Новое в системе Wolfram
Mathematica
9
◄
предыдущая
|
следующая
►
Новое в системе Wolfram
Mathematica
9
›
Анализ надёжности
Надёжность автомобиля
Для исправной работы автомобиля необходимо, чтобы исправно работали колёса, мотор, передаточный механизм и один из двух тормозных механизмов.
In[1]:=
X
\!\(\* GraphicsBox[{ {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{-0.17647060000000003`, -0.17647060000000003`}, \ {0.17647060000000003`, 0.17647060000000003`}]}, "DynamicName", BoxID -> "VertexID$1"], InsetBox[ StyleBox["\<\"Start\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, \ {-5.551115123125783*^-17, 0.18518306940104146`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$1"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{0.8235294, -0.17647060000000003`}, \ {1.1764706, 0.17647060000000003`}]}, "DynamicName", BoxID -> "VertexID$2"], InsetBox[ StyleBox["\<\"Wheels\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {1., 0.18518306940104146`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$2"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{1.8235294, -0.17647060000000003`}, \ {2.1764706, 0.17647060000000003`}]}, "DynamicName", BoxID -> "VertexID$3"], InsetBox[ StyleBox["\<\"Engine\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {2., 0.18518306940104146`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$3"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{2.8235294, -0.17647060000000003`}, \ {3.1764706, 0.17647060000000003`}]}, "DynamicName", BoxID -> "VertexID$4"], InsetBox[ StyleBox["\<\"Transmission\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {3., 0.18518306940104146`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$4"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{3.8235294, -0.6764706}, \ {4.1764706, -0.32352939999999997`}]}, "DynamicName", BoxID -> "VertexID$5"], InsetBox[ StyleBox["\<\"Brake 1\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {4., -0.31481693059895854`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$5"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{3.8235294, 0.32352939999999997`}, \ {4.1764706, 0.6764706}]}, "DynamicName", BoxID -> "VertexID$6"], InsetBox[ StyleBox["\<\"Brake 2\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {4., 0.6851830694010415}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$6"], TagBox[{ TagBox[ {RGBColor[0.865, 0.865, 0.865], RectangleBox[{4.8235294, -0.17647060000000003`}, \ {5.1764706, 0.17647060000000003`}]}, "DynamicName", BoxID -> "VertexID$7"], InsetBox[ StyleBox["\<\"End\"\>", StripOnInput->False, FontSize->12], Offset[{0., 2.}, {5., 0.18518306940104146`}], ImageScaled[{0.5, 0}], BaseStyle->"Graphics"]}, "DynamicName", BoxID -> "VertexLabelID$7"]}, {Hue[0.6, 0.7, 0.5], Opacity[0.7], {GrayLevel[0], Thickness[Large], LineBox[{{0.18518306940104168`, -2.220446049250313*^-16}, { 0.8148169305989584, -2.220446049250313*^-16}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{1.1851830694010417`, -2.220446049250313*^-16}, { 1.8148169305989583`, -2.220446049250313*^-16}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{2.1851830694010417`, -2.220446049250313*^-16}, { 2.8148169305989583`, -2.220446049250313*^-16}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{3.185183069401042, -0.09259153470052141}, { 3.814816930598958, -0.4074084652994792}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{3.185183069401042, 0.09259153470052081}, { 3.814816930598958, 0.4074084652994786}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{4.185183069401043, -0.4074084652994786}, { 4.814816930598959, -0.0925915347005205}}]}, {GrayLevel[0], Thickness[Large], LineBox[{{4.185183069401043, 0.4074084652994786}, { 4.814816930598959, 0.0925915347005205}}]}}}, FrameTicks->None, ImagePadding->20, ImageSize->{556.5, 182.}]\)
In[2]:=
X
\[ScriptCapitalR]car = ReliabilityDistribution[ wheels \[And] engine \[And] transmission \[And] (brake1 \[Or] brake2), {{wheels, ExponentialDistribution[Subscript[\[Lambda], 1]]}, {engine, WeibullDistribution[a1, b1]}, {transmission, ExponentialDistribution[Subscript[\[Lambda], 2]]}, {brake1, ExponentialDistribution[Subscript[\[Lambda], 3]]}, {brake2, ExponentialDistribution[Subscript[\[Lambda], 3]]}}];
Найдём функцию надёжности.
In[3]:=
X
SurvivalFunction[\[ScriptCapitalR]car, t]
Out[3]=
Без технического обслуживания, ожидаемая продолжительность исправной работы автомобиля приблизительно равняется трём годам.
In[4]:=
X
vals = {Subscript[\[Lambda], 1] -> 1/5, Subscript[\[Lambda], 2] -> 1/10, Subscript[\[Lambda], 3] -> 1/15, a1 -> 5, b1 -> 12};
In[5]:=
X
mttf = NExpectation[t, t \[Distributed] \[ScriptCapitalR]car /. vals]
Out[5]=
Случайные реализации продолжительности исправной работы автомобиля.
In[6]:=
X
ListPlot[{RandomVariate[\[ScriptCapitalR]car /. vals, 100], {{0, mttf}, {100, mttf}}}, Joined -> {False, True}, Filling -> Axis, AxesOrigin -> {0, 0}]
Out[6]=