problems = {HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((3\ k + 1)\), \(3\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]
\*FractionBox[\(Sin[2\ \[Pi]\ k\ x]\), 
SqrtBox[\(k\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = \(-\[Infinity]\)\), \(\
\[Infinity]\)]\(
\*SuperscriptBox[\((\(-1\))\), \(k\)]\ 
\*SuperscriptBox[\(q\), 
SuperscriptBox[\(k\), \(2\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]
\*FractionBox[
SuperscriptBox[\((2\ x)\), \(2\ m + 2\ k\)], \(
\*SuperscriptBox[\(m\), \(2\)]\ \((m + k)\)\ Binomial[2\ m, m]\)]\)],
   HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), \(Floor[k/5 + Sqrt[7]]^2\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(\[Infinity]\)]\((1 + 
\*FractionBox[\(1\), 
SuperscriptBox[\(k\), \(2\)]])\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 
       0\), \(\[Infinity]\)]\((1 - a\ 
\*SuperscriptBox[\(q\), \(k\)])\)\)], 
   HoldForm[
    Product[1 + 1/(k  Floor[(k^2 + 4)/(k + 1)]), {k, 
      1, \[Infinity]}]]};