
 WOLFRAM WHITE PAPER

CUDA Programming with the
Wolfram Language

Introduction
CUDA, short for Common Unified Device Architecture, is a C-like programming language devel-
oped by NVIDIA to facilitate general computation on the Graphical Processing Unit (GPU). CUDA
allows users to design programs around the many-core hardware architecture of the GPU. By
using many cores, carefully designed CUDA programs can achieve speedups (1000x in some
cases) over a similar CPU implementation. Coupled with the investment price and power required
to GFLOP (billion floating-point operations per second), the GPU has quickly become an ideal
platform for both high-performance clusters and scientists wishing for a supercomputer at their
disposal.

Yet while the user can achieve speedups, CUDA does have a steep learning curve—including
learning the CUDA programming API and understanding how to set up CUDA and compile CUDA
programs. This learning curve has, in many cases, alienated many potential CUDA programmers.

Wolfram’s CUDALink simplified the use of the GPU within the Wolfram Language by introducing
dozens of functions to tackle areas ranging from image processing to linear algebra. CUDALink
also allows the user to load their own CUDA functions into the Wolfram System kernel.

By utilizing the Wolfram Language and integrating with existing programs and development
tools, CUDALink offers an easy way to use CUDA. In this document we describe the benefits of
CUDA integration in the Wolfram Language and provide some applications for which it is suitable.

Motivations for CUDALink
CUDA is a C-like language designed to write general programs around the NVIDIA GPU hardware.
By programming the GPU, users can get performance unrivaled by a CPU for a similar invest-
ment.

The GPU competes with the CPU in terms of power consumption, using a fraction of the power
compared to the CPU for the same GFLOP performance.

Because GPUs are off-the-shelf hardware, can fit into a standard desktop, have low power con-
sumption, and perform exceptionally well, they are very attractive to users. Yet a steep learning
curve has always been a hindrance for users wanting to use CUDA in their applications.

CUDALink alleviates much of the burden required to use CUDA from within the Wolfram
Language. CUDALink allows users to query system hardware, use the GPU for dozens of
functions, and define new CUDA functions to be run on the GPU.

A Brief Introduction to the Wolfram Language
The Wolfram Language is a flexible programming language with a wide range of symbolic and
numeric computational capabilities, high-quality visualizations, built-in application areas, and a
range of immediate deployment options. Combined with integration of dynamic libraries, auto-
matic interface construction, and C code generation, the Wolfram Language is the most sophisti-
cated build-to-deploy environment on the market today.

The Wolfram Language provides the ability to program the GPU. For developers, this integration
means native access to the Wolfram Language’s computing abilities—creating hybrid algorithms
that combine the CPU and the GPU. Following are some key features of the Wolfram Language.

Full-Featured, Unified Development Environment

Through its unique interface and integrated features for computation, development, and deploy-
ment, the Wolfram Language provides a streamlined workflow. Wolfram Research also offers
Wolfram Workbench, a state-of-the-art integrated development engine based on the Eclipse
platform.

CUDA Programming with the Wolfram Language | 1

Unified Data Representation

At the core of the Wolfram Language is the foundational idea that everything—data, programs,
formulas, graphics, documents—can be represented as symbolic entities, called expressions.
This unified representation makes the Wolfram Language extremely flexible, streamlined, and
consistent.

Multiparadigm Programming Language

The Wolfram Language is a highly declarative functional language that also enables you to use
several different programming paradigms, such as procedural and rule-based programming.
Programmers can choose their own style for writing code with minimal effort. Along with compre-
hensive documentation and resources, the Wolfram Language’s flexibility greatly reduces the
cost of entry for new users.

Symbolic-Numeric Hybrid System

The principle behind the Wolfram Language is full integration of symbolic and numeric comput-
ing capabilities. Through its full automation and preprocessing mechanisms, users reap the
power of a hybrid computing system without needing knowledge of specific methodologies and
algorithms.

Scientific and Technical Area Coverage

The Wolfram Language provides thousands of built-in functions and packages that cover a broad
range of scientific and technical computing areas, such as statistics, control systems, data
visualization, and image processing. All functions are carefully designed and tightly integrated
with the core system.

High-Performance Computing

The Wolfram Language has built-in support for multicore systems, utilizing all cores on the
system for optimal performance. Many functions automatically utilize the power of multicore
processors, and built-in parallel constructs make high-performance programming easy.

Data Access and Connectivity

The Wolfram Language natively supports hundreds of formats for importing and exporting, as
well as real-time access to data from the Wolfram Knowledgebase. It also provides APIs for
accessing many programming languages and databases, such as C/C++, Java, .NET, MySQL, and
Oracle.

2 | CUDA Programming with the Wolfram Language

Platform-Independent Deployment Options

Through its interactive documents, Wolfram CDF Player, browser plugins, and cloud connectivity,
the Wolfram Language provides a wide range of options for deployment. Built-in code generation
functionality can be used to create standalone programs for independent distribution.

Scalability

Wolfram Research’s gridMathematica allows Wolfram Language programs to be parallelized on
many machines in cluster or grid configuration.

CUDA Integration in the Wolfram Language
CUDALink offers a high-level interface to the GPU built on top of the Wolfram Language’s develop-
ment technologies. It allows users to execute code on their GPU with minimal effort. By fully
integrating and automating the GPU’s capabilities using the Wolfram Language, users experience
a more productive and efficient development cycle.

Automation of development project management

Unlike other development frameworks that require the user to manage project setup, platform
dependencies, and device configuration, CUDALink makes the process transparent and
automated.

Automated GPU memory and thread management

A CUDA program written from scratch delegates memory and thread management to the pro-
grammer. This bookkeeping is required in lieu of the need to write the CUDA program.

With the Wolfram Language, memory and thread management is automatically handled for the
user.

CUDA Programming with the Wolfram Language | 3

The Wolfram Language’s memory manager handles memory transfers intelligently in the back-
ground. Memory, for example, is not copied to the GPU until computation is needed and is
flushed out when the GPU memory gets full.

The Wolfram Language’s CUDA support streamlines the whole programming process. This allows
GPU programmers to follow a more interactive style of programming.

Integration with the Wolfram Language’s built-in capabilities

CUDA integration provides full access to the Wolfram Language’s built-in functions.

With the Wolfram Language’s comprehensive symbolic and numerical functions, built-in applica-
tion area support, and graphical interface-building functions, users can write hybrid algorithms
that use the CPU and GPU, depending on the efficiency of each algorithm.

Ready-to-use applications

CUDA integration in the Wolfram Language provides several ready-to-use CUDA functions that
cover a broad range of topics such as mathematics, image processing, financial engineering, and
more. Examples will be given in the section The Wolfram Language’s CUDALink Applications.

Zero device configuration

The Wolfram Language automatically finds, configures, and makes CUDA devices available to the
users.

Multiple GPU support

Through the Wolfram Language’s built-in parallel programming support, users can launch CUDA
programs on different GPUs. Users can also scale the setup across machines and networks using
gridMathematica.

Technologies Underlying CUDALink
Features such as C code generation, SymbolicC manipulation, dynamic library loading, and C
compiler invocation are all used internally by CUDALink to enable fast and easy access to the
GPU.

C Code Generation

The Wolfram Language can export expressions written using Compile to a C file. The C file can

then either be compiled and run as a Wolfram Language command (for native speed) or be
integrated with an external application. Through the code generation mechanism, you can use
the Wolfram Language for both prototype and native speed deployment.

To motivate the C code generation feature, we will use a simple mathematical function:

f(x) = sin(x) + x2 -
1

x + 1

4 | CUDA Programming with the Wolfram Language

The function can be defined in the Wolfram Language as follows:

func = Sin[x] + x2 -
1

1 + x
;

The following command generates the C code, compiles it, and links it back into the Wolfram
Language to provide native speed:

cf = Compile[{{x, _Real}}, func, CompilationOptions →

{"InlineExternalDefinitions" → True}, CompilationTarget → "C"];

The function can be used like any other Wolfram Language function. Here we call the above
function:

cf[1.0]

1.34147

Here, we can call the function within Plot:

Plot[cf[x], {x, -2, 2}]

-2 -1 1 2

-10

-5

5

10

LibraryLink

LibraryLink allows you to load C functions as Wolfram Language functions. It is similar in purpose

to WSTP (Wolfram Symbolic Transfer Protocol) but, by running in the same process as the

Wolfram System kernel, it avoids the memory transfer cost associated with WSTP. This loads a C

function from a library; the function adds one to a given integer:

addOne = LibraryFunctionLoad["demo", "demo_I_I", {Integer}, Integer]

LibraryFunction[<>, demo_I_I, {Integer}, Integer]

The library function is run with the same syntax as any other function:

addOne[3]

4

CUDALink and OpenCLLink are examples of LibraryLink’s usage.

CUDA Programming with the Wolfram Language | 5

Symbolic C Code

Using the Wolfram Language’s symbolic capabilities, users can generate C programs within the
Wolfram Language. The following, for example, creates macros for common math constants:

<< SymbolicC`

These are all constants in the Wolfram System context. We use the Wolfram Language’s CDefine

to declare a C macro:

s = Map[CDefine[ToString[#], N[#]] &, Map[ToExpression,

Select[Names["System`*"], MemberQ[Attributes[#], Constant] &]]]

{CDefine[Catalan, 0.915966],

CDefine[Degree, 0.0174533], CDefine[E, 2.71828],

CDefine[EulerGamma, 0.577216], CDefine[Glaisher, 1.28243],

CDefine[GoldenRatio, 1.61803], CDefine[Khinchin, 2.68545],

CDefine[MachinePrecision, 15.9546], CDefine[Pi, 3.14159]}

The symbolic expression can be converted to C using the ToCCodeString function:

ToCCodeString[s]

#define Catalan 0.915965594177219

#define Degree 0.017453292519943295

#define E 2.718281828459045

#define EulerGamma 0.5772156649015329

#define Glaisher 1.2824271291006226

#define GoldenRatio 1.618033988749895

#define Khinchin 2.6854520010653062

#define MachinePrecision 15.954589770191003

#define Pi 3.141592653589793

By representing the C program symbolically, you can manipulate it using standard Wolfram
Language techniques. Here, we convert all the macro names to lowercase:

ReplaceAll[s, CDefine[name_, val_] → CDefine[ToLowerCase[name], val]]

{CDefine[catalan, 0.915966],

CDefine[degree, 0.0174533], CDefine[e, 2.71828],

CDefine[eulergamma, 0.577216], CDefine[glaisher, 1.28243],

CDefine[goldenratio, 1.61803], CDefine[khinchin, 2.68545],

CDefine[machineprecision, 15.9546], CDefine[pi, 3.14159]}

6 | CUDA Programming with the Wolfram Language

Again, the code can be converted to C code using ToCCodeString:

ToCCodeString[%]

#define catalan 0.915965594177219

#define degree 0.017453292519943295

#define e 2.718281828459045

#define eulergamma 0.5772156649015329

#define glaisher 1.2824271291006226

#define goldenratio 1.618033988749895

#define khinchin 2.6854520010653062

#define machineprecision 15.954589770191003

#define pi 3.141592653589793

C Compiler Invoking

Another Wolfram Language innovation is the ability to call external C compilers from within the

Wolfram Language. The following compiles a simple C program into an executable:

<< CCompilerDriver`

exe = CreateExecutable["

#include \"stdio.h\"

int main(void) {

printf(\"Hello from CCompilerDriver.\");

return 0;

}", "foo"];

Using the preceding syntax, you can create executables using any Wolfram Language-supported

C compiler (Visual Studio, GCC, Intel C++, etc.) in a compiler-independent fashion. The preced-

ing command can be executed within the Wolfram Language:

Import["!" <> exe, "Text"]

Hello from CCompilerDriver.

By using the Wolfram Language enhancements mentioned earlier in this section, CUDALink and

OpenCLLink facilitate fast and simple access to the GPU.

CUDA Programming with the Wolfram Language | 7

The Wolfram Language’s CUDALink: Integrated GPU
Programming
CUDALink is a built-in Wolfram Language application that provides a powerful interface for using
CUDA within the Wolfram Language. Through CUDALink, users get carefully tuned linear algebra,
Fourier transform, financial derivative, and image processing algorithms. Users can also write
their own CUDALink modules with little effort.

Accessing System Information

CUDALink supplies functions that query the system’s GPU hardware. To use CUDALink opera-
tions, users have to first load the CUDALink application:

Needs["CUDALink`"]

CUDAQ tells whether the current hardware and system configuration support CUDALink:

CUDAQ[]

True

SystemInformation gives information on the available GPU hardware:

SystemInformation[]

Example of a report generated by SystemInformation.

Integration with Wolfram Language Functions

CUDALink integrates with existing Wolfram Language functions such as its import/export facili-
ties, functional language, and interface building. This allows you to build deployable programs in
the Wolfram Language with minimal disruption to the GPU task. This section showcases how you
can build interfaces as well as use the import/export capabilities in the Wolfram Language.

8 | CUDA Programming with the Wolfram Language

Manipulate: The Wolfram Language’s automatic interface generator

The Wolfram Language provides extensive built-in interface-building functions.

One fully automated interface-generating function is Manipulate, which builds the interface by

inspecting the possible values of variables. It then chooses the appropriate GUI widget based on
the interpretation of the variable values.

Here, we build an interface that performs a morphological operation on an image with varying
radii:

Manipulateoperation , x,

{x, 0, 9}, {operation, {CUDAErosion, CUDADilation}}

Using the same technique, you can build more complicated interfaces. This allows users to
choose different Gaussian kernel sizes (and their angles) and performs a convolution on the
image on the right.

Example of a user interface built with Manipulate.

CUDA Programming with the Wolfram Language | 9

Support for import and export

The Wolfram Language natively supports hundreds of file formats and their subformats for

importing and exporting. Supported formats include: common image formats (JPEG, PNG, TIFF,

BMP, etc.), video formats (AVI, MOV, H264, etc.), audio formats (WAV, AU, AIFF, FLAC, etc.),

medical imaging formats (DICOM), data formats (Excel, CSV, MAT, etc.), and various raw formats

for further processing.

Any supported data formats will be automatically converted to the Wolfram Language’s unified

data representation, or an expression, which can be used in all Wolfram Language functions,

including CUDALink functions.

Users can also get data from the web or Wolfram-curated datasets. The following code imports

an image from a given URL:

image = Import[

"http://gallery.wolfram.com/2d/popup/00_contourMosaic.pop.jpg"];

The function Import automatically recognizes the file format and converts it into a Wolfram

Language expression. This can be directly used by CUDALink functions, such as CUDAImageAdd:

output = CUDAImageAddimage, 

All outputs from Wolfram Language functions, including the ones from CUDALink functions, are

also expressions and can be easily exported to one of the supported formats using the Export

function. For example, the following code exports the preceding output into PNG format:

Export["masked.png", output]

masked.png

10 | CUDA Programming with the Wolfram Language

CUDALink Programming
Programming the GPU in the Wolfram Language is straightforward. It begins with writing a CUDA
kernel. Here, we will create a simple example that negates the colors of a three-channel image:

kernel = "
__global__ void cudaColorNegate(mint

*img, mint *dim, mint channels) {

int width = dim[0], height = dim[1];
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int index = channels * (xIndex + yIndex*width);
if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)
img[index + c] = 255 - img[index + c];}}";

Pass that string to the built-in function CUDAFunctionLoad, along with the kernel function name

and the argument specification. The last argument denotes the CUDA block size:

colorNegate = CUDAFunctionLoad[kernel, "cudaColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}];

Several things are happening at this stage. The Wolfram Language automatically compiles the
kernel function and loads it as a Wolfram Language function. Now you can apply this new CUDA
function to an image:

img = ;

colorNegate[img, ImageDimensions[img], ImageChannels[img]]

 

System Requirements

To utilize the Wolfram Language’s CUDALink, the following is required:

◼ Operating system: Windows, Linux, and Mac OS X 10.6.3+, both 32- and 64-bit
architecture.

◼ NVIDIA CUDA-enabled products.

◼ For CUDA programming, a CUDALink-supported C compiler is required.

CUDA Programming with the Wolfram Language | 11

The Wolfram Language’s CUDALink Applications
In addition to support for user-defined CUDA functions and automatic compilation, CUDALink
includes several ready-to-use functions ranging from image processing to financial option valua-
tion.

Complex Dynamics

CUDALink enables you to easily investigate computationally intensive complex dynamics struc-
tures. Following is an example for generating a Julia set.

The Julia set is a generalization of the Mandelbrot set. This implements the CUDA kernel:

code = "

__global__ void julia_kernel(Real_t * set,

int width, int height, Real_t cx, Real_t cy) {

int xIndex = threadIdx.x + blockIdx.x*blockDim.x;

int yIndex = threadIdx.y + blockIdx.y*blockDim.y;

int ii;

Real_t x = ZOOM_LEVEL*(width/2 - xIndex);

Real_t y = ZOOM_LEVEL*(height/2 - yIndex);

Real_t tmp;

Real_t c;

if (xIndex < width && yIndex < height) {

for (ii = 0; ii <

MAX_ITERATIONS && x*x + y*y < BAILOUT; ii++) {

tmp = x*x - y*y + cx;

y = 2*x*y + cy;

x = tmp;

}

c =

logf(static_cast<Real_t>(0.1) + sqrtf(x*x + y*y));

set[xIndex + yIndex*width] = c;

}

}

";

The width and height are set. Since the set is computed, the memory need not be set—that is,
only memory allocation is needed:

{width, height} = {512, 512};

jset = CUDAMemoryAllocate[Real, {height, width}];

12 | CUDA Programming with the Wolfram Language

This loads CUDAFunction. Macros are used to allow the compiler to optimize the code—doing

things like loop unrolling:

JuliaCalculate = CUDAFunctionLoad[code, "julia_kernel",

{{_Real, _, "Output"}, _Integer, _Integer, _Real, _Real},

{16, 16}, "Defines" → {"MAX_ITERATIONS" → 10,

"ZOOM_LEVEL" → "0.0050", "BAILOUT" → "4.0"}];

This creates an interface using Manipulate and ReliefPlot where you can adjust the value of c

interactively:

Manipulate[

JuliaCalculate[jset, width,

height, c[[1]], c[[2]], {width, height}];

ReliefPlot[Reverse@CUDAMemoryGet[jset], ColorFunction → "Rainbow",

DataRange → {{-2.0, 2.0}, {-2.0, 2.0}}, ImageSize → 512,

Frame → None, Epilog → {Opacity[.5], Dashed, Thick, Line[

{{{c[[1]], -2}, {c[[1]], 2}}, {{-2, c[[2]]}, {2, c[[2]]}}}]}],

{{c, {0, 1}}, {-2, -2}, {2, 2}, Locator, Appearance →

Graphics[{Thick, Dashed, Opacity[.75], Circle[]}, ImageSize → 50]}]

Interactive computation and rendering of a Julia set.

CUDA Programming with the Wolfram Language | 13

Random Number Generators

One of the difficult problems when parallelizing algorithms is generating good random numbers.
CUDALink offers many examples of how to generate both pseudo- and quasi-random numbers.
Here, we generate quasi-random numbers using the Halton sequence:

src = "

__device__ int primes[] = {

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97,101,103,107,109,113,

127,131,137,139,149,151,157,163,167,173,

179,181,191,193,197,199,211,223,227,229};

__global__ void Halton(Real_t * out, int dim, int n) {

const int tx = threadIdx.x, bx = blockIdx.x, dx = blockDim.x;

const int index = tx + bx*dx;

if (index >= n)

return ;

Real_t digit, rnd, idx, half;

for (int ii = 0,

idx=index, rnd=0, digit=0; ii < dim; ii++) {

half = 1.0/primes[ii];

while (idx > 0.0001) {

digit = ((mint)idx)%primes[ii];

rnd += half*digit;

idx = (idx - digit)/primes[ii];

half /= primes[ii];

}

out[index*dim + ii] = rnd;

}

}

";

This loads the CUDA source into the Wolfram Language:

CUDAHaltonSequence = CUDAFunctionLoad[src, "Halton",

{{_Real, "Output"}, "Integer32", "Integer32"}, 256]

CUDAFunction[<>, Halton, {{_Real, Output}, Integer32, Integer32}]

This allocates 1024 real elements. Real elements are interpreted to be the highest floating
precision on the machine:

mem = CUDAMemoryAllocate[Real, {1024}]

CUDAMemory[<11521>, Double]

This calls the function:

CUDAHaltonSequence[mem, 1, 1024]

{CUDAMemory[<11521>, Double]}

14 | CUDA Programming with the Wolfram Language

You can use the Wolfram Language’s extensive visualization support to visualize the result. Here
we plot the data:

ListPlot[CUDAMemoryGet[mem]]

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Some random number generators and distributions are not naturally parallelizable. In those
cases, users can adopt a hybrid GPU programming approach—utilizing the CPU for some tasks
and the GPU for others. With this approach, users can maximize the Wolfram Language’s exten-
sive statistics capabilities to generate or derive distributions from their data.

Here, we simulate a random walk by generating numbers on the CPU, performing a reduction

(using CUDAFoldList) on the GPU, and plotting the result using the Wolfram Language:

ListLinePlot[

Thread[List[CUDAFoldList[Plus, 0, RandomReal[{-1, 1}, 500]],

CUDAFoldList[Plus, 0, RandomReal[{-1, 1}, 500]]]]]

-8 -6 -4 -2 2 4

-8

-6

-4

-2

2

Random walk simulation.

Image Processing

CUDALink’s image processing capabilities can be classified into three categories. The first is
convolution, which is optimized for CUDA. The second is morphology, which contains abilities
such as erosion, dilation, opening, and closing. Finally, there are the binary operators. These are
image multiplication, division, subtraction, and addition. All operations work on either images or
lists.

CUDA Programming with the Wolfram Language | 15

Image convolution

CUDALink’s convolution is similar to the Wolfram Language’s ListConvolve and ImageConvolve

functions. It will operate on images, lists, or CUDA memory references, and it can use the
Wolfram Language’s built-in filters as the kernel:

CUDAImageConvolve ,
-1 0 1
-2 0 2
-1 0 1



Convolving a microscopic image with a Sobel mask to detect edges.

Pixel operations

CUDALink supports simple pixel operations on one or two images, such as adding or multiplying
pixel values from two images:

CUDAImageMultiply , 

Multiplication of two images.

Morphological operations

CUDALink supports fundamental operations such as erosion, dilation, opening, and closing.

CUDAErosion, CUDADilation, CUDAOpening, and CUDAClosing are equivalent to the Wolfram

Language’s built-in Erosion, Dilation, Opening, and Closing functions. More sophisticated

operations can be built using these fundamental operations.

Linear Algebra
You can perform various linear algebra functions with CUDALink, such as matrix-matrix and
matrix-vector multiplication, finding minimum and maximum elements, and transposing matrices:

Nest[CUDADot[RandomReal[1, {100, 100}], #] &,

RandomReal[1, {100}], 1000];

16 | CUDA Programming with the Wolfram Language

Fourier Analysis

The Fourier analysis capabilities of the CUDALink package include forward and inverse Fourier

transforms that can operate on a list of 1D, 2D, or 3D real or complex numbers:

ArrayPlot[Log[Abs[CUDAFourier[Table[

Mod[Binomial[i, j], 2], {i, 0, 63}, {j, 0, 63}]]]], Frame → False]

Finding the logarithmic power spectrum of a dataset.

PDE Solving

This computational fluid dynamics example is included with CUDALink. This solves the Navier–

Stokes equations for a million particles using the finite element method.

Fluid simulation with multi-particles.

CUDA Programming with the Wolfram Language | 17

Volumetric Rendering

CUDALink includes functions to read and display volumetric data in 3D, with interactive inter-
faces for setting the transfer functions and other volume-rendering parameters.

Volumetric rendering of a medical image.

Financial Engineering

CUDALink’s options pricing function uses the binomial or Monte Carlo method, depending on the
type of option selected. Computing options on the GPU can be dozens of times faster than using
the CPU.

This generates some random input data:

numberOfOptions = 32;

spotPrices = RandomReal[{25.0, 35.0}, numberOfOptions];

strikePrices = RandomReal[{20.0, 40.0}, numberOfOptions];

expiration = RandomReal[{0.1, 10.0}, numberOfOptions];

interest = 0.08;

volatility = RandomReal[{0.10, 0.50}, numberOfOptions];

dividend = RandomReal[{0.2, 0.06}, numberOfOptions];

This computes the Asian arithmetic call option with the above data:

CUDAFinancialDerivative[{"AsianArithmetic", "Call"},

{ "StrikePrice" → strikePrices, "Expiration" → expiration},

{ "CurrentPrice" → spotPrices, "InterestRate" → interest,

"Volatility" → volatility, "Dividend" → dividend}]

{8.34744, 1.18026, 9.53711, 5.39746, 2.2478, 4.94333,

0.859259, 6.08291, 2.4044, 2.41929, 6.53313, 7.48516, 2.71696,

1.08229, 7.50222, 0.790236, 0.816325, 1.28744, 0.953413,

0.131352, 7.60693, 1.15648, 7.07213, 8.2441, 4.45964, 7.94849,

2.22669, 1.17793, 10.1456, 0.263328, 4.12236, 4.99476}

18 | CUDA Programming with the Wolfram Language

OpenCL Integration in the Wolfram Language
The Wolfram Language also includes the ability to use the GPU using OpenC via OpenCLLink.
This is a vendor-neutral way to use the GPU and works both on NVIDIA and non-NVIDIA hardware.
OpenCLLink and CUDALink offer the same syntax, and the following demonstrates how to com-
pute the one-touch option:

code = "

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

#ifdef USING_DOUBLE_PRECISIONQ

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#endif /* USING_DOUBLE_PRECISIONQ */

__kernel void onetouch(__global Real_t * call, __global

Real_t * put, __global Real_t * S, __global Real_t *

X, __global Real_t * T, __global Real_t * R, __global

Real_t * D, __global Real_t * V, mint length) {

Real_t tmp, d1, d5, power;

int ii = get_global_id(0);

if (ii < length) {

d1 = (log(S[ii]/X[ii]) + (R[ii] - D[ii] + 0.5f

* V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

d5 = (log(S[ii]/X[ii]) - (R[ii] - D[ii] + 0.5f *

V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

power = pow(X[ii]/S[ii], 2*R[ii]/(V[ii]*V[ii]));

call[ii] = S[ii] < X[ii]

? power * N(d5) + (S[ii]/X[ii])*N(d1) : 1.0;

put[ii] = S[ii] > X [ii] ? power * N(-d5)

+ (S[ii]/X[ii])*N(-d1) : 1.0;

}

}";

This loads the OpenCL function into the Wolfram Language:

OpenCLOneTouchOption = OpenCLFunctionLoad[code, "onetouch",

{{_Real, "Output"}, {_Real, "Output"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, _Integer}, 128];

This generates random input data:

numberOfOptions = 64;

S = RandomReal[{20.0, 40.0}, numberOfOptions];

X = RandomReal[{20.0, 40.0}, numberOfOptions];

T = RandomReal[{0.1, 10.0}, numberOfOptions];

R = RandomReal[{0.02, 0.1}, numberOfOptions];

Q = RandomReal[{0.0, 0.08}, numberOfOptions];

V = RandomReal[{0.1, 0.4}, numberOfOptions];

CUDA Programming with the Wolfram Language | 19

This allocates memory for both the call and put results:

call = OpenCLMemoryAllocate[Real, numberOfOptions];

put = OpenCLMemoryAllocate[Real, numberOfOptions];

This calls the function:

OpenCLOneTouchOption[call, put, S, X, T, R, Q, V, numberOfOptions]

{OpenCLMemory[<19661>, Double], OpenCLMemory[<28475>, Double]}

This retrieves the result for the call option (the put option can be retrieved similarly):

OpenCLMemoryGet[call]

{1., 0.398116, 1., 1., 1.00703, 0.909275, 1., 1., 1., 0.541701, 0.631649,

1., 0.702748, 1., 1., 1., 0.626888, 1., 1., 0.827843, 0.452237,

0.998761, 0.813008, 1., 1., 0.96773, 0.795428, 1., 1.79325, 1.,

1., 1., 1., 1., 0.547425, 0.968162, 1., 1., 0.907489, 1., 1.90031,

0.316174, 1., 0.998824, 0.383825, 1., 0.804287, 0.977305,

1., 1., 0.855764, 1., 0.952568, 0.573249, 0.239455, 0.635454,

0.917078, 0.624179, 1., 0.679681, 1., 1., 0.968929, 0.712148}

OpenCL Application: Many-Body Physical Systems

The N-body simulation is a classic Newtonian problem. This implements it in OpenCL:

srcf = FileNameJoin[{$OpenCLLinkPath, "SupportFiles", "NBody.cl"}];

This loads OpenCLFunction :

NBody = OpenCLFunctionLoad[{srcf}, "nbody_sim",

{{"Float[4]", _, "Input"}, {"Float[4]", _, "Input"},

_Integer, "Float", "Float", {"Local", "Float"},

{"Float[4]", _, "Output"}, {"Float[4]", _, "Output"}}, 256]

OpenCLFunction[<>, nbody_sim,

{{Float[4], _, Input}, {Float[4], _, Input}, _Integer, Float, Float,

{Local, Float}, {Float[4], _, Output}, {Float[4], _, Output}}]

The number of particles, time step, and epsilon distance are chosen:

numParticles = 1024;

deltaT = 0.05;

epsSqrt = 50.0;

This sets the input and output memories:

pos =

OpenCLMemoryLoad[RandomReal[512, {numParticles, 4}], "Float[4]"];

vel = OpenCLMemoryLoad[RandomReal[1, {numParticles, 4}], "Float[4]"];

newPos = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

newVel = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

20 | CUDA Programming with the Wolfram Language

This calls the NBody function:

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

This plots the body points:

Graphics3D[Point[Take[#, 3] & /@ OpenCLMemoryGet[pos]]]

This shows the result as a Dynamic:

Graphics3D[Point[

Dynamic[Refresh[

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

Take[#, 3] & /@ OpenCLMemoryGet[pos], UpdateInterval → 0]]]]

Real-time animation of the N-body simulation.

CUDA Programming with the Wolfram Language | 21

Summary
Due to the Wolfram Language’s integrated platform design, all functionality is included without
the need to buy and maintain multiple tools and add-on packages.

With its simplified development cycle, multicore computing, and built-in functions, the Wolfram
Language’s built-in CUDALink application provides a powerful high-level interface for GPU
computing.

Pricing and Licensing Information
Wolfram Research offers many flexible licensing options for both organizations and individuals.
You can choose a convenient, cost-effective plan for your workgroup, department, directorate,
university, or just yourself, including network licensing for groups.

Visit us online for more information:
www.wolfram.com/mathematica/how-to-buy

Recommended Next Steps

Try the Wolfram Language in Mathematica for free:
www.wolfram.com/mathematica/trial

Schedule a technical demo:
www.wolfram.com/mathematica-demo

Learn more about CUDA programming in the Wolfram Language:
US and Canada: Europe:
1-800-WOLFRAM (965-3726) +44-(0)1993-883400
info@wolfram.com info@wolfram.co.uk

Outside US and Canada (except Europe and Asia): Asia:
+1-217-398-0700 +81-(0)3-3518-2880
info@wolfram.com info@wolfram.co.jp

© Wolfram Research, Inc. Trademarks: Mathematica, Wolfram Language, Wolfram Workbench, Wolfram Knowledgebase,
Wolfram CDF Player, gridMathematica, Wolfram Symbolic Transfer Protocol, Wolfram System. MKT 3025 TCS-261 0204.BW

22 | CUDA Programming with the Wolfram Language

http://www.wolfram.com/products/mathematica/purchase.html
http://www.wolfram.com/mathematica/trial/
http://www.wolfram.com/products/mathematica/demo.cgi

