ZCLfUw8F1yCV9tQjwZGJnhCPBUcm8j31RHBkIt9TTwZHJnpGPB0cmcj31DPB kYl8Tz0XHJnoRfF8cGQi31MvBkcmWiBeCo5MtEgsCI5M5HtqUXBkIt9TrwRH JloiXguOTOR7aklwZCLfU28E1yHlnbRUM3dkIt9TS4MjE/meeic4MtEy8V5w ZCLfU8uCIxP5nvogODLRKvFhcGQi31OrgiMT+Z76ODgy0RrxSXBkIt9Ta4Ij E/me+jw4MtE68WVwZCLfU+uCIxP5nvo6ODLRd+Lb4Pqm0p76Ljgyke+p74Mj E/0kfgiOTOR76qfgyES+pzYFRyb6TfwSHJnI99RvwZGJfE/9HhyZaLv4Izgy ke+p7cGRiXxPMXNHJiqjvcTMHZnI9xQzd2Qi31PM3JGJKmgvMXNHJvI9xczd pam0p5i5IxNV1V5i5o5M5HuKmTsyke8pZu7IRDW0l5i5IxP5nmLmjkzke4qZ O/JSnSLDzB15au8iw8wduaqWdh0zd+Swmtp/zNyR2/YM+9IdOa+6di8zd+TC atrHzNxdlvLu9v3tjtxZWXcBZu7IqRV1P2DmjlzLXcLvE+7IwdxLymvmjtzM XaWsZu7I2dxt/H7jjlzOPanQzB05/k/BzB25f1sq3bfc0RNsFduCo1fYIrYG Rw/xayrd/9zRW2wWvwZHz/Gz2BwcvciPqXQfddcv5XvtRs3c0btsEBuDo6dZ n0r3Y3f0Ot+I9cHRA30lvgmO3mhtKt3X3dEzfSHWBkcv9Zn4Ijh6rE9TKT+4 o/daLT4Njp7sI7E6OHq1lamUZ9zRw60QK4Ojt1suVgRHz/d+KuUrd/SC74r3 g+uYcnZ7WzN39I5vpVLec0dP+aZ4Kzh6zdfFm8HRgy5Opfzpjt70VbE4OHrW l8WrwdHLLkylPOyOHne+WBgcve88MT84euIXUimfu6NXniteCI4e+lkxNzh6 6zmp1Be4o+d+SswJjl58tngquIYpdxfeX7ijd39UPB4cPf3D4tHg6PUfTKU+ xR2fA9wvHgyOzw1mifuD43OGmanU77jjc4m7xczg+BzjTnF3cHzuMSOV+iZ3 fE4yXcwIjs9VbhXTg+NzmGmp1H+543Obm8S04Pic5wZxU3B8LjQ1lfo4d6z1 a8VUOf6drETHB3R77shK3vsxc8dZesD6mrnjXF29g9lU/XeRoej+gM7PHRnK +0Bm7vh/pB/cRzN3nGuodzCbpj8/shWdINAFuiNbeU/IzB1/F/SGjTVzx7n9 9A5mM/T3TOaiKwQ6QndkLu8Pmbnje4Y+8UDN3HGuqd7BbKa+H8lidIhAd+iO LOa9IjN3fG/TMx6imTvOHaR3MMPxc0NGo1sEOkV3ZDTvG5m542eQ/rG5Zu44 d5jewQzHzzfZjc4R6Brdkd28h2Tmjt8V9JKtNHPHuZZ6BzMcv4fIdHSRQAfp jkzn/SQzd/xOo688SjN3nDtS72CG4/flgpQ7SqCbdEfW896SmTt+99JjttfM Hefa6R3McPxeJwPSXQKdpTsyoPeZzNyxI+g3O2nmjnMd9Q5mOPYP2ZBOE+gy 3ZENvedk5o5dRu95nGbuONdF72CGY0+SGek6gY7THZnR+09m7ti59KEnaeaO cyfoHcxw7HOyJB0o0H26I0t6L8rMHXcDetJTNXPHua56BzMc9w4yJt0o0Im6 W5NKfSkzd9xh6E97aOaOc6fpHcxw3I92ZM8iQ1fqbkf2LDLM3O24axUZZu52 3LX0DmY47nFkUrpUoEN1Ryb1fpWZO+6E9K29NHPHubP1DmY47ptkVTpWoFt1 R1b13pWZO+6u9LB9NHPHud56BzMc92IyLN0r0Lm6I8N6H8vMHXds+tnzNXPH uX56BzMc93eyLZ0s0MW6I9t6T8vMHVmA3nagZu44d6HewQxHziDzDhZ0tO7I vN7fDg6OzDJEDA2u0PmLNMORh8jCw8Ww4MjC3usOD45sNUKMDK68zg/TDEdu IyOPFqOCIyN73zs6ODLgxWJMcJV1fpRmOPIl2XmcGBsc2dl74HHBkVXHiwnB Vdf5sZrhyMFk6kliYnBkau+HJwVHpp4spgRXS+cnaob7C5Wq41o= "]]}, Properties -> {{0, CompressedData[" 1:eJwl1GV7EAQUBeCNrsFoRo/R3d210TC6YXSOblGUMOhQukNJJZRuDFC6U8Gg OwWRdw8f3nN+wH3uCY2KjuwbGBAQMErEdCxiE4e4xCM+CUhIIhKThCCSkoxg kpOClKQiNWlISzpCSE8GMpKJzGQhK6FkI4zs5CAnuchNHvKSj/wUoCCFKEwR ilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerUoCbhRFCL2tShLvWoTwMa0ohI GtOEpjSjOS1oSSta04a2tKM9HehIFJ3oTBe60o3u9KAnvehNH/oSTT/6M4CB DGIwQxjKMIYzgpEx9+YDRvMhHzGGj/mEsYxjPBP4lM/4nC+YyCQmM4WpTGM6 M5jJLL7kK2Yzh7nMYz4LWMgiFrOEpSxjOStYySq+5htWs4a1rGM9G/iW79jI Jjazhe/5ga1sYzs72MkudrOHvexjPwc4yCF+5Cd+5hcOc4Rf+Y2jHOM4JzjJ KU5zhrOc4zwXuMglLnOFq1zjd/7gOjf4k7/4m3+4yS1uc4e73OM+D3jIIx7z hKc84zkveMkr/uU1b/iPt/xPzPMHEovYxCEu8YhPAhKSiMQkIYikJCOY5KQg JalITRrSko4Q0pOBjGQiM1nISijZCCM7OchJLnKTh7zkIz8FKEghClOEohSj OCUoSSlKU4aylKM8FahIJSpThapUozo1qEk4EdSiNnWoSz3q04CGNCKSxjSh Kc1oTgta0orWtKEt7WhPBzoSRSc604WudKM7PehJL3rTh5jxjqYf/RnAQAYx mCEMZRjDGcHIwPd7/w46HqB0 "]} -> (MeshCellMarker -> CompressedData[" 1:eJxTTMoPSmJkYGCoARKMZAImPIBcM0caAAB/nAO9 "]), {0, Default} -> ( MeshCellMarker -> 0), {2, CompressedData[" 1:eJwl1sOyIAgQBMA3tm3btm3btm3btm3btm3bWI42J/aQUV/QVZ2ocYfK7QMF BAR8DRwQ8DtFQBCCEozghCAkoQhNGMISjvBEICKRiEwUohKN6MQgJrGITRzi Eo/4JCAhiUhMEpKSjOSkICWpSE0a0pKO9GQgI5nITBayko3s5CAnuchNHvKS j/wUoCCFKEwRilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerUoCa1qE0d6lKP +jSgIY1oTBOa0ozmtKAlrWhNG9rSjvZ0oCOd6EwXutKN7vSgJ73oTR/60o/+ DGAggxjMEIYyjOGMYCSjGM0YxjKO8UxgIpOYzBSmMo3pzGAms5jNHOYyj/ks YCGLWMwSlrKM5axgJatYzRrWso71bGAjm9jMFrayje3sYCe72M0e9rKP/Rzg IIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zgJre4zR3uco/7POAh j3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8gd/8hd/8w//8o3v/OAnv/h9 /IEITBCCEozghCAkoQhNGMISjvBEICKRiEwUohKN6MQgJrGITRziEo/4JCAh iUhMEpKSjOSkICWpSE0a0pKO9GQgI5nITBayko3s5CAnuchNHvKSj/wUoCCF KEwRilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerUoCa1qE0d6lKP+jSgIY1o TBOa0ozmtKAlrWhNG9rSjt/l3YGOdKIzXehKN7rTg570ojd96Es/+jOAgQxi MEMYyjCGM4KRjGI0YxjLOMYzgYlMYjJTmMo0pjODmcxiNnOYyzzms4CFLGIx S1jKMpazgpWsYjVrWMs61rOBjWxiM1vYyja2s4Od7GI3e9jLPvZzgIMc4jBH OMoxjnOCk5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3uMs97vOAhzziMU94 yjOe84KXvOI1b3jLO97zgY984jNf+Mof/Mlf/M0//Ms3vvODn/zi9/AHIjBB CEowghOCkIQiNGEISzjCE4GIRCIyUYhKNKITg5jEIjZxiEs84pOAhCQiMUlI SjKSk4KUpCI1aUhLOtKTgYxkIjNZyEo2spODnOQiN3nISz7yU4CCFKIwRShK MYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerTgIY0ojFNaEoz mtOClrSiNW1oSzva04GOdKIzXehKN7rTg570ojd96Es/+jOAgQxiMEMYyjCG M4KRjGI0YxjLOMYzgYlMYjJTmMo0pjODmcxiNnOYyzzms4CFLGIxS1jKMpaz gpWsYjVrWMs61rOBjWxiM1vYyja2s4Od7GI3e9jLPvZzgIMc4jBHOMoxjnOC k5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3uMs97vOAhzziMU94yjOe84KX vOI1b3jLO97zgY984jNfAv//z/8HncN5ZQ== "]} -> ( MeshCellMarker -> CompressedData[" 1:eJxTTMoPSmJkYGD4wsTAwEgmYMIJyDVxFIwC+gAAdHwFrA== "]), {2, Default} -> ( MeshCellMarker -> 0)}, Method -> {"EliminateUnusedCoordinates" -> True, "DeleteDuplicateCoordinates" -> Automatic, "VertexAlias" -> Identity, "CheckOrientation" -> True, "CoplanarityTolerance" -> Automatic, "CheckIntersections" -> Automatic, "BoundaryNesting" -> {{0, 0}}, "SeparateBoundaries" -> False, "PropagateMarkers" -> True, "Hash" -> 4083792183199863620}]]}, TagBox[GraphicsComplex3DBox[CompressedData[" 1:eJxtl09o1gUYx18dLJEOHhwmiGggiU5q2B+rZa+zlX9Wc3PTLRCGMIUuXSxE ooYioR68xRCixcCDggy8Cepghw6FhzavlgkhIXgI0UEHSd+Hej6fZyf58OXh +3x/P9/f811/+PPB8aWNRuOrJY1GW+PZ30T3N6Oz//5j4OjIbOO/v4m5iZFm xVv6iS9mDlZ68Za+eWHxQKUXb+lnb/SUevHwc+/ccOmHPPZddnuo3Jc8/HSu LfXise/A0f3lvuTh58uZwdIPeex7YXGg3Jc8/NzsKfXise+9c/vKfclb+t9X XOqv9OKx76fdn5T7krf066Zv9VV68dj3wdjecl/yln7sjb93V3rxyP/r07sq vXhLP/XTqo8qvXjkv+JSb6UXj/xHuz+o9OKR//StnkovHvk/GNtR6cUjn8/+ fL/Si8e+/yx/r9yXPPyff/Wd0j95vA/rh96q9OLh/+rx10v/5OG/9/uu0j95 +J85taX0Tx5+Fn55pfRDHvMXO14u55OH/t0bL5V68shz2Y/LK714zF/ovHOz mk8e8+c72prVfPLIZ+rJykovHs9r89Z1lV483v8X/tpQ6cXDzx9Tm0s/5JHP b5dfq/Ti4b/v262lf/Lwc+3wm6Uf8sh/4/a3K714+P9udXfpnzz8tz3aXvon D/22+81STx6/tw+Heyq9eORzcW5npReP78Whrt5KLx55rvzhw0ovHu/bzy/u qvTikf/JE7srvXh8L7bd31PpxSP/h8N9lV488r8493GlF4/8D3X1V3rxyPNs /75KLx7zx9sHyvnkkeeO66VePPysOTZY+iGPPB9v2l/pxcPP/N1SLx77Xpkc KvclDz9n+odLP+Sx73j7gXJf8vDTvF7qxWPfNccOlvuSh5/Hm0ZKP+Sx7693 S714+LkyOVr6IXefevb9KfrUc+4+lfTi7lNJL+4+lfTi7lPZD7n7VN6X3H0q +yF3n8r7krtPZT/k7lN5X3L3qeyH3H0q70vuPpX04u5TeV9y96mkF3efyvuS u08lvbj7VM6f3H0q6cXdp3L+5O5TOX9y96mcP7n7VM6f3H0q50PuPpX3JXef yv7J3afy+0DuPpX9k7tPZf/k7lPZP7n7VPZD7j6V55O7T2U9uftUzpPcfSrP J3efyvPJ3adyPuTuU/l5kbtP5fef3H0q+yF3n8r5kLtPZf/k7lPZD7n7VM6f 3H0q+yd3n8r+yd2nsp7cfSr/3pK7T+V8yN2n8veC3H0q50nuPpXfN3L3qZw/ uftU/l6Qu0/l/Mndp3L+5O5TOX9y96mcJ7n7VJ5P7j6V8yR3n8p+yN2ncp7k 7lPZD7n7VN6X3H0q+yF3n8r7krtPZT/k7lN5X3L3qeyH3H0q70vuPpX9kKNP jR050pn05OhT1IujH1Evjn6k+eToO5pPjr5DvTj6i/yQo79oPjn6CPXi6CN6 XuToF/JDjn5BvTj6AvXi6At6XuS4/7UvOe5/6sVxz8sPOe55+SHHfa73hxz3 ufyQ497WfHLc2/JPjvtZ7w857mfNJ8c9LP/kuIeVDznuW80nx30r/+S4VzWf HPeq8iTH/al9yXF/Sk+Oe1L+yXFP6veBHPeh/j+S4z5U/uS497QvOe49/V6R 437T8yLH/aY8yXGPaT457jHtS477Sn7IcV9pPjnuJc0nx72k50uO+0d+yHH/ aP7/+VNDl36z "], {Hue[0.6, 0.3, 0.85], EdgeForm[Hue[0.6, 0.3, 0.75]], Polygon3DBox[CompressedData[" 1:eJxNmXnYl2Mahp+XFtqUKKXdUpG1UlIqlT1SlkhaUGkv7TUGY4wxZsgWki3Z txBCWiyFka2kiCxlSbIUkuI+e677+N1/nD7veR/Pe1Df993Pdf0a9h/RffhO KaVN9o+d7WuR8tcyYqfgyhrlRJngyhu7iHLB7WpUELsEV9GoJCoEV9moIioF t5tRVVQJrpqxu6gaXHVjD7F7cHsaNcQewdU09hI1gqtl1BZ7Bbe3UUfUDq6u UU/UCa6+0UDUC66h0Ug0CG4fY1/RKLj9jP3FvsE1NpqI/YNrahwgmgR3oNFM HBDcQcbBollwhxiHioODO8w4XBwaXHOjhTg8uJbGEaJFcK2M1uKI4I402ojW wR1ltBVtgmtnHC3aBtfe6CCODq6jcYzoEFwno7M4JrguxrGic3DHGceLY4M7 wThRHB/cScbJ4sTguhqniJODO9XoJk4J7jSju+gWXA/jdNE9uDOMM8XpwZ1l 9BRnBne2cY7oGVwv41xxTnC9jfPEucH1MfqK84LrZ/QXfYM737hA9A/uQmOA uCC4gcYgMSC4i4zBYlBwQ4yhYnBww4zhYmhwI4yRYnhwo4zRYmRwFxtjxOjg xhrjxJjgxhsTxLjgJhqTxITgJhtTxKTg/mZcIqYE93fjUnFJcJcZl4tLg/uH cYW4PLh/GleKK4L7l3GVuDK4fxtXi6uC+49xjbg6uP8a/xPXyNW15VPPaCDq F9lNtdn1xo3ihpTdDXq+Wdwk19DONDL2FfsU2U2z2S3GbeLWlN2ter5dTJfb z87sbzQRjYvsZtjsDuMucWfK7k493yPulmtqZw4wmokDi+xm2uxe4z4xK2U3 S88PiPvlDrIzBxuHikOK7B602UPGI+LhlN3Den5MPCp3mJ053GghmhfZPW6z J4wnxeyU3Ww9Py2ekmtpZ44wWotWRXZzbPaM8Zx4NmX3rJ6fF3PljrQzbYy2 4qgiuxds9qLxkpiXspun5wVivlw7O3O00UG0L7JbaLNFxivi5ZTdy3p+Tbwq 19HOHGN0Fp2K7BbbbInxhng9Zfe6nv8v3pTrYmeONY4XxxXZvWWzpcY74u2U 3dt6fk+8K3eCnTnROFmcVGT3vs2WGR+I5Sm75Xr+UKyQ62pnTjG6iVOL7Fba bJXxsfgoZfeRnj8Rq+VOszPdjdNFjyK7T222xvhcfJay+0zPX4ov5M6wM2ca PcVZRXZrbbbO+Fp8lbL7Ss/fim/kzrYz5xjnil5Fdutt9p3xvdiQstug5x/E RrneduY8o6/oU2T3o81+MjaJn1N2P+v5F7FZrp+d6W9cIM4vsvvVZr8Zv4st Kbstev5DbJW70M4MMAaJgUV222y23dhxWTf+TNn9KbeTKDS7yL4ONoaKIUV2 OxtljHKirFxZPe8iyssNM4YbI8UIuV2NCkYlUVGuop6riMpyo4zRxhhxsdxu RlVjd1FNrpqe9xDV5cYa44wJYrzcnkYNYy9RU66mnmuLWnITjUnGFDFZjj9e MtF14tpUcmSi68V1wZGJfE9dHxyZyPfUjcGRiW4RNwdHJvI9dUtwZCLfU7cF Rya6Q9weHJnoLnFHcGQi31N3BUcmulfcExyZyPfUvcGRiXxP3Rccmegh8UBw ZCLfUw8F1yCV9tQjwZGJnhCPBUcm8j31RHBkIt9TTwZHJnpGPB0cmcj31DPB kYl8Tz0XHJnoRfF8cGQi31MvBkcmWiBeCo5MtEgsCI5M5HtqUXBkIt9TrwRH JloiXguOTOR7aklwZCLfU28E1yHlnbRUM3dkIt9TS4MjE/meeic4MtEy8V5w ZCLfU8uCIxP5nvogODLRKvFhcGQi31OrgiMT+Z76ODgy0RrxSXBkIt9Ta4Ij E/me+jw4MtE68WVwZCLfU+uCIxP5nvo6ODLRd+Lb4Pqm0p76Ljgyke+p74Mj E/0kfgiOTOR76qfgyES+pzYFRyb6TfwSHJnI99RvwZGJfE/9HhyZaLv4Izgy ke+p7cGRiXxPMXNHJiqjvcTMHZnI9xQzd2Qi31PM3JGJKmgvMXNHJvI9xczd pam0p5i5IxNV1V5i5o5M5HuKmTsyke8pZu7IRDW0l5i5IxP5nmLmjkzke4qZ O/JSnSLDzB15au8iw8wduaqWdh0zd+Swmtp/zNyR2/YM+9IdOa+6di8zd+TC atrHzNxdlvLu9v3tjtxZWXcBZu7IqRV1P2DmjlzLXcLvE+7IwdxLymvmjtzM XaWsZu7I2dxt/H7jjlzOPanQzB05/k/BzB25f1sq3bfc0RNsFduCo1fYIrYG Rw/xayrd/9zRW2wWvwZHz/Gz2BwcvciPqXQfddcv5XvtRs3c0btsEBuDo6dZ n0r3Y3f0Ot+I9cHRA30lvgmO3mhtKt3X3dEzfSHWBkcv9Zn4Ijh6rE9TKT+4 o/daLT4Njp7sI7E6OHq1lamUZ9zRw60QK4Ojt1suVgRHz/d+KuUrd/SC74r3 g+uYcnZ7WzN39I5vpVLec0dP+aZ4Kzh6zdfFm8HRgy5Opfzpjt70VbE4OHrW l8WrwdHLLkylPOyOHne+WBgcve88MT84euIXUimfu6NXniteCI4e+lkxNzh6 6zmp1Be4o+d+SswJjl58tngquIYpdxfeX7ijd39UPB4cPf3D4tHg6PUfTKU+ xR2fA9wvHgyOzw1mifuD43OGmanU77jjc4m7xczg+BzjTnF3cHzuMSOV+iZ3 fE4yXcwIjs9VbhXTg+NzmGmp1H+543Obm8S04Pic5wZxU3B8LjQ1lfo4d6z1 a8VUOf6drETHB3R77shK3vsxc8dZesD6mrnjXF29g9lU/XeRoej+gM7PHRnK +0Bm7vh/pB/cRzN3nGuodzCbpj8/shWdINAFuiNbeU/IzB1/F/SGjTVzx7n9 9A5mM/T3TOaiKwQ6QndkLu8Pmbnje4Y+8UDN3HGuqd7BbKa+H8lidIhAd+iO LOa9IjN3fG/TMx6imTvOHaR3MMPxc0NGo1sEOkV3ZDTvG5m542eQ/rG5Zu44 d5jewQzHzzfZjc4R6Brdkd28h2Tmjt8V9JKtNHPHuZZ6BzMcv4fIdHSRQAfp jkzn/SQzd/xOo688SjN3nDtS72CG4/flgpQ7SqCbdEfW896SmTt+99JjttfM Hefa6R3McPxeJwPSXQKdpTsyoPeZzNyxI+g3O2nmjnMd9Q5mOPYP2ZBOE+gy 3ZENvedk5o5dRu95nGbuONdF72CGY0+SGek6gY7THZnR+09m7ti59KEnaeaO cyfoHcxw7HOyJB0o0H26I0t6L8rMHXcDetJTNXPHua56BzMc9w4yJt0o0Im6 W5NKfSkzd9xh6E97aOaOc6fpHcxw3I92ZM8iQ1fqbkf2LDLM3O24axUZZu52 3LX0DmY47nFkUrpUoEN1Ryb1fpWZO+6E9K29NHPHubP1DmY47ptkVTpWoFt1 R1b13pWZO+6u9LB9NHPHud56BzMc92IyLN0r0Lm6I8N6H8vMHXds+tnzNXPH uX56BzMc93eyLZ0s0MW6I9t6T8vMHVmA3nagZu44d6HewQxHziDzDhZ0tO7I vN7fDg6OzDJEDA2u0PmLNMORh8jCw8Ww4MjC3usOD45sNUKMDK68zg/TDEdu IyOPFqOCIyN73zs6ODLgxWJMcJV1fpRmOPIl2XmcGBsc2dl74HHBkVXHiwnB Vdf5sZrhyMFk6kliYnBkau+HJwVHpp4spgRXS+cnaob7C5Wq41o= "]]}], MouseAppearanceTag["LinkHand"]], AllowKernelInitialization->False], "MeshGraphics", AutoDelete->True, Editable->False, Selectable->False], Boxed->False, DefaultBaseStyle->{ "Graphics3D", FrontEnd`GraphicsHighlightColor -> Hue[0.1, 1, 0.7]}, ImageSize->{203., 132.}, Lighting->{{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method->{"ShrinkWrap" -> True}, ViewPoint->{1.3, -2.4, 2.}, ViewVertical->{0., 0., 14.084507231437083`}]\);

Cargue el paquete de elemento finito y genere una malla fina desde la representación de límite dada por un disipador de calor.

 In[2]:= XNeeds["NDSolve`FEM`"] mesh = ToElementMesh[bmesh, "MaxCellMeasure" -> 10]
 Out[2]=

Resuelva una ecuación de Laplace en un disipador de calor con dos condiciones límite de Neumann generalizadas aplicada a celdas indicadas por marcadores de elementos distribuidos en la representación límite y la malla.

 In[3]:= Xuif = NDSolveValue[-232.6 Laplacian[u[x, y, z], {x, y, z}] == NeumannValue[1000, ElementMarker == 2] + NeumannValue[(x/100 + 2) 58.15*(273.15 + 20 - u[x, y, z]), ElementMarker == 1], u, {x, y, z} \[Element] mesh];

Visualice la solución usando el paquete de elemento finito.

 Out[4]=

## Mathematica

Questions? Comments? Contact a Wolfram expert »