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Introduction
CUDA, short  for  Common Unified Device Architecture,  is  a C-like programming language devel-
oped by NVIDIA to facilitate general computation on the Graphical Processing Unit (GPU). CUDA
allows  users  to  design  programs  around  the  many-core  hardware  architecture  of  the  GPU.  By
using  many  cores,  carefully  designed  CUDA  programs  can  achieve  speedups  (1000x  in  some
cases) over a similar CPU implementation. Coupled with the investment price and power required
to  GFLOP  (billion  floating-point  operations  per  second),  the  GPU  has  quickly  become  an  ideal
platform for  both high-performance clusters and scientists wishing for  a supercomputer at  their
disposal.

Yet  while  the  user  can  achieve  speedups,  CUDA  does  have  a  steep  learning  curve—including
learning the CUDA programming API and understanding how to set up CUDA and compile CUDA
programs. This learning curve has, in many cases, alienated many potential CUDA programmers. 

Wolfram’s CUDALink simplified the use of  the GPU within the Wolfram Language by introducing
dozens  of  functions  to  tackle  areas  ranging from image processing to  linear  algebra.  CUDALink
also allows the user to load their own CUDA functions into the Wolfram System kernel. 

By  utilizing  the  Wolfram  Language  and  integrating  with  existing  programs  and  development
tools,  CUDALink offers  an easy way to  use CUDA.  In  this  document  we describe the benefits  of
CUDA integration in the Wolfram Language and provide some applications for which it is suitable.

Motivations for CUDALink
CUDA is a C-like language designed to write general programs around the NVIDIA GPU hardware.
By  programming  the  GPU,  users  can  get  performance  unrivaled  by  a  CPU  for  a  similar  invest-
ment. 

The GPU competes  with  the CPU in  terms of  power  consumption,  using a  fraction of  the power
compared to the CPU for the same GFLOP performance.

Because GPUs are off-the-shelf  hardware,  can fit  into a  standard desktop,  have low power con-
sumption, and perform exceptionally well, they are very attractive to users. Yet a steep learning
curve has always been a hindrance for users wanting to use CUDA in their applications.

CUDALink  alleviates  much  of  the  burden  required  to  use  CUDA  from  within  the  Wolfram
Language.  CUDALink  allows  users  to  query  system  hardware,  use  the  GPU  for  dozens  of
functions, and define new CUDA functions to be run on the GPU. 

A Brief Introduction to the Wolfram Language
The  Wolfram Language  is  a  flexible  programming  language  with  a  wide  range  of  symbolic  and
numeric  computational  capabilities,  high-quality  visualizations,  built-in  application  areas,  and  a
range  of  immediate  deployment  options.  Combined  with  integration  of  dynamic  libraries,  auto-
matic interface construction, and C code generation, the Wolfram Language is the most sophisti-
cated build-to-deploy environment on the market today.

The Wolfram Language provides the ability to program the GPU. For developers, this integration
means native access to the Wolfram Language’s computing abilities—creating hybrid algorithms
that combine the CPU and the GPU. Following are some key features of the Wolfram Language.

Full-Featured, Unified Development Environment

Through its unique interface and integrated features for computation, development, and deploy-
ment,  the  Wolfram  Language  provides  a  streamlined  workflow.  Wolfram  Research  also  offers
Wolfram  Workbench,  a  state-of-the-art  integrated  development  engine  based  on  the  Eclipse
platform.
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Unified Data Representation

At the core of  the Wolfram Language is  the foundational  idea that  everything—data,  programs,
formulas,  graphics,  documents—can  be  represented  as  symbolic  entities,  called  expressions.
This  unified  representation  makes  the  Wolfram  Language  extremely  flexible,  streamlined,  and
consistent.

Multiparadigm Programming Language

The Wolfram Language is  a highly declarative functional  language that also enables you to use
several  different  programming  paradigms,  such  as  procedural  and  rule-based  programming.
Programmers can choose their own style for writing code with minimal effort. Along with compre-
hensive  documentation  and  resources,  the  Wolfram  Language’s  flexibility  greatly  reduces  the
cost of entry for new users. 

Symbolic-Numeric Hybrid System

The principle behind the Wolfram Language is full  integration of symbolic and numeric comput-
ing  capabilities.  Through  its  full  automation  and  preprocessing  mechanisms,  users  reap  the
power of  a  hybrid computing system without  needing knowledge of  specific  methodologies and
algorithms. 

Scientific and Technical Area Coverage

The Wolfram Language provides thousands of built-in functions and packages that cover a broad
range  of  scientific  and  technical  computing  areas,  such  as  statistics,  control  systems,  data
visualization,  and  image  processing.  All  functions  are  carefully  designed  and  tightly  integrated
with the core system.

High-Performance Computing

The  Wolfram  Language  has  built-in  support  for  multicore  systems,  utilizing  all  cores  on  the
system  for  optimal  performance.  Many  functions  automatically  utilize  the  power  of  multicore
processors, and built-in parallel constructs make high-performance programming easy.

Data Access and Connectivity

The  Wolfram  Language  natively  supports  hundreds  of  formats  for  importing  and  exporting,  as
well  as  real-time  access  to  data  from  the  Wolfram  Knowledgebase.  It  also  provides  APIs  for
accessing many programming languages and databases, such as C/C++, Java, .NET, MySQL, and
Oracle.
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Platform-Independent Deployment Options

Through its interactive documents, Wolfram CDF Player, browser plugins, and cloud connectivity,
the Wolfram Language provides a wide range of options for deployment. Built-in code generation
functionality can be used to create standalone programs for independent distribution.

Scalability

Wolfram  Research’s  gridMathematica  allows  Wolfram  Language  programs  to  be  parallelized  on
many machines in cluster or grid configuration.

CUDA Integration in the Wolfram Language 
CUDALink offers a high-level interface to the GPU built on top of the Wolfram Language’s develop-
ment  technologies.  It  allows  users  to  execute  code  on  their  GPU  with  minimal  effort.  By  fully
integrating and automating the GPU’s capabilities using the Wolfram Language, users experience
a more productive and efficient development cycle.

Automation of development project management

Unlike  other  development  frameworks  that  require  the  user  to  manage  project  setup,  platform
dependencies,  and  device  configuration,  CUDALink  makes  the  process  transparent  and
automated.

Automated GPU memory and thread management

A  CUDA  program  written  from  scratch  delegates  memory  and  thread  management  to  the  pro-
grammer. This bookkeeping is required in lieu of the need to write the CUDA program.

With  the  Wolfram Language,  memory  and  thread  management  is  automatically  handled  for  the
user.
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The  Wolfram Language’s  memory  manager  handles  memory  transfers  intelligently  in  the  back-
ground.  Memory,  for  example,  is  not  copied  to  the  GPU  until  computation  is  needed  and  is
flushed out when the GPU memory gets full.

The Wolfram Language’s CUDA support streamlines the whole programming process. This allows
GPU programmers to follow a more interactive style of programming.

Integration with the Wolfram Language’s built-in capabilities 

CUDA integration provides full access to the Wolfram Language’s built-in functions. 

With the Wolfram Language’s comprehensive symbolic and numerical functions, built-in applica-
tion  area  support,  and  graphical  interface-building  functions,  users  can  write  hybrid  algorithms
that use the CPU and GPU, depending on the efficiency of each algorithm.

Ready-to-use applications

CUDA  integration  in  the  Wolfram  Language  provides  several  ready-to-use  CUDA  functions  that
cover a broad range of topics such as mathematics, image processing, financial engineering, and
more. Examples will be given in the section The Wolfram Language’s CUDALink Applications.

Zero device configuration

The Wolfram Language automatically finds, configures, and makes CUDA devices available to the
users.

Multiple GPU support

Through the Wolfram Language’s built-in parallel  programming support, users can launch CUDA
programs on different GPUs. Users can also scale the setup across machines and networks using
gridMathematica.

Technologies Underlying CUDALink
Features  such  as  C  code  generation,  SymbolicC  manipulation,  dynamic  library  loading,  and  C
compiler  invocation  are  all  used  internally  by  CUDALink  to  enable  fast  and  easy  access  to  the
GPU.

C Code Generation

The Wolfram Language can export expressions written using Compile  to a C file.  The C file can

then  either  be  compiled  and  run  as  a  Wolfram  Language  command  (for  native  speed)  or  be
integrated  with  an  external  application.  Through  the  code  generation  mechanism,  you  can  use
the Wolfram Language for both prototype and native speed deployment.

To motivate the C code generation feature, we will use a simple mathematical function:

f(x) = sin(x) + x2 -
1

x + 1
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The function can be defined in the Wolfram Language as follows:

func = Sin[x] + x2 -
1

1 + x
;

The  following  command  generates  the  C  code,  compiles  it,  and  links  it  back  into  the  Wolfram
Language to provide native speed:

cf = Compile[{{x, _Real}}, func, CompilationOptions →

{"InlineExternalDefinitions" → True}, CompilationTarget → "C"];

The  function  can  be  used  like  any  other  Wolfram  Language  function.  Here  we  call  the  above
function:

cf[1.0]

1.34147

Here, we can call the function within Plot:

Plot[cf[x], {x, -2, 2}]

-2 -1 1 2

-10

-5

5

10

LibraryLink

LibraryLink allows you to load C functions as Wolfram Language functions. It is similar in purpose

to  WSTP  (Wolfram  Symbolic  Transfer  Protocol)  but,  by  running  in  the  same  process  as  the

Wolfram System kernel, it avoids the memory transfer cost associated with WSTP. This loads a C

function from a library; the function adds one to a given integer:

addOne = LibraryFunctionLoad["demo", "demo_I_I", {Integer}, Integer]

LibraryFunction[<>, demo_I_I, {Integer}, Integer]

The library function is run with the same syntax as any other function:

addOne[3]

4

CUDALink and OpenCLLink are examples of LibraryLink’s usage.
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Symbolic C Code

Using the Wolfram Language’s  symbolic  capabilities,  users can generate C programs within the
Wolfram Language. The following, for example, creates macros for common math constants:

<< SymbolicC`

These are all constants in the Wolfram System context. We use the Wolfram Language’s CDefine

to declare a C macro:

s = Map[CDefine[ToString[#], N[#]] &, Map[ToExpression,

Select[Names["System`*"], MemberQ[Attributes[#], Constant] &]]]

{CDefine[Catalan, 0.915966],

CDefine[Degree, 0.0174533], CDefine[E, 2.71828],

CDefine[EulerGamma, 0.577216], CDefine[Glaisher, 1.28243],

CDefine[GoldenRatio, 1.61803], CDefine[Khinchin, 2.68545],

CDefine[MachinePrecision, 15.9546], CDefine[Pi, 3.14159]}

The symbolic expression can be converted to C using the ToCCodeString function:

ToCCodeString[s]

#define Catalan 0.915965594177219

#define Degree 0.017453292519943295

#define E 2.718281828459045

#define EulerGamma 0.5772156649015329

#define Glaisher 1.2824271291006226

#define GoldenRatio 1.618033988749895

#define Khinchin 2.6854520010653062

#define MachinePrecision 15.954589770191003

#define Pi 3.141592653589793

By  representing  the  C  program  symbolically,  you  can  manipulate  it  using  standard  Wolfram
Language techniques. Here, we convert all the macro names to lowercase:

ReplaceAll[s, CDefine[name_, val_] → CDefine[ToLowerCase[name], val]]

{CDefine[catalan, 0.915966],

CDefine[degree, 0.0174533], CDefine[e, 2.71828],

CDefine[eulergamma, 0.577216], CDefine[glaisher, 1.28243],

CDefine[goldenratio, 1.61803], CDefine[khinchin, 2.68545],

CDefine[machineprecision, 15.9546], CDefine[pi, 3.14159]}

6 | CUDA Programming with the Wolfram Language



Again, the code can be converted to C code using ToCCodeString:

ToCCodeString[%]

#define catalan 0.915965594177219

#define degree 0.017453292519943295

#define e 2.718281828459045

#define eulergamma 0.5772156649015329

#define glaisher 1.2824271291006226

#define goldenratio 1.618033988749895

#define khinchin 2.6854520010653062

#define machineprecision 15.954589770191003

#define pi 3.141592653589793

C Compiler Invoking

Another Wolfram Language innovation is the ability to call  external C compilers from within the

Wolfram Language. The following compiles a simple C program into an executable:

<< CCompilerDriver`

exe = CreateExecutable["

#include \"stdio.h\"

int main(void) {

printf(\"Hello from CCompilerDriver.\");

return 0;

}", "foo"];

Using the preceding syntax, you can create executables using any Wolfram Language-supported

C compiler (Visual Studio, GCC, Intel  C++, etc.)  in a compiler-independent fashion. The preced-

ing command can be executed within the Wolfram Language:

Import["!" <> exe, "Text"]

Hello from CCompilerDriver.

By using the Wolfram Language enhancements mentioned earlier in this section, CUDALink and

OpenCLLink facilitate fast and simple access to the GPU.
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The Wolfram Language’s CUDALink: Integrated GPU 
Programming
CUDALink is a built-in Wolfram Language application that provides a powerful interface for using
CUDA within the Wolfram Language. Through CUDALink, users get carefully tuned linear algebra,
Fourier  transform,  financial  derivative,  and  image  processing  algorithms.  Users  can  also  write
their own CUDALink modules with little effort.

Accessing System Information

CUDALink  supplies  functions  that  query  the  system’s  GPU  hardware.  To  use  CUDALink  opera-
tions, users have to first load the CUDALink application:

Needs["CUDALink`"]

CUDAQ tells whether the current hardware and system configuration support CUDALink:

CUDAQ[]

True

SystemInformation gives information on the available GPU hardware:

SystemInformation[]

Example of a report generated by SystemInformation.

Integration with Wolfram Language Functions

CUDALink  integrates  with  existing  Wolfram Language  functions  such  as  its  import/export  facili-
ties, functional language, and interface building. This allows you to build deployable programs in
the Wolfram Language with minimal disruption to the GPU task. This section showcases how you
can build interfaces as well as use the import/export capabilities in the Wolfram Language.
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Manipulate: The Wolfram Language’s automatic interface generator

The Wolfram Language provides extensive built-in interface-building functions. 

One fully  automated interface-generating  function  is  Manipulate,  which  builds  the  interface  by

inspecting the possible values of variables. It then chooses the appropriate GUI widget based on
the interpretation of the variable values.

Here,  we  build  an  interface  that  performs  a  morphological  operation  on  an  image  with  varying
radii:

Manipulateoperation , x,

{x, 0, 9}, {operation, {CUDAErosion, CUDADilation}}

Using  the  same  technique,  you  can  build  more  complicated  interfaces.  This  allows  users  to
choose  different  Gaussian  kernel  sizes  (and  their  angles)  and  performs  a  convolution  on  the
image on the right.

Example of a user interface built with Manipulate.
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Support for import and export

The  Wolfram  Language  natively  supports  hundreds  of  file  formats  and  their  subformats  for

importing  and  exporting.  Supported  formats  include:  common  image  formats  (JPEG,  PNG,  TIFF,

BMP,  etc.),  video  formats  (AVI,  MOV,  H264,  etc.),  audio  formats  (WAV,  AU,  AIFF,  FLAC,  etc.),

medical imaging formats (DICOM), data formats (Excel, CSV, MAT, etc.), and various raw formats

for further processing.

Any supported data  formats  will  be  automatically  converted to  the Wolfram Language’s  unified

data  representation,  or  an  expression,  which  can  be  used  in  all  Wolfram  Language  functions,

including CUDALink functions.

Users can also get  data from the web or  Wolfram-curated datasets.  The following code imports

an image from a given URL:

image = Import[

"http://gallery.wolfram.com/2d/popup/00_contourMosaic.pop.jpg"];

The  function  Import  automatically  recognizes  the  file  format  and  converts  it  into  a  Wolfram

Language expression. This can be directly used by CUDALink functions, such as CUDAImageAdd:

output = CUDAImageAddimage, 

All  outputs  from Wolfram Language functions,  including  the  ones  from CUDALink  functions,  are

also expressions and can be easily exported to one of the supported formats using the Export

function. For example, the following code exports the preceding output into PNG format:

Export["masked.png", output]

masked.png

10 | CUDA Programming with the Wolfram Language



CUDALink Programming
Programming the GPU in the Wolfram Language is straightforward. It begins with writing a CUDA
kernel. Here, we will create a simple example that negates the colors of a three-channel image:

kernel = "
__global__ void cudaColorNegate(mint

*img, mint *dim, mint channels) {

int width = dim[0], height = dim[1];
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int index = channels * (xIndex + yIndex*width);
if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)
img[index + c] = 255 - img[index + c];}}";

Pass that string to the built-in function CUDAFunctionLoad,  along with the kernel function name

and the argument specification. The last argument denotes the CUDA block size:

colorNegate = CUDAFunctionLoad[kernel, "cudaColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}];

Several  things  are  happening  at  this  stage.  The  Wolfram Language  automatically  compiles  the
kernel function and loads it as a Wolfram Language function. Now you can apply this new CUDA
function to an image:

img = ;

colorNegate[img, ImageDimensions[img], ImageChannels[img]]

 

System Requirements

To utilize the Wolfram Language’s CUDALink, the following is required:

◼ Operating system: Windows, Linux, and Mac OS X 10.6.3+, both 32- and 64-bit 
architecture.

◼ NVIDIA CUDA-enabled products.

◼ For CUDA programming, a CUDALink-supported C compiler is required.
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The Wolfram Language’s CUDALink Applications
In  addition  to  support  for  user-defined  CUDA  functions  and  automatic  compilation,  CUDALink
includes several ready-to-use functions ranging from image processing to financial option valua-
tion. 

Complex Dynamics

CUDALink  enables  you  to  easily  investigate  computationally  intensive  complex  dynamics  struc-
tures. Following is an example for generating a Julia set.

The Julia set is a generalization of the Mandelbrot set. This implements the CUDA kernel:

code = "

__global__ void julia_kernel(Real_t * set,

int width, int height, Real_t cx, Real_t cy) {

int xIndex = threadIdx.x + blockIdx.x*blockDim.x;

int yIndex = threadIdx.y + blockIdx.y*blockDim.y;

int ii;

Real_t x = ZOOM_LEVEL*(width/2 - xIndex);

Real_t y = ZOOM_LEVEL*(height/2 - yIndex);

Real_t tmp;

Real_t c;

if (xIndex < width && yIndex < height) {

for (ii = 0; ii <

MAX_ITERATIONS && x*x + y*y < BAILOUT; ii++) {

tmp = x*x - y*y + cx;

y = 2*x*y + cy;

x = tmp;

}

c =

logf(static_cast<Real_t>(0.1) + sqrtf(x*x + y*y));

set[xIndex + yIndex*width] = c;

}

}

";

The width and height are set.  Since the set is computed, the memory need not be set—that is,
only memory allocation is needed:

{width, height} = {512, 512};

jset = CUDAMemoryAllocate[Real, {height, width}];
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This  loads  CUDAFunction.  Macros  are  used  to  allow  the  compiler  to  optimize  the  code—doing

things like loop unrolling:

JuliaCalculate = CUDAFunctionLoad[code, "julia_kernel",

{{_Real, _, "Output"}, _Integer, _Integer, _Real, _Real},

{16, 16}, "Defines" → {"MAX_ITERATIONS" → 10,

"ZOOM_LEVEL" → "0.0050", "BAILOUT" → "4.0"}];

This creates an interface using Manipulate and ReliefPlot where you can adjust the value of c

interactively:

Manipulate[

JuliaCalculate[jset, width,

height, c[[1]], c[[2]], {width, height}];

ReliefPlot[Reverse@CUDAMemoryGet[jset], ColorFunction → "Rainbow",

DataRange → {{-2.0, 2.0}, {-2.0, 2.0}}, ImageSize → 512,

Frame → None, Epilog → {Opacity[.5], Dashed, Thick, Line[

{{{c[[1]], -2}, {c[[1]], 2}}, {{-2, c[[2]]}, {2, c[[2]]}}}]}],

{{c, {0, 1}}, {-2, -2}, {2, 2}, Locator, Appearance →

Graphics[{Thick, Dashed, Opacity[.75], Circle[]}, ImageSize → 50]}]

Interactive computation and rendering of a Julia set.
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Random Number Generators

One of the difficult problems when parallelizing algorithms is generating good random numbers.
CUDALink  offers  many  examples  of  how to  generate  both  pseudo-  and  quasi-random numbers.
Here, we generate quasi-random numbers using the Halton sequence:

src = "

__device__ int primes[] = {

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97,101,103,107,109,113,

127,131,137,139,149,151,157,163,167,173,

179,181,191,193,197,199,211,223,227,229};

__global__ void Halton(Real_t * out, int dim, int n) {

const int tx = threadIdx.x, bx = blockIdx.x, dx = blockDim.x;

const int index = tx + bx*dx;

if (index >= n)

return ;

Real_t digit, rnd, idx, half;

for (int ii = 0,

idx=index, rnd=0, digit=0; ii < dim; ii++) {

half = 1.0/primes[ii];

while (idx > 0.0001) {

digit = ((mint)idx)%primes[ii];

rnd += half*digit;

idx = (idx - digit)/primes[ii];

half /= primes[ii];

}

out[index*dim + ii] = rnd;

}

}

";

This loads the CUDA source into the Wolfram Language:

CUDAHaltonSequence = CUDAFunctionLoad[src, "Halton",

{{_Real, "Output"}, "Integer32", "Integer32"}, 256 ]

CUDAFunction[<>, Halton, {{_Real, Output}, Integer32, Integer32}]

This  allocates  1024  real  elements.  Real  elements  are  interpreted  to  be  the  highest  floating
precision on the machine:

mem = CUDAMemoryAllocate[Real, {1024}]

CUDAMemory[<11521>, Double]

This calls the function:

CUDAHaltonSequence[mem, 1, 1024]

{CUDAMemory[<11521>, Double]}
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You can use the Wolfram Language’s extensive visualization support to visualize the result. Here
we plot the data:

ListPlot[CUDAMemoryGet[mem]]
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Some  random  number  generators  and  distributions  are  not  naturally  parallelizable.  In  those
cases,  users  can  adopt  a  hybrid  GPU  programming  approach—utilizing  the  CPU  for  some  tasks
and the GPU for others. With this approach, users can maximize the Wolfram Language’s exten-
sive statistics capabilities to generate or derive distributions from their data.

Here,  we  simulate  a  random  walk  by  generating  numbers  on  the  CPU,  performing  a  reduction

(using CUDAFoldList) on the GPU, and plotting the result using the Wolfram Language:

ListLinePlot[

Thread[List[CUDAFoldList[Plus, 0, RandomReal[{-1, 1}, 500]],

CUDAFoldList[Plus, 0, RandomReal[{-1, 1}, 500]]]]]
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Random walk simulation.

Image Processing

CUDALink’s  image  processing  capabilities  can  be  classified  into  three  categories.  The  first  is
convolution,  which  is  optimized  for  CUDA.  The  second  is  morphology,  which  contains  abilities
such as erosion, dilation, opening, and closing. Finally, there are the binary operators. These are
image multiplication, division, subtraction, and addition. All operations work on either images or
lists.
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Image convolution

CUDALink’s convolution is similar to the Wolfram Language’s ListConvolve and ImageConvolve

functions.  It  will  operate  on  images,  lists,  or  CUDA  memory  references,  and  it  can  use  the
Wolfram Language’s built-in filters as the kernel:

CUDAImageConvolve ,
-1 0 1
-2 0 2
-1 0 1



Convolving a microscopic image with a Sobel mask to detect edges.

Pixel operations

CUDALink supports simple pixel operations on one or two images, such as adding or multiplying
pixel values from two images:

CUDAImageMultiply , 

Multiplication of two images.

Morphological operations

CUDALink  supports  fundamental  operations  such  as  erosion,  dilation,  opening,  and  closing.

CUDAErosion,  CUDADilation,  CUDAOpening,  and  CUDAClosing  are  equivalent  to  the  Wolfram

Language’s  built-in  Erosion,  Dilation,  Opening,  and  Closing  functions.  More  sophisticated

operations can be built using these fundamental operations.

Linear Algebra
You  can  perform  various  linear  algebra  functions  with  CUDALink,  such  as  matrix-matrix  and
matrix-vector multiplication, finding minimum and maximum elements, and transposing matrices:

Nest[CUDADot[RandomReal[1, {100, 100}], #] &,

RandomReal[1, {100}], 1000];
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Fourier Analysis

The  Fourier  analysis  capabilities  of  the  CUDALink  package  include  forward  and  inverse  Fourier

transforms that can operate on a list of 1D, 2D, or 3D real or complex numbers: 

ArrayPlot[Log[Abs[CUDAFourier[Table[

Mod[Binomial[i, j], 2], {i, 0, 63}, {j, 0, 63}]]]], Frame → False]

Finding the logarithmic power spectrum of a dataset.

PDE Solving

This  computational  fluid  dynamics  example  is  included  with  CUDALink.  This  solves  the  Navier–

Stokes equations for a million particles using the finite element method.

Fluid simulation with multi-particles.
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Volumetric Rendering

CUDALink  includes  functions  to  read  and  display  volumetric  data  in  3D,  with  interactive  inter-
faces for setting the transfer functions and other volume-rendering parameters.

Volumetric rendering of a medical image.

Financial Engineering

CUDALink’s options pricing function uses the binomial or Monte Carlo method, depending on the
type of option selected. Computing options on the GPU can be dozens of times faster than using
the CPU.

This generates some random input data:

numberOfOptions = 32;

spotPrices = RandomReal[{25.0, 35.0}, numberOfOptions];

strikePrices = RandomReal[{20.0, 40.0}, numberOfOptions];

expiration = RandomReal[{0.1, 10.0}, numberOfOptions];

interest = 0.08;

volatility = RandomReal[{0.10, 0.50}, numberOfOptions];

dividend = RandomReal[{0.2, 0.06}, numberOfOptions];

This computes the Asian arithmetic call option with the above data:

CUDAFinancialDerivative[{"AsianArithmetic", "Call"},

{ "StrikePrice" → strikePrices, "Expiration" → expiration},

{ "CurrentPrice" → spotPrices, "InterestRate" → interest,

"Volatility" → volatility, "Dividend" → dividend}]

{8.34744, 1.18026, 9.53711, 5.39746, 2.2478, 4.94333,

0.859259, 6.08291, 2.4044, 2.41929, 6.53313, 7.48516, 2.71696,

1.08229, 7.50222, 0.790236, 0.816325, 1.28744, 0.953413,

0.131352, 7.60693, 1.15648, 7.07213, 8.2441, 4.45964, 7.94849,

2.22669, 1.17793, 10.1456, 0.263328, 4.12236, 4.99476}
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OpenCL Integration in the Wolfram Language
The  Wolfram  Language  also  includes  the  ability  to  use  the  GPU  using  OpenC  via  OpenCLLink.
This is a vendor-neutral way to use the GPU and works both on NVIDIA and non-NVIDIA hardware.
OpenCLLink and CUDALink offer  the same syntax,  and the following demonstrates how to com-
pute the one-touch option:

code = "

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

#ifdef USING_DOUBLE_PRECISIONQ

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#endif /* USING_DOUBLE_PRECISIONQ */

__kernel void onetouch(__global Real_t * call, __global

Real_t * put, __global Real_t * S, __global Real_t *

X, __global Real_t * T, __global Real_t * R, __global

Real_t * D, __global Real_t * V, mint length) {

Real_t tmp, d1, d5, power;

int ii = get_global_id(0);

if (ii < length) {

d1 = (log(S[ii]/X[ii]) + (R[ii] - D[ii] + 0.5f

* V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

d5 = (log(S[ii]/X[ii]) - (R[ii] - D[ii] + 0.5f *

V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

power = pow(X[ii]/S[ii], 2*R[ii]/(V[ii]*V[ii]));

call[ii] = S[ii] < X[ii]

? power * N(d5) + (S[ii]/X[ii])*N(d1) : 1.0;

put[ii] = S[ii] > X [ii] ? power * N(-d5)

+ (S[ii]/X[ii])*N(-d1) : 1.0;

}

}";

This loads the OpenCL function into the Wolfram Language:

OpenCLOneTouchOption = OpenCLFunctionLoad[code, "onetouch",

{{_Real, "Output"}, {_Real, "Output"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, _Integer}, 128];

This generates random input data:

numberOfOptions = 64;

S = RandomReal[{20.0, 40.0}, numberOfOptions];

X = RandomReal[{20.0, 40.0}, numberOfOptions];

T = RandomReal[{0.1, 10.0}, numberOfOptions];

R = RandomReal[{0.02, 0.1}, numberOfOptions];

Q = RandomReal[{0.0, 0.08}, numberOfOptions];

V = RandomReal[{0.1, 0.4}, numberOfOptions];
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This allocates memory for both the call and put results:

call = OpenCLMemoryAllocate[Real, numberOfOptions];

put = OpenCLMemoryAllocate[Real, numberOfOptions];

This calls the function:

OpenCLOneTouchOption[call, put, S, X, T, R, Q, V, numberOfOptions]

{OpenCLMemory[<19661>, Double], OpenCLMemory[<28475>, Double]}

This retrieves the result for the call option (the put option can be retrieved similarly):

OpenCLMemoryGet[call]

{1., 0.398116, 1., 1., 1.00703, 0.909275, 1., 1., 1., 0.541701, 0.631649,

1., 0.702748, 1., 1., 1., 0.626888, 1., 1., 0.827843, 0.452237,

0.998761, 0.813008, 1., 1., 0.96773, 0.795428, 1., 1.79325, 1.,

1., 1., 1., 1., 0.547425, 0.968162, 1., 1., 0.907489, 1., 1.90031,

0.316174, 1., 0.998824, 0.383825, 1., 0.804287, 0.977305,

1., 1., 0.855764, 1., 0.952568, 0.573249, 0.239455, 0.635454,

0.917078, 0.624179, 1., 0.679681, 1., 1., 0.968929, 0.712148}

OpenCL Application: Many-Body Physical Systems

The N-body simulation is a classic Newtonian problem. This implements it in OpenCL:

srcf = FileNameJoin[{$OpenCLLinkPath, "SupportFiles", "NBody.cl"}];

This loads OpenCLFunction :

NBody = OpenCLFunctionLoad[{srcf}, "nbody_sim",

{{"Float[4]", _, "Input"}, {"Float[4]", _, "Input"},

_Integer, "Float", "Float", {"Local", "Float"},

{"Float[4]", _, "Output"}, {"Float[4]", _, "Output"}}, 256]

OpenCLFunction[<>, nbody_sim,

{{Float[4], _, Input}, {Float[4], _, Input}, _Integer, Float, Float,

{Local, Float}, {Float[4], _, Output}, {Float[4], _, Output}}]

The number of particles, time step, and epsilon distance are chosen:

numParticles = 1024;

deltaT = 0.05;

epsSqrt = 50.0;

This sets the input and output memories:

pos =

OpenCLMemoryLoad[RandomReal[512, {numParticles, 4}], "Float[4]"];

vel = OpenCLMemoryLoad[RandomReal[1, {numParticles, 4}], "Float[4]"];

newPos = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

newVel = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];
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This calls the NBody function:

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

This plots the body points:

Graphics3D[Point[Take[#, 3] & /@ OpenCLMemoryGet[pos]]]

This shows the result as a Dynamic:

Graphics3D[Point[

Dynamic[Refresh[

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

Take[#, 3] & /@ OpenCLMemoryGet[pos], UpdateInterval → 0]]]]

Real-time animation of the N-body simulation.
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Summary
Due to  the Wolfram Language’s  integrated platform design,  all  functionality  is  included without
the need to buy and maintain multiple tools and add-on packages.

With  its  simplified  development  cycle,  multicore  computing,  and built-in  functions,  the  Wolfram
Language’s  built-in  CUDALink  application  provides  a  powerful  high-level  interface  for  GPU
computing.

Pricing and Licensing Information
Wolfram Research  offers  many  flexible  licensing  options  for  both  organizations  and  individuals.
You  can  choose  a  convenient,  cost-effective  plan  for  your  workgroup,  department,  directorate,
university, or just yourself, including network licensing for groups.

Visit us online for more information:
www.wolfram.com/mathematica/how-to-buy

Recommended Next Steps

Try the Wolfram Language in Mathematica for free:
www.wolfram.com/mathematica/trial

Schedule a technical demo:
www.wolfram.com/mathematica-demo

Learn more about CUDA programming in the Wolfram Language:
US and Canada: Europe:
1-800-WOLFRAM (965-3726) +44-(0)1993-883400
info@wolfram.com info@wolfram.co.uk

Outside US and Canada (except Europe and Asia): Asia:
+1-217-398-0700 +81-(0)3-3518-2880
info@wolfram.com info@wolfram.co.jp
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