J. Korelc

UNIVERSITY OF LTUBLTANA
FACULTY OF CIVIL AND GEODETIC ENGINEERING

2006

2 AceGen code generator

AceGen Contents

ACEGEN CONTENTS ..ottt sttt sttt be bbb e 2
JLILU L (0] (= TR 7
PIEIACE ..ottt 7
INEFOAUCTION .ottt ettt 8
General 8
AceGen 8
Mathematica and AceGen 10
Bibliography .. 11
Standard ACEGEN ProCEAUIEoocvieeeeeeeceeee ettt 12
Load AceGen package 12

Description of Introductory Example 12
Description of AceGen Characteristic Steps .. 12
Generation of Ccode. 15

Generation of MathLink code 16

Generation of Matlab code 18

Symbolic-NUMEriC INTEITACE ... 19
AUXTHArY VariablEs ... 21
USEI INTEITACE ..ot 25
Verification of Automatically Generated Codeccoooevvviicciicccicce, 34
EXPression OPtimiZation ... s 38
Program FIOW CONTIOL ..o 40
AlgebraiC OPEratiONS ... 44

Automatic Differentiation 44

Symbolic Evaluation .. 48

Linear Algebra 49

Other Algebraic Computations 51

AdVANCEA FEALUTES ..cocviiii et e 52
N (= 1 TSRS 52
User Defined FUNCLIONS ..o e 54
Exceptions in Differentiation ... 56
CharacteristiC FOIMUIAE ... 60
NON-10CaAl OPEIAtIONS ..o 65
Signatures of the EXPreSSIiONS ... 66
REFEIENCE GUITE ...ttt bbb 69

ACEGEN SESSTON oottt 69

SMSinitialize. 69
SMSModule ... 71
SMSWrite 72
SMSEvaluateCellsWithTag ... 74

AceGen code generator

SMSVerbatim 75

SMSPrint 76

BaSIC ASSIGNMENTS ..o 79
SMSROrE 79
SMSVortk..... 80

SMSMor4.... 80
SMSSor4 81
SMSint 82
SMSSimplify . 82
SMSVariables 83
Symbolic-NUMErIC INTEITACE ... 83
SMSReal 83
SMSiInteger.... 84
SMSLogical ... 84
SMSRealList. 85
SMSExport.... 87
SMScall 88
SMaArt ASSIGNMENTS ..ottt 90
SMSFreeze 90
SMSFictive ... 95
SMSReplaceAll 96
SMSSmartReduce 98
SMSSmartRestore 98
SMSRestore ... 99

SMSATrray 99
SMSPart 100
SMSReplacePart 101
SMSDot 101
SMSSum 102
DIffEr@nNTIAtiON ...c.oiiiceee ettt 103
SMSD 103
SMSDefineDerivative 106
Program FIOW CONTIOl ..o 107
SMSIf 107
SMSElse 111
SMSENdIf 112
SMSDo 112
SMSEndDo 116
SMSReturn, SMSBreak, SMSContinue 117

(0} 1T L= PRTT 118

DEDUGGING o 118
SMSSetBreak 118
SMSLoadSession 118
SMSAnalyze .. 118
SMSClearBreak 121
SMSActivateBreak 121

AceGen code generator

Random Value FUNCLIONS ... e 121
SMSADbs 121
SMSSign 122
SMSKTroneckerDelta .. 122
SMSSqrt 122
SMSMin,SMSMax 122
SMSRandom. 123
GeNeral FUNCLIONS ...ttt 123
SMSNumberQ 123
SMSPower 123
SMSTime 123
SMSUnFreeze 123
LiN@Ar AlGEDIa ..o 124
SMSLinearSolve 124
SMSLUFactor 124
SMSLUSolve . 124
SMSFactorSim 124
SMSinverse ... 125
SMSDet 125
SMSKrammer 125
TENSOr AIGEDIA .o e 125
SMSCovariantBase 125
SMSCovariantMetric . 126

SMSContravariantMetric 126

SMSChristoffelll 127

SMSChristoffell2 127

SMSTensorTransformation ... 128

SMSDCovariant 128
MeChaniCS OFf SOIIAS ..o, 129

SMSLameToHooke, SMSHookeToLame, SMSHookeToBulk, SMSBulkToHooke . 129

SMSPIlaneStressMatrix, SMSPlaneStrainMatrix 129

SMSEigenvalues 130

SMSMatrixExp 130

SMSiInvariantsl,SMSlInvariantsJ 130

General Numerical ENVIFONMENTS ...ttt et enen s 131

MathLink ENVIFONMENT ..o, 131

SMSinstallMathLink . 131

SMSLinkNoEvaluations 131

SMSSetLinkOptions .. 131
Matlab ENVIFONMENT . ..ot e, 132

Finite Element ENVIFONMENTScoocioioeiece ettt en ettt 133

FE Environments INtrodUCTION ..o, 133
Standard FE ProCEAUIE ...ttt 135
User defined environment interface ..., 139
RETEIENCE GUIE ..ottt 141

SMSTemplate 141
SMSStandardModule . 141

AceGen code generator

Template Constants ... 147

Element Topology 151

Node Identification 155

Numerical Integration 155

Elimination of local unknowns 162

Subroutine: "Sensitivity pseudo-load™" and "Dependent sensitivity” .. 163
Subroutine: "Postprocessing” 165

DAta STIUCTUIES ..ottt ettt sttt ettt et e et et s 166
Environment Data 166
Integer Type Environment Data 166

Real Type Environment Data . 171
Node Data Structures . 172

Node Specification Data 172
Node Data 173
Element Data Structures 174

Domain Specification Data 174
Element Data. 179
Problem Solving ENVIFONMENTS ... 179
AceFEM 179
FEAP 179
ELFEN 182
Other environments ... 185
Interactions: Templates-AceGen-ACeFEM ..., 186
Interactions: Glossary 186
Interactions: Element Topology 186
Interactions: Memory Management ... 187
Interactions: Element Description 187
Interactions: Input Data 188
Interactions: Mathematica 188
Interactions: Presentation of Results .. 189
Interactions: General .. 189

ACEGEN EXAMPIES ..o 190
About ACeGEN EXAMPIES ..o s 190
Solution to the System of Nonlinear EQUAtiONS ... 191

« Description « Solution Verification
Minimization Of Free ENEIgy ... 192
A. Trial Lagrange polynomial interpolation ... 194
B) Finite difference interpolation 198
C) Finite element method 205
Mixed 3D Solid FE fOr ACEFEM ... 206
* Description ¢ Solution Test example
Mixed 3D Solid FE fOr FEAP ... 210
* Generation of element source code for FEAP environment « Test example: FEAP
3D Solid FE fOr ELFEN ...ocooieeeee e 212

* Generation of element source code for ELFEN environment « Test example: ELFEN

Troubleshooting and NewW in VEISION ... 215

AceGen TroubleSNOOtING ..o 215

AceGen code generator

NEW TN VEISTON oottt ettt et e ettt et et e et e et et et e e et e et et e et et e reeareane e 218

AceGen code generator 7

Tutorial

Preface

AceGen 1.0

© Prof. Dr. JoZe Korelc 2006

University of Ljubljana
Faculty of Civil and Geodetic Engng.
Jamova 2, Sl - 1000, Ljubljana, Slovenia
jkorelc@fgg.uni — lj.si
www.fgg.uni — 1j.si /Symech/

The Mathematica package AceGen is used for the automatic derivation of formulae
needed in numerical procedures. Symbolic derivation of the characteristic quantities
(e.g. gradients, tangent operators, sensitivity vectors, ...) leads to exponential behav-
lor of derived expressions, both in time and space. A new approach, implemented in
AceGen, avoids this problem by combining several techniques: symbolic and alge-
braic capabilities of Mathematica, automatic differentiation technique, automatic
code generation, simultaneous optimization of expressions and theorem proving by a
stochastic evaluation of the expressions. The multi-language capabilities of AceGen
can be used for a rapid prototyping of numerical procedures in script languages of
general problem solving environments like Mathematica or Matlab® as well as to
generate highly optimized and efficient compiled language codes in FORTRAN or C.
Through a unique user interface the derived formulae can be explored and analyzed.

The AceGen package provides also a collection of prearranged modules for the auto-
matic creation of the interface between the automatically generated code and the
numerical environment where the code would be executed. The AceGen package
directly supports several numerical environments such as: MathLink connection to
Mathematica, AceFEM is a research finite element environment based on Mathemat-
ica, FEAP® is a research finite element environment written in FORTRAN, ELFEN®
is a commercial finite element environment written in FORTRAN etc.. The multi-lan-
guage and multi-environment capabilities of AceGen package enable generation of

8 AceGen code generator

numerical codes for various numerical environments from the same symbolic
description.

Introduction

Genera

Symbolic and algebraic computer systems such as Mathematica are general and very powerful tools for the manipula-
tion of formulae and for performing various mathematical operations by computer. However, in the case of complex
numerical models, direct use of these systems is not possible. Two reasons are responsible for this fact: a) during the
development stage the symbolic derivation of formulae leads to uncontrollable growth of expressions and consequently
redundant operations and inefficient programs, b) for numerical implementation SAC systems can not keep up with the
run-time efficiency of programming languages like FORTRAN and C and by no means with highly problem oriented
and efficient numerical environments used for finite element analysis.

The following techniques which are results of rapid development in computer science in the last decades are particu-
larly relevant when we want to describe a numerical method on a high abstract level, while preserving the numerical
efficiency:

> symbolic and algebraic computations (SAC) systems,
= automatic differentiation (AD) tools,

> problem Solving Environments (PSE),

> theorem proving systems (TP),

= numerical libraries,

> specialized systems for FEM.

AceGen

The idea implemented in AceGen is not to try to combine different systems, but to combine different techniques inside
one system in order to avoid the above mentioned problems. Thus, the main objective will be to combine techniques in
such a way that will lead to an optimal environment for the design and implementation of arbitrary numerical proce-
dures. Among the presented systems the most versatile are indeed the SAC systems. They normally contain, beside the
algebraic manipulation, graphics and numeric capabilities, also powerful programming languages. It is therefore quite
easy to simulate other techniques inside the SAC system. An approach to automatic code generation used in AceGen is
called Simultaneous Stochastic Simplification of numerical code (Korelc 1997a). This approach combines the general
computer algebra system Mathematica with an automatic differentiation technique and an automatic theorem proving
by examples. To alleviate the problem of the growth of expressions and redundant calculations, simultaneous simplifica-
tion of symbolic expressions is used. Stochastic evaluation of the formulae is used for determining the equivalence of
algebraic expressions, instead of the conventional pattern matching technique. AceGen was designed to approach
especially hard problems, where the general strategy to efficient formulation of numerical procedures, such as analyti-
cal sensitivity analysis of complex multi-field problems, has not yet been established.

General characteristics of AceGen code generator:
> simultaneous optimization of expressions immediately after they have been derived,
> automatic differentiation technique,

> automatic selection of the appropriate intermediate variables,

AceGen code generator 9

> the whole program structure can be generated,

> appropriate for large problems where also intermediate expressions can be subjected to the uncontrolled swell,
= improved optimization procedures with stochastic evaluation of expressions,

> generation of characteristic formulae,

> automatic interface to other numerical environments (by using Splice command of Mathematica),

> multi-language code generation (Fortran/Fortran90, C/C++, Mathematica language, Matlab language),

> advanced user interface,

> advanced methods for exploring and debugging of generated formulae,

> special procedures are needed for non-local operations.

The AceGen system is written in the symbolic language of Mathematica. It consists of about 300 functions and 20000
lines of Mathematica's source code. Typical AceGen function takes the expression provided by the user, either interac-
tively or in file, and returns an optimized version of the expression. Optimized version of the expression can result in a
newly created auxiliary symbol (vj), or in an original expression in parts replaced by previously created auxiliary
symbols. In the first case AceGen stores the new expression in an internal data base. The data base contains a global
vector of all expressions, information about dependencies of the symbols, labels and names of the symbols, partial
derivatives, etc. The data base is a global object which maintains informations during the Mathematica session.

The classical way of optimizing expressions in computer algebra systems is searching for common sub-expressions at
the end of the derivation, before the generation of the numerical code. In the numerical code common sub-expressions
appear as auxiliary variables. An alternative approach is implemented in AceGen where formulae are optimized,
simplified and replaced by the auxiliary variables simultaneously with the derivation of the problem. The optimized
version is then used in further operations. If the optimization is performed simultaneously, the explicit form of the
expression is obviously lost, since some parts are replaced by intermediate variables.

Vector of 3 new auxiliaryvarisbles:

Qn'g]'.nal matix 1261wl 2l

{input for 5 WE) fvi = T 1 3
128 6E 12E & interral dat
—_ - = - bwe

T E R
_BEAHBE 2H

B I
[Bl=| 2z 6 1
I B T
_BE2E O BE MM
r I T I

|
|

[s

S

v'|
Lt "HoTh =
[&] = 2
L7, bl TRt TR)
ho_
¥y 2 LA

Resultiz sinplified matrix, expressed with
the rew auxiliaryvariabks

Simultaneous simplification procedure.

In real problems it is almost impossible to recognize the identity of two expressions (for example the symmetry of the
tangent stiffness matrix in nonlinear mechanical problems) automatically only by the pattern matching mechanisms.
Normally our goal is to recognize the identity automatically without introducing additional knowledge into the deriva-
tion such as tensor algebra, matrix transformations, etc. Commands in Mathematica such as Simplify, Together, and
Expand, are useless in the case of large expressions. Additionally, these commands are efficient only when the whole
expression is considered. When optimization is performed simultaneously, the explicit form of the expression is lost.
The only possible way at this stage of computer technology seems to be an algorithm which finds equivalence of
expressions numerically. This relatively old idea (see for example Martin 1971 or Gonnet 1986) is rarely used,

10 AceGen code generator

although it is essential for dealing with especially hard problems. However, numerical identity is not a mathematically
rigorous proof for the identity of two expressions. Thus the correctness of the simplification can be determined only
with a certain degree of probability. With regard to our experience this can be neglected in mechanical analysis when
dealing with more or less 'smooth’ functions.

Practice shows that at the research stage of the derivation of a new numerical software, different languages and differ-
ent platforms are the best means for assessment of the specific performances and, of course, failures of the numerical
model. By the classical approach, re-coding of the source code in different languages would be extremely time consum-
ing and is never done. With the symbolic concepts re-coding comes practically for free, since the code is automatically
generated for several languages and for several platforms from the same basic symbolic description. The basic tests
which are performed on a small numerical examples can be done most efficiently by using the general symbolic-nu-
meric environments such as Mathematica, Maple, etc. It is well known that many design flaws such as instabilities or
poor convergence characteristics of the numerical procedures can be easily identified if we are able to investigate the
characteristic quantities (residual, tangent matrix, ...) on a symbolic level. Unfortunately, symbolic-numeric environ-
ments become very inefficient if we have a larger examples or if we have to perform iterative numerical procedures. In
order to assess performances of the numerical procedure under real conditions the easiest way is to perform tests on
sequential machines with good debugging capabilities (typically personal computers and programs written in Fortran or
C language). At the end, for real industrial simulations, large parallel machines have to be used. With the symbolic
concepts implemented in AceGen, the code is automatically generated for several languages and for several platforms
from the same basic symbolic description.

Mathematica and AceGen

Since AceGen runs in parallel with Mathematica we can use all the capabilities of Mathematica. The major algebraic
computations which play crucial role in the development of any numerical code are:

> analytical differentiation,

> symbolic evaluation,

> symbolic solution to the system of linear equations,

> symbolic integration,

> symbolic solution to the system of algebraic equations.

Each of these operations can be directly implemented also with the built-in Mathematica functions and the result
optimized by AceGen. However, by using equivalent functions in AceGen with simultaneous optimization of expres-
sions, much larger problems can be efficiently treated. Unfortunately, the equivalent AceGen functions exist only for

the 'local’ operations (see Non — local operations).

AceGen code generator 11

Bibliography
Korelc J., (2002), Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes,
Engineering with Computers, 2002, vol. 18, n. 4,str. 312-327

Korelc, J. (1997a), Automatic generation of finite-element code by simultaneous optimization of expressions, Theoreti-
cal Computer Science, 187, 231-248.

Gonnet G. (1986), New results for random determination of equivalence of expression, Proc. of 1986 ACM Symp. on
Symbolic and Algebraic Comp, (Char B.W., editor), Waterloo, July 1986, 127-131.

Griewank A. (1989), On Automatic Differentiation, Mathematical Programming: Recent Developments and Applica-
tions, Kluwer Academic Publisher, Amsterdam, 83-108.

Hulzen J.A. (1983), Code optimization of multivariate polynomial schemes: A pragmatic approach. Proc. of
IEUROCAL'83, (Hulzen J.A., editor), Springer-Verlag LNCS Series Nr. 162.

Kant E. (1993), Synthesis of Mathematical Modeling Software, IEEE Software, May 1993.

Korelc J. (1996), Symbolic Approach in Computational Mechanics and its Application to the Enhanced Strain Method,
Doctoral Dissertation, Institut of Mechanics, TH Darmstadt, Germany.

Korelc J. (1997b), A symbolic system for cooperative problem solving in computational mechanics, Computational
Plasticity Fundamentals and Applications, (Owen D.R.J., Ofiate E. and Hinton E., editors), CIMNE, Barcelona,
447-451.

Korelc J., and Wriggers P. (1997c), Symbolic approach in computational mechanics, Computational Plasticity Funda-
mentals and Applications, (Owen D.R.J., Ofiate E. and Hinton E., editors), CIMNE, Barcelona, 286-304.

Korelc J., (2001), Hybrid system for multi-language and multi-environment generation of numerical codes, Proceed-
ings of the ISSAC'2001 Symposium on Symbolic and Algebraic Computation, New York, ACM:Press, 209-216

Leff L. and Yun D.Y.Y. (1991), The symbolic finite element analysis system. Computers & Structures, 41, 227-231.

Noor A.K. (1994), Computerized Symbolic Manipulation in Structural Mechanics, Computerized symbolic manipula-
tion in mechanics, (Kreuzer E., editor), Springer-Verlag, New York, 149-200.

Schwartz J.T. (1980), Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27(4),
701-717.

Sofroniou M. (1993), An efficient symbolic-numeric environment by extending mathematica's format rules. Proceed-
ings of Workshop on Symbolic and Numerical Computation, (Apiola H., editor), University of Helsinki, Technical
Report Series, 69-83.

Wang P.S. (1986), Finger: A symbolic system for automatic generation of numerical programs in finite element
analysis, J. Symb. Comput, 2, 305-316.

Wang P.S. (1991), Symbolic computation and parallel software, Technical Report ICM-9109-12, Department of
Mathematics and Computer Science, Kent State University, USA.

Wolfram, S. (1991), Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley.

WRIGGERS, Peter, KRSTULOVIC-OPARA, Lovre, KORELC, JoZe.(2001), Smooth C1-interpolations for two-dimen-
sional frictional contact problems. Int. j. numer. methods eng., 2001, vol. 51, issue 12, str. 1469-1495

KRSTULOVIC-OPARA, Lovre, WRIGGERS, Peter, KORELC, JoZe. (2002), A C1-continuous formulation for 3D
finite deformation frictional contact. Comput. mech., vol. 29, issue 1, 27-42

STUPKIEWICZ, Stanislaw, KORELC, Joze, DUTKO, Martin, RODIC, Tomaz. (2002), Shape sensitivity analysis of

12 AceGen code generator

large deformation frictional contact problems. Comput. methods appl. mech. eng., 2002, vol. 191, issue 33, 3555-3581

BRANK, Bostjan, KORELC, Joze, IBRAHIMBEGOVIC, Adnan. (2002), Nonlinear shell problem formulation
accounting for through-the-tickness stretching and its finite element implementation. Comput. struct.. vol. 80, n. 9/10,
699-717

BRANK, Bostjan, KORELC, JoZze, IBRAHIMBEGOVIC, Adnan. (2003),Dynamic and time-stepping schemes for
elastic shells undergoing finite rotations. Comput. struct., vol. 81, issue 12, 1193-1210

STADLER, Michael, HOLZAPFEL, Gerhard A., KORELC, Joze. (2003) Cn continuous modelling of smooth contact
surfaces using NURBS and application to 2D problems. Int. j. numer. methods eng., 2177-2203

KUNC, Robert, PREBIL, Ivan, RODIC, TomaZz, KORELC, JoZe. (2002),Low cycle elastoplastic properties of norma-
lised and tempered 42CrMo4 steel. Mater. sci. technol., Vol. 18, 1363-1368.

Standard AceGen Procedure

Load AceGen package

This loads the AceGen package.

In[12]:= <<AceGen"

Description of Introductory Example

Let us consider a simple example to illustrate the standard AceGen procedure for the generation of a typical numerical
sub-program that returns gradient of a given function f with respect to the set of parameters. Let unknown function u be
approximated by a linear combination of unknown parameters uy, U,, uz and shape functions N1, Ny, Ns.

u= 3 Niuj
Ny =3
Np=1- %
Ns=F1-7)

Let us suppose that our solution procedure needs gradient of function f = u? with respect to the unknown parameters.
AceGen can generate complete subprogram that returns the required quantity.

Description of AceGen Characteristic Steps

The syntax of the AceGen script language is the same as the syntax of the Mathematica script language with some
additional functions. The input for AceGen can be divided into six characteristic steps.

AceGen code generator 13

step example
1 Initialization — SMSiInitialize["test","Language"—>"C"]
2 Definition of input and output parameters = SMSModule["Test",Real[u$$[3],x$$,L$3,9$5[311];
3 Definition of numeric— = {X,L}F{SMSReal[x3],SMSReal[L$3]};
symbolic interface variables uieSMSReal[Array[u$$[#],3]&];
4 Derivation of the problem = Nie{{,1-7, 7 A=)k
ueNiI.ui;
feu?;

g=SMSDIf,uil;

5 Definition of symbolic— — SMSExport[g,9$%];
numeric interface variables

6 Code generation = SMSWrite[];

Characteristic steps of the AceGen session

Due to the advantage of simultaneous optimization procedure we can execute each step separately and examine interme-
diate results. This is also the basic way how to trace the errors that might occur during the AceGen session.

Step 1: Initialization

This initializes the AceGen session. FORTRAN is chosen as the final code language. See also SMSinitialize .

In[13]:= SMSInitialize["test", "Language™ -> "Fortran'];

Step 2: Definition of Input and Output Parameters

This starts a new subroutine with the name "Test" and four real type parameters. The input parameters of the subroutine are u, X,
and L, and parameter g is an output parameter of the subroutine. The input and output parameters of the subroutine are character-

ized by the double $ sign at the end of the name. See also External variables .

In[14]:= SMSModule["Test", Real [u$$[3], x$$, L$$, g$$[3111;

Step 3: Definition of Numeric-Symbolic Interface Variables

Here the input parameters of the subroutine are assigned to the usual Mathematica variables. The standard Mathematica assignment
operator = has been replaced by the special AceGen operator . Operator £ performs stochastic simultaneous optimization of

expressions. See also Intermediate variables , SMSReal .
In[15]:= X e SMSReal [x$$]

out[15]

X

In[16]:= L = SMSReal [L3]

out[16]= L

Here the variable u[1], u[2], u[3] are introduced with the signature (characteristic random numbers used within code optimization
procedures) taken from the interval [0.1,0.2]. If the interval is omitted, the signature from the default interval [0,1] is generated.

In[17]1:= ui = SMSReal [Array [u$$[#1] &, 3]]

out[17]= {uiy, uiy, Uiz}

14 AceGen code generator

Step 4: Description of the Problem

Here is the body of the subroutine.

In[18]:= Nie{xX/L, 1 -x/L, X/L%x (1 -Xx/L)}

out[18]= {Ni1, Niy, Nig}
IN[19]:= ue NI . ul
out[19]= u

In[20]:= Fru~2
out[20]= f

In[21]:= g SMSD[F, ui]

out[21]= {0y, O, O3}

Step 5: Definition of Symbolic - Numeric Interface Variables

This assigns the results to the output parameters of the subroutine. See also SMSExport .

In[22]:= SMSExport[g, g$%$];

Step 6: Code Generation

During the session AceGen generates pseudo-code which is stored into the AceGen database. At the end of the session AceGen
translates the code from pseudo-code to the required script or compiled program language and prints out the code to the output file.

See also SMSWrite .
In[23]:= SMSWrite[];
Method : TeSt 6 formulae, 81 sub-expressions

[0] File created : teSt-f Size : 948

AceGen code generator 15

This displays the contents of the generated file.

In[24]:= !ltest.f

1 Fok Aok kK Ak * ek KAk KAk

I* AceGen VERSION *

1> Co. J. Korelc 2006 20.8.2006 23:31 *
! * * * * * * *

I User : Korelc

I Evaluation time :0s Mode : Optimal

I Number of formulae : 6 Method: Automatic

I Subroutine : Test size :81

I Total size of Mathematica code : 81 subexpressions

I Total size of Fortran code : 379 bytes

| Eeielelaiaiaiaiaiaaiaiaiaiaiaiofale SUBROUT I N E ¥ *krrtkdddrrx

SUBROUTINE Test(v,u,X,L,q)
IMPLICIT NONE

include "sms.h*

DOUBLE PRECISION v(5001),u(3),x,L,g(3)
v(6)=x/L

v(7)=1d0-v(6)

v(8)=v(6)*Vv(7)
v(9)=u()*v(6)+u(2)*v(7)+u(3)*v(8)
v(15)=2d0*v(9)

g(1)=v(15)*v(6)

9(2)=v(15)*v(7)

g(3)=v(15)*v(8)

END

Generation of C code

Instead of the step by step evaluation, we can run all the session at once. This time the C version of the code is
generated.

In[1]:= << AceGen~;
SMSInitialize["test", "Language' -> "'C'"];
SMSModule["Test", Real [u$$[3], x$$, LSS, g$$[3111;
{X, L} £ {SMSReal [x$$], SMSReal [L$$]};
ui £ SMSReal [Array [u$$[#1] &, 311;

_ X X X X\
Nll:{—L—, 1——L—, —L— (1—1‘)},
ueNi.ui;

fru?;

g F SMSD[F, uil;
SMSExport[g, g$%];
SMSWrite[];

Method : TeSt 6 formulae, 81 sub-expressions

[0] File created : teSt- C Size : 863

16

AceGen code generator

In[36]:= !ltest.c

/ * * * * * * * * * * * * * * * * *
* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:31 *

AEEEXEEAAEXEAXAAXAEAAAXAAXAAXAAALAAAXAXAAXAXAAXAAAAXAAAAAAAXAAAXAAAAXAAXA LXK

User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae -6 Method: Automatic
Subroutine : Test size :81

Total size of Mathematica code : 81 subexpressions

Total size of C code : 294 bytes*/

#include "sms.h"

Y Salaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiale SUBROUT I N E *rxfxsrddrditx /
void Test(double v[5001],double u[3],double (*x),double (*L),double g[3])
{

vI61=Cx)/(*L);

v[7]=1e0-v[6];

v[8]=v[6]*V[7];

v[9]=u[O0])*v[6]+u[1]*Vv[7]+u[2]*Vv[8];

v[15]=2e0*v[9];

g[0]=v[15]*Vv[6];

g[1]1=v[15]*v[7];

g [2]=v[15]*v[8];

Generation of MathLink code

Here the MathLink version of the source code is generated. The generated code is automatically enhanced by an
additional modules necessary for the proper MathLink connection.

In[1]:=

<< AceGen™;

SMSInitialize["test", "Environment" -> ""MathLink'];

SMSModule["Test", Real [u$$[3], x$$, LSS, g$$[311,
"Input” -» {u$$, x$$, LSS}, "Output” - g$$] ;

{x, L} £ {SMSReal [x$$], SMSReal [L$$]1};

ui e SMSReal [Array [u$$[#1] &, 3]1];

_ X X X X\,
Nlh{r, 1—r, r (1—r)},
ueNi.ui;

fru?;

g e SMSD[T, ui];
SMSExport[g, g$%];
SMSWrite[];

Method : TESt 6 formulae, 81 sub-expressions

[0] File created : teSt- C Size : 1554

AceGen code generator

In[12]:= !ltest.c

/ * * * * * * * * * * * * *

* AceGen VERSION *
* Co. J. Korelc 2006 27.9.2006 19:46 *
AEAAEEAAIXAAAAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAXX
User : USER

Evaluation time :0s Mode : Optimal
Number of formulae -6 Method: Automatic
Subroutine : Test size :81

Total size of Mathematica code : 81 subexpressions

Total size of C code : 294 bytes*/

#include "'sms.h"

#include "stdlib.h"

#include "stdio.h"

#include "mathlink.h"

double workingvector[5001];

void Test(double v[5001],double u[3],double (*x),double (*L),double g[3]);

void TestMathLink(){

int i11000,11001,i1002,1i1,i4;
char *bl; double *b2;int *b3;
double u[3]:

double x;

double L;

double g[3]:
MLGetRealList(stdlink,&b2,&i1);
For(i1001=0;11001<min(i1,3);i11001++)u[11001]=b2[i1001];
MLDisownRealList(stdlink,b2,il);
MLGetReal (stdlink,&x);

MLGetReal (stdlink,&L);
Test(workingvector,u,&x,&L,09);
PutReallList(g,3);

};

int main(int argc,char *argv[]){
printf(""MathLink module: %s\n","test');
pauseonexit=0;
atexit(exit_util);
return MLMain(argc, argv);

/** SUBROUTINE /
void Test(double v[5001],double u[3],double (*x),double (*L),double g[3])

{

v[6]=Cx)/(*L);

v[7]=1e0-v[6];

v[8]=v[6]*Vv[7];
v[9]=u[0]*v[6]+u[1]*Vv[7]+u[2]*Vv[8];
v[15]=2e0*v[9];

g[0]=v[15]*Vv[6];

g[1]=v[15]*V[7];

%[2]=V[15]*V[8];

Here the MathLink program Test.exe is build from the generated source code and installed so that functions defined in the source
code can be called directly from Mathematica. (see also SMSInstal IMathLink)

In[13]:= SMSInstalIMathLink][]

Out[13]= {SMSMathLinkInitialize[Test, i_Integer, j_Integer],

Test[u_? (VectorQ[#1, NumberQ] &), X_?NumberQ, L_?NumberQ]}

18

AceGen code generator

Here the generated executable is used to calculate gradient for the numerical test example. (see also Verification of
Automatically Generated Code).

In[14]:=

out[14]=

Test[{O0., 1., 7.}, n//N, 10.]

{1.37858, 3.00958, 0.945489}

Generation of Matlab code

Here the Matlab version of the source code is generated.

In[15]:=

<< AceGen™;

SMSInitialize["test", "Language' -> ""Matlab™] ;

SMSModule["Test', Real [u$$[3], x$$, LS, g5[311,
"Input” - {u$$, x$$, LSS}, "Output” - g3];

{X, L} £ {SMSReal [x$$] , SMSReal [L$$]};

ui £ SMSReal [Array [u$$[#1] &, 3]11;

_ X X X X\
Nll:{r, 1—r, r (1—r)}y
ueNi.ui;

f e u?;

g = SMSD[F, ui];
SMSExport[g, g$%];
SMSWrite[];

Method : TeSt 6 formulae, 81 sub-expressions

[0] File created : teSt- m Size : 1042

AceGen code generator 19

In[26]:= Iltest.m

Qfe et ek e ke ek oA AR e e e e e e e e e e e e e ek
%* AceGen VERSION *
%™ Co. J. Korelc 2006 27.9.2006 19:46 *

%**

% User : USER

% Evaluation time :0s Mode : Optimal

% Number of formulae : 6 Method: Automatic
% Subroutine : Test size :81

% Total size of Mathematica code : 81 subexpressions

% Total size of Matlab code : 262 bytes

% FUNCTI1ON

function[g]=Test(u,x,L);
v=zeros(5001, "double®);

v(6)=x/L;

v(7)=1e0-v(6);

v(8)=v(6)*v(7);
v(9)=u()*v(6)+u(2)*v(7)+u(3)*v(8);
v(15)=2e0*v(9);

g(1)=v(15)*v(6);

9(2)=v(15)*v(7);

g(3)=v(15)*v(8);

function [x]=SMSKDelta(i,]})

if (i==J) , x=1; else x=0; end

end

function [x]=SMSDeltaPart(a,i,j,k)

I=round(i/j);

if (mod(i,j) ~ 0 |] I>k) , x=0; else x=a(l); end
end

function [x]=Power(a,b)

x=a"b;

end

end

Symbolic-Numeric Interface

A general way of how to pass data from the main program into the automatically generated routine and how to get the
results back to the main program is thought external variables. External variables are used to establish the interface
between the numerical environment and the automatically generated code.

External variables appear in a list of input/output parameters of the declaration of the subroutine, as a part of expres-
sion, and when the values are assigned to the output parameters of the subroutine.

20 AceGen code generator

definition of the input/output parameters example

SMSModule["name",
Real[real variables],
Integer[integer type variables],
Logical[logical variables]]

SMSModule["test",Real[y$$[2,5]1]

external variables as a part of expression example

SMSReal[real external data] y £ 2 Sin[SMSReal[y$$[2,5]]]
SMSinteger[integer external data] i £ SMSinteger[ii$$]
SMSLogical[logical data] | £ SMSLogical[bool$$] && y<0

exporting values example

SMSExport[x+5, y$$[2,5]]
SMSEXxport[2 i+7, ii$$]
SMSExport[True, bool$$]

SMSEXxport[value, real external]
SMSExport[value, integer external |
SMSExport[value, logical external]

Use of external variables.

The form of the external variables is prescribed and is characterized by the $ signs at the end of its name. The standard
AceGen form is automatically transformed into the chosen language when the code is generated. The standard formats
for external variables when they appear as part of subroutine declaration and their transformation into FORTRAN and
C language declarations are as follows:

type AceGen definition FORTRAN definition C definition
real variable x$$ reals 8 x double x
x$$$ real: 8 x double x
real array x$$[10] real« 8 x (10) double x[10]
X$S[i$P, "«"] reals 8 X (i,*) double #xx
x$$[3, 5] reals 8 X (3,5) double x[3][5]
integer variable i$$ integer i int «i
i$$$ integer i inti
integer array i$$[10] integer x (10) inti[10]
iSH[i$S, "+"] integer X (i,) int i
i$$[3,5,7] integer x (3,5,7) int i[3][5][7]
logical variable 1$$ logical | int
1$$$ logical | int |

External variables in a subroutine declaration.

Arrays can have arbitrary number of dimensions. The dimension can be an integer constant, an integer external variable

or a"*" character constant. The "*" character stands for the unknown dimension.

The standard format for external variables when they appear as part of expression and their transformation into FOR-

TRAN and C language formats is then:

AceGen code generator

21

type AceGen form FORTRAN form C form
real variable SMSReal[x$$] X #X
SMSReal[x$$$] X X
real array SMSReal[x$$[10]] X (10) X[10]
SMSReal[x$$[i$$, "—>name",5]] illegal x[i—1]->name[5]
SMSReal[x$$[i$$, ".name",5]] illegal X[i—1].name[5]
integer variable SMSinteger[i$$] i i
SMSiInteger[i$$$] i i
integer array SMSinteger[i$$[10]] i(10) i[10]
SMSinteger[i$$["10"]] i(10) i[10]
SMSinteger[i$$[j$$, "'—>name",5]] illegal i[j—1]—->name[5]
SMSinteger[i$$[j$$, ".name",5]] illegal i[j—1].name[5]
logical variable SMSLogical[1$$] | sl
SMSLogical[I1$$$] | I

External variables as a part of expression.

A characteristic high precision real type number called "signature” is assigned to each external variable. This characteris-
tic real number is then used throughout the AceGen session for the evaluation of the expressions. If the expression
contains parts which cannot be evaluated with the given signatures of external variables, then AceGen reports an error
and aborts the execution.

External variable is represented by the data object with the head SMSExternalF. This data object represents external
expressions together with the information regarding signature and the type of variable.

See also: SMSReal , SMSinteger , SMSLogical , SMSExport .

Auxiliary Variables

AceGen system can generate three types of auxiliary variables: real type, integer type, and logical type auxiliary
variables. The way of how the auxiliary variables are labeled is crucial for the interaction between the AceGen and
Mathematica. New auxiliary variables are labeled consecutively in the same order as they are created, and these labels
remain fixed during the Mathematica session. This enables free manipulation with the expressions returned by the
AceGen system. With Mathematica user can perform various algebraic transformations on the optimized expressions
independently on AceGen. Although auxiliary variables are named consecutively, they are not always stored in the data
base in the same order. Indeed, when two expressions contain a common sub-expression, AceGen immediately replaces
the sub-expression with a new auxiliary variable which is stored in the data base in front of the considered expressions.
The internal representation of the expressions in the data base can be continuously changed and optimized.

Auxiliary variables have standardized form 3$V[i, j], where i is an index of auxiliary variable and j is an instance of the
i-th auxiliary variable. The new instance of the auxiliary variable is generated whenever specific variable appears on
the left hand side of equation. Variables with more that one instance are "multi-valued variables".

The input for Mathematica that generates new auxiliary variable is as follows:

Ihs operator rhs

The structure 'lhs operator rhs' first evaluates rhs, creates new auxiliary variable, and assigns the new auxiliary variable
to be the value of Ihs. From then on, Ihs is replaced by a new auxiliary variable whenever it appears. rhs is then stored
into the AceGen database.

In AceGen there are four basic operators k,+, 4, and 4. Operators £ and + are used for variables that will appear only

22 AceGen code generator

once on the left-hand side of equation. For variables that will appear more that once on the left-hand side the operators
4 and 4 have to be used. These operators are replacement for the simple assignment command in Mathematica
(Ihs=rhs). In principle we can get AceGen input simply by replacing = operators in standard Mathematica input by one
of the AceGen assignment operators.

vEexp A new auxiliary variable is created if AceGen finds
out that the introduction of the new variable is necessary,
otherwise v=exp. This is the basic form for defining new
formulae. Ordinary Mathematica input can be converted to the AceGen
input by replacing the Set operator (a=b) with the k operator (arb).

vEexp A new auxiliary variable is created,
regardless on the contents of exp. The primal functionality
of this form is to force creation of the new auxiliary variable.

vdexp A new auxiliary variable is created,
regardless on the contents of exp. The primal functionality of this
form is to create variable which will appear more than once on a left—
hand side of equation (multi—valued variables).

v4exp A new value (exp) is assigned to the previously created auxiliary variable
v. At the input v has to be auxiliary variable created as the result of v 4
exp command. At the output there is the same variable v,
but with the new signature (new instance of v).

Syntax of the basic assignment operators.

If x is a symbol with the value $V[i,j], then after the execution of the expression x4 exp, x has a new value $V[i,j+1].
The value $V[i,j+1] is a new instance of the i-th auxiliary variable.

Additionally to the basic operators there are functions that perform reduction in a special way. The SMSFreeze

function imposes various restrictions in how expression is evaluated, simplified and differentiated. The
SMSSmartReduce function does the optimization in a 'smart' way. '‘Smart' optimization means that only those parts of

the expression that are not important for the implementation of 'non-local’ operation are replaced by a new auxiliary
variables.

See also: SMSR , SMSM , SMSS , SMSReal , SMSinteger , SMSLogical .

The "signature™ of the expression is a high precision real number assigned to the auxiliary variable that represents the
expression. The signature is obtained by replacing all auxiliary variables in expression by corresponding signatures and
then using the standard N function on the result (N[expr, SMSEvaluatePrecision]). The expression that does not yield a
real number as the result of N[expr, SMSEvaluatePrecision] will abort the execution. Thus, any function that yields a
real number as the result of numerical evaluation can appear as a part of AceGen expression. However, there is no
assurance that the generated code is compiled without errors if there exist no equivalent build in function in compiled
language.

Two instances of the same auxiliary variable can appear in the separate branches of "If" construct. At the code genera-
tion phase the active branch of the "If" construct remains unknown. Consequently, the signature of the variable defined
inside the "If" construct should not be used outside the "If" construct. Similar is valid also for "Do" construct, since we
do not know how many times the "Do" loop will be actually executed. The scope of auxiliary variable is a part of the
code where the signature associated with the particular instance of the auxiliary variable can be uniquely identified.
The problem of how to use variables outside the "If"/"Do" constructs is solved by the introduction of fictive instances.
Fictive instance is an instance of the existing auxiliary variable that has no effect on a generated source code. It has
unique signature so that incorrect simplifications are prevented. Several examples are given in (SMS1¥, SMSDo).

An unique signature is also required for all the basic independent variables for differentiation (see Automatic
Differentiation) and is also automatically generated for parts of the expressions that when evaluated yield very
high or very low signatures (e.g 107100, 107-100, see also Expression Optimization, Signatures of

AceGen code generator 23

the Expressions). The expression optimization procedure can recognize various relations between expressions,
however that is no assurance that relations will be always recognized.Thus users input most not rely on expression

optimization as such and it must produce the same result with or without expression optimization (e.g. in "Plain"
mode).

Example: real, integer and logical variables

This generates three auxiliary variables: real variable x with value 7, integer variable i with value 1, and logical variable | with
value True.

In[37]1:= << AceGen";
SMSInitialize["test", '‘Language™ -> "Fortran', "Mode"™ -> "‘Debug"];
SMSModulle["Test"] ;
X + SMSReal [r] ;
i + SMSInteger[1];
1 + SMSLogical[True];
SMSWrite[];

time=0 variable= 0 = {x}
[0] Consistency check - global
[0] Consistency check - expressions

[0] Generate source code :

Method : TeSt 3 formulae, 13 sub-expressions

Events: O
[0] Final formating

Export source code.

[0] File created : teSt-f Size : 862

Intermediate variables are labeled consecutively regardless of the type of variable. This displays how internal variables really look
like.

In[44]:= {x, &, 1} // ToString

out[44]= {($VI[1, 1], $V[2, 1], $V[3, 1]}

24 AceGen code generator

This displays the generated FORTRAN code. AceGen translates internal representation of auxiliary variables accordingly to the
type of variable as follows:

X I= $V[1,1] = wv(1)
i = $V[(2,1] = 12
I = $V[(3,1] = b3

In[45]:= !ltest.f

| R o o AR R R R R ok ok o ok R R R R S R R Rk E

I* AceGen VERSION *
1> Co. J. Korelc 2006 20.8.2006 23:31 *
!x * EAE R * * * * * * * * *

! User : Korelc

I Evaluation time :0s Mode : Debug

I Number of formulae -3 Method: Automatic

! Subroutine : Test size :13

I Total size of Mathematica code : 13 subexpressions

I Total size of Fortran code : 295 bytes

SUBROUTINE Test(v)
IMPLICIT NONE
include "sms.h*
INTEGER i2
LOGICAL b3
DOUBLE PRECISION v(5001)
1'1=x
v(1)=0.3141592653589793d1
i
i2=int(l)
1
b3=.true.
END

N
1

w
1l

Example: multi-valued variables

This generates two instances of the same variable x. The first instance has value 7 and the second instance has value 72.

In[46]:= << AceGen;
SMSInitialize["test", ‘‘Language™ -> "Fortran', "Mode"™ -> "Debug™];
SMSModule["Test"] ;
X 1 SMSReal [r] ;
X 4 72;

SMSWrite[];

time=0 variable= 0

{X}
[0] Consistency check - global
[0] Consistency check - expressions

[0] Generate source code :

Method : TeSt 2 formulae, 7 sub-expressions
Events: O
[0] Final formating

Export source code.

[0] File created : teSt-f Size : 814

AceGen code generator 25

This displays how the second instance of x looks like inside the expressions.
In[52]:= x // ToString

out[52]= $V[1, 2]

This displays the generated FORTRAN code. AceGen translates two instances of the first auxiliary variable into the same FOR-
TRAN variable.

X 1= $V[1, 1]
X 1= $V[1, 2]

In[53]:= !ltest.f

(1)
(1)

= V
= V

| R o o AR R R R o o o ok o ok ok R R Rk R R R R

I* AceGen VERSION *
1> Co. J. Korelc 2006 20.8.2006 23:31 *
1* * *h kK kk * * * * * * * *

I User : Korelc

I Evaluation time :0s Mode : Debug

I Number of formulae t 2 Method: Automatic

I Subroutine : Test size :7

I Total size of Mathematica code : 7 subexpressions

I Total size of Fortran code : 253 bytes

SUBROUTINE Test(v)
IMPLICIT NONE

include "sms.h*

DOUBLE PRECISION v(5001)

11 =x
v(1)=0.3141592653589793d1

1'1=x
v(1)=0.9869604401089358d1
END

User Interface

An important question arises: how to understand the automatically generated formulae? The automatically generated
code should not act like a "black box". For example, after using the automatic differentiation tools we have no insight
in the actual structure of the derivatives. While formulae are derived automatically with AceGen, AceGen tries to find
the actual meaning of the auxiliary variables and assigns appropriate names. By asking Mathematica in an interactive
dialog about certain symbols, we can retain this information and explore the structure of the generated expressions. In
the following AceGen sessions various possibilities how to explore the structure of the program are presented.

Example

Let start with the subprogram that returns solution to the system of the following nonlinear equations
axy+x’=0

O =
a-xy’ =0

where x and y are unknowns and a is the parameter using the standard Newton-Raphson iterative procedure. The
SMSSetBreak function inserts the breaks points with the identifications "X" and "A" into the generated code.

26

AceGen code generator

In[349]:=
<< AceGen;

SMSInitialize["test", "Language” -> ""Mathematica', ""Mode" - "Debug"

SMSModule["test", Real [x$$, y$$, a$$, tol$$], Integer[n$$]];
{x0, y0, a, €} £ SMSReal [{x$$, y3, a$$, tol$$}];
nmax = SMSInteger [n$$] ;
{X, ¥} 2 {x0, y0};
SMSDo[i, 1, nmax, 1, {X, V}]:
ge{axy+x3, a- Xxy?};
Kt e SMSD[&, {X, Y}]:
{aX, Ay} e SMSLinearSolve[Kt, -8];
{X, Y} 4 {X, Y} + {&X, Ay};
SMSSetBreak["A", "Active" -» False] ;
SMSIF[SMSSqrt[{Ax, Ay}.{AX, Ay}] <€];
SMSExport[{x, y}, {x$$, y$$}1;
SMSBreak[];
SMSEndIf[];
SMSIF[i = nmax] ;
SMSPrint["”"no convergion®"];
SMSReturn[];
SMSEndIf[];
SMSSetBreak["'X"];
SMSEndDo[];
SMSWritel[];

time=0 variable= 0 = {}

Forward differentiation of 6 variables.
Solution of 2 linear equations.

[1] Consistency check - global

[1] Consistency check - expressions

[1] Generate source code :

Method : teSt 32 formulae, 194 sub-expressions

Events: O

[1] Final formating

[1] File created : teSt- m Size : 2408

Exploring the structure of the formula

AceGen palette offers buttons that control how expressions are represented on a screen.

AceGen code generator 27

Qijz
(2%s)?
$V[5,2]172

3.14151

ZOOM all

ZOOM sele.

Last name
First name
All names
Palette for entering AceGen commands that control user-AceGen interactions.
Auxiliary variables are represented as active areas (buttons) of the output form of the expressions in blue color. When

we point with the mouse on one of the active areas, a new cell in the notebook is generated and the definition of the

pointed variable will be displayed. Auxiliary variables are again represented as active areas and can be further

explored. Definitions of the external variables are displayed in red color. The ";" character is used to indicate deriva-
tives (e.0.K11:x, = 2,

Xy
In[233]:=
Ke[[1, 1]]
out[233]=
Kty

] Ui, @@ e U @3Eaa b ik 3

nEsl= KEL[L, 111 —— | ngse= Ke[[1, 171 200 s KEODL, 111
Out[zs]= Kty Out[zs]= Kty Out[25]= Kt1a
3 ()" +a Gy 3 () +a (g
a% g

=l =l

There are two possibilities how the new cell is generated. The first possibility is that the new cell contains only the
definition of the pointed variable.

Button: ZOOM se.

28 AceGen code generator

In[372]:=
Kt

out[372]=
{{Kt11, Kt12}, {--32:x, Kt22}}

a»X
The new cell can also contain the whole expression from the original cell and only pointed variable replaced by its
definition.
Button: ZOOM all
In[235]:=
Kt

Out[235]=
{{Kt11, Kt12}, {--®2:x, Kt22}}

{{Kt11, a2X}, {--32:x, Kt22}}

Output representations of the expressions

Expressions can be displayed in several ways. The way how the expression is displayed does not affect the internal
representation of the expression.

StandardForm

The most common is the representation of the expression where the automatically generated name represents particular
auxiliary variable.

Button: &;;°
In[236]:=
Kt

out[236]=
{{Kt11, Kt12}, {--32:x, Kt22}}

FullForm

The "true” or FullForm representation is when j-th instance of the i-th auxiliary variable is represented in a form
$VIi,j]. In an automatically generated source code the i-th term of the global vector of auxiliary variables (v(i)) directly
corresponds to the $V[i,j] auxiliary variable.

Button: $V[5,2]172
In[237]:=
Kt

out[237]=
{{$V[12, 17, $V[14, 1]}, {-$V[13, 1], $V[15, 1]}}

AceGen code generator 29

CondensedForm

If variables are in a FullForm they can not be further explored. Alternative representation where j-th instance of the
i-th auxiliary variable is represented in a form ¥; enables us to explore FullForm of the automatically generated
expressions.

Button: (2¥s) 2
In[238]:=
Kt

out[238]=
{{¥12, ¥14}, {-¥13, ¥15})

NumberForm

Auxiliary variables can also be represented by their signatures (assigned random numbers) during the AceGen session
or by their current values during the execution of the automatically generated code. This type of representation can be
used for debugging.

Button: 3.14151
In[239]:=
Kt

out[239]=
{{1.88136968728346844755671352685112325267369709991604672558212,
0.35532800737456468387465454062781729688510428083534474135257; ,
(-0.199444213279276150918981737408557038630358423942906038354110,
-0.66612417045124917818278138936071633954807337182830311724512 }

Polymorphism of the generated formulae

Sometimes AceGen finds more that one meaning (name) for the same auxiliary variable. By default it displays the first
name First name (first the system has to be put back to the basic display mode with the @;;2 button).

In[242]:=
Kt
out[242]=
{{Kt11, K12}, {--®2;x, Kt22}}
By pressing button Last name the last found meaning (hame) of the auxiliary variables will be displayed.
In[243]:=
Kt
out[243]=

{{él;x, @1;)/}1 {——KtZl, ®2;y}}

All meanings (names) of the auxiliary variables can also be explored (Al names).

30 AceGen code generator

In[244]:=
Kt

out[244]=
{{Kty1 | ®1;x, Ktz | B1;y}, {--B2;x | K1, Koo | 325y})

Analyzing the structure of the program
The SMSAnalyze function can be used in order to produce separate window where the structure of the program is
displayed together with the links to all generated formulae.

In[87]:= SMSAnalyzel]

b L

%]

Close wh irink Refresh I;'
Subroutine: test Depth: 2

1 =0 v0 ae x 17 2
Do i=1,n5%,1 =
i
E) F; Ktyy Koy Kty Ay Ax ¥ v &
3
If SMSSqre[ixt + Avi] <=6 =
¥pa=EXpOoEL[% = M55,V = ¥55,]
Break[] ;|
!
EndIf
g
If i==n%% =
Print['no conwvergion']
Feturn[Mull Module] ;
&
EndIf
X 7
EndDao

a
g

[€1

[+

AceGen code generator 31

Run time debugging

The SMSAnalyze function is also called automatically during the run time by the SMSExecuteBreakPoint function.
The SMSExecuteBreakPoint function can be inserted into the source code by SMSSetBreak function. Break points
are inserted only if the code is generated with the "Mode"—"Debug" option. In "Debug" mode the system also automati-
cally generates file with the name "sessionname.dbg" where all the information necessary for the run-time debugging is
stored. The data is restored from the file by the SMSLoadSession command. The number of break points is not limited.
All the user defined break points are by default active. With the option "Active"—False the break point becomes
initially inactive . The break points are also automatically generated at the end of If.. else..endif and Do...enddo state-
ments a additionally to the user defined break points. All automatically defined break points are by default inactive.
Using the break points is also one of the ways how the automatically generated code can be debugged.

Here the program is loaded and the generated subroutine is called.

In[88]:= << AceGen~;
<< "test.m";
SMSLoadSession["test"] ;
X=1.9;y=-1.2;
test([x, y, 3., 0.0001, 10]

At the break point the SMSAnalyze function now produces separate window where the structure of the program is
displayed together with the links to all generated formulae and the actual values of the auxiliary variables. The current
break point is displayed with the red background.

32 AceGen code generator

Refresh EKeep window Expand Shrink A1l OH All OFF Continw

1 x0=1.9 y0=-1.2 a=3. e=0.0001
1x=1.93444 [v=-1.24702 | 2
i=1,n85,1 =1
i=1
F1=0.019 §;=0.264 Kt1,=7.23 Ety;=5.7 Kt;;=4.56
Ay=-0.0470187 Ax=0.0344408 .x=1.93444 .v=—1,24702 A

3
If SMssqre[ixt + AvE] = = False
¥,,=Export[l. 93444 s %64, -1. 24702 — v55, |
Break[]:
4
EndIf
5
If 1==n%% = False

Print['no conwvergion']
Feturn[Mull Module] ;
&
EndIf

N

The program stops and enters interactive debugger whenever selective SMSExecuteBreakPoint function is executed.
The function also initiates special dialog mode supported by the Mathematica (see also Dialog). The "dialog" is

terminated by Continue button. New break point will close previously generated debug window Closing of the

window can be prevented by pressing the Keep window button. Break points can be switched on and off by
pressing the button at the position of the break point.

Button legend:

A = is the button that represents active user defined break point.
- = is the button that represents the position in a program where the program has stopped.

1 = is the button that represents automatically generated inactive break point. The break points are automatically
generated at the end of If.. else..endif and Do...enddo structures.

Refresh = refresh the contents of the debug window.

Keep window = prevents automatic closing of the debug window

AceGen code generator 33

Expand = increase the extend of the variables that are presented
Shrink = decrease the extend of the variables that are presented
ALl ON = enable all breaks points

All OFF = disable all breaks points

Continue = continue to the next break point

Here the break point "X" is inactivated and the break point "A" is activated. The break point "A" is given a pure function that is
executed whenever the break point is called. Note that the SMSLoadSession also restores all definitions of the symbols that have
been assigned value during the AceGen session (e.g. the definition of the Kt variable in the current example).

In[93]:= << AceGen;
<< "'test.m";
SMSLoadSession["test"] ;
SMSClearBreak["'X"];
SMSActivateBreak["A", Print[Kt] &];
X=1.9;y=-1.2;
test[x, y, 3., 0.0001, 10]

({7.23,5.7), {-1.44, 4.56})
({7.48513, 5.80332}, {-1.55506, 4.82457}}
({7.4744, 5.79955}, {-1.55185, 4.81646})

34 AceGen code generator

Verification of Automatically Generated Code

We can verify the correctness of the generated code directly in Mathematica. To do this, we need to rerun the problem
and to generate the code in a script language of Mathematica. The SMSSetBreak function inserts a break point into the

generated code where the program stops and enters interactive debugger (see also User Interface).

In[100]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Mathematica', "Mode" -> ""Debug"] ;
SMSModule["Test", Real [u$$[3], x$$, LSS, g$$[3]111;
{X, L} £ {SMSReal [x$$], SMSReal [L$$]};
ui £ Array [SMSReal [u$$[#]] &, 3];

_ X X X X\,
Nll:{—L—, 1——I:, —I: (1“[)}1
ueNi.ui;

feu?;

geSMSD[F, uil];
SMSExport[g, g$$];
SMSSetBreak["'X"'] ;
SMSWritel[];

time=0 variable= 0 = {}

Forward differentiation of 5 variables.
[0] Consistency check - global

[0] Consistency check - expressions

[0] Generate source code :

Method : TeSt 17 formulae, 119 sub-expressions
Events: O

[0] Final formating
0] Fite created - LEST . M size - 1410

We have several possibilities how to explore the derived formulae and generated code and how to verify the correct-
ness of the model and of the generated code (see also User Interface).

The first possibility is to explore the generated formulae interactively with Mathematica in order to
see whether their structure is logical.

In[112]:=
u

Out[112]=
u

In the case of more complex code, the SMSAnalyze function can be used in order to produce separate window where
the structure of the program is displayed together with the links to all generated formulae (see also User Interface).

In[113]:=
SMSAnalyze[]

AceGen code generator 35

X

Close window Expand Shrink Refresh
* L 'Lli_'|_ 'Llii 'Llig I'Ii_]_ Hig I'Iig u £
dy 9 92
Frg=Exportogy = a55 [1],0: = as5 [2] ;e = O5e [3]] —

¥ Toggle breakpoint

1l Toggle breakpoint

' e

The second possibility is to make some numerical tests and see whether the numerical results are
logical.

This reads definition of the automatically generated "Test" function from the test.m file.

In[114]:=
<<'test.m"

Here the numerical values of the input parameters are defined.

The context of the symbols used in the definition of the subroutine is global as well as the context of the input parameters. Conse-
quently, the new definition would override the ald ones. Thus the names of the arguments cannot be the same as the symbols used
in the definition of the subroutine.

In[115]:=
XV=rm;Lv=10_;uv={0., 1., 7.};gv={Null, Null, Null};

Here the generated code is used to calculate gradient for the numerical test example.
In[116]:=

Test[uv, Xxv, Lv, gVv]

Here the contents of the interactive debugger is displayed. See also SMSAnalyze.

Refresh EKeep window Expand Shrink #Al1 OH Finizh Continue

:{=¥_'|_ L=10. 'Lli_'|_=|:|. 'Llig:l. ui;:?.

Ni;=0.314159 Ni;=0.6F5341 Ni,=0.215463 u==£.19408 £=4.514
gy=1.37858 gqy=3.00958 g,=0.945459

¥ 4=Export[l. 37858 5 gss[1],3. 009558 = gs4 [2],0.945489 — gs5[3],]

- Toggle breakpoint

36 AceGen code generator

Here the numerical results are displayed.
IN[117]:=
gv

out[117]=
{1.37858, 3.00958, 0.945489}

Partial evaluation, where part of expressions is humerically evaluated and part is left in a symbolic form, can also
provide useful information.

Here the numerical values of u, and x input parameters are defined, while L is left in a symbolic form.

In[118]:=
XV=x//N;Lv=_;uv={0.,21.,7.};agv={Null, Null, Null};

Here the generated code is used to calculate gradient for the given values of input parameters.

In[119]:=
Test[uv, xv, Lv, gv]

Here the partially evaluated gradient is displayed.

In[120]:=
gv // Expand

Out[120]=
{7 434.088 . 118.435 . 6.28319
Lv3 Lv2 Lv ’
434.088 256.61 . 31.4159 1363.73 806.163 98.696 6.28319 }

e V- B RY. v’ LV v T v T L

The third possibility is to compare the numerical results obtained by AceGen with the results
obtained directly by Mathematica.

Here the gradient is calculated directly by Mathematica with essentially the same procedure as before. AceGen functions are
removed and replaced with the equivalent functions in Mathematica.
In[121]:=
Clear[x, L, up, 9l;
{x, L} = {X, L};
ui = Array[up, 3];
Ni={x/L,1-x/L,x/L(1-x/L)};

u=Ni.ui;
f=un2;
g=Map[D[F, #] &, ui] // Simplify
out[127]=
{2x (L2up[2] -x%up[3] +L;< (up[1] -up[2] +up[3]))
|_ ’
2 (L-x) (L2up[2] -x?up[3] +Lx (up[1] -up[2] +up[3]))
L3 »

2 (L-x) x (L2up[2] -x?up[3] +Lx (up[1] -up[2] +up[3])))
|_4

AceGen code generator 37

Here the numerical results are calculated and displayed for the same numerical example as before. We can se that we get the same
results.

In[128]:=
X=m; L=10; up[1l] =0; up[2] =1; up[3] =7.;
9

out[129]=
{1.37858, 3.00958, 0.945489}

The last possibility is to look at the generated code directly.

Due to the option "Mode"->"Debug" AceGen automatically generates comments that describe the actual meaning of
the generated formulae. The code is also less optimized and it can be more easily understood and explored.

38

AceGen code generator

In[130]:=

Iltest.m

(***

* AceGen VERSION

* Co. J. Korelc 2006 20.8.2006 23:31

KA AAAAAAAAARAAAAAARAAAAAAAAAAAARAAAAAA A AAAX
User : Korelc

Evaluation time :0s Mode

Number of formulae 17 Method: Automatic
Module : Test size : 119

Total size of Mathematica code : 119 subexpressions

(M O D U L E escsossskoossokk sk ko

SetAttributes[Test,HoldAll];
Test[u$$_,x$$_,L$$S_,9%$_]:=Module[{},
SMSExecuteBreakPoint["1","test",1,1];
$VV[1]=0; (*debug™)

(2= x ™)

SVW[2]=x3$$;

3=L *)

$VWI[3]=L$S%;

4= ui_1 *)

$VW[41=u$$[[1]1]1:

(*5= ui_2 *)

$VWI5]=u$$[[2]1]1;

(*6= ui_3 *)

$VWI6]1=u$S[[31]1;

7= Ni_1 *)

$SWI7]1=$VV[2]1/$VV[3];

(*8= Ni_2 *)

$VWI8]=1-$VV[7];

(*9= Ni_3 *)
$VWI9=($VV[2]*$VV[8]1)/$VV[3];

(*10= u *)
$SVWI10]=$VV[4]*$VV[7]+$VV[5]*$VV[8]+$VV[6]*$VV[9];
*11= £ *)

$VV[11]=$VV[10]"2;

(*12= [g_1][f_;ui_1] *)
$VW[12]=2*$VV[7]1*$VV[10];

(*13= [g_2][f_;ui_2] *)
$VV[13]=2*$VV[8]*$VV[10];

(*14= [g_3][f_;ui_3] *)
$VV[14]=2*$VV[9]*$VV[10];
g$SL[1]11=%VV[12];

g$$[[2]1=$VV[13];

g$$L[3]11=%VV[14];

$VV[15]=0; (*debug*)
SMSExecuteBreakPoint['x","test",1,2];
$VV[16]=0; (*debug*)
SMSExecuteBreakPoint['2","test",1,3];
$VV[17]=0; (*debug*)

Several modifications of the above procedures are possible.

Expression Optimization

The basic approach to optimization of the automatically generated code is to search for the parts of the code that when
evaluated yield the same result and substitute them with the new auxiliary variable. In the case of the pattern matching
approach only sub-expressions that are syntactically equal are recognized as "common sub-expressions”. The signa-
tures of the expressions are basis for the heuristic algorithm that can search also for some higher relations among the
expressions. The relations between expressions which are automatically recognized by the AceGen system are:

AceGen code generator 39

description simplification
. Vi:=€1
(@) two expressions or sub— g1 =6 = {
expressions are the same €2=>V1
(b) resultis an integer value e1=Z2—= e>Z
. Vii=€;
(c) opposite value e = -6 = |
€ = —Vp
(d) intersection of common parts for a..jobr.. vii=Dy.
multiplication and addition Ci.koli.j = ar.jobi.j=a..ijo Vv
bnEdn Cl...kodlmj =>Ci..k° V1
Vi.=€y
(e) inverse value e1= = = | L
2 €1 = W

In the formulae above, ej, a;, bj, ¢j, d; are arbitrary expressions or sub-expressions, and v; are auxiliary variables.
Formula e; = e; means that the signature of the expression e; is identical to the signature of the expression e;j. Expres-
sions do not need to be syntactically identical. Formula v; := e; means that a new auxiliary variable v; with value e; is
generated, and formula e; = vj means that expression e; is substituted by auxiliary variable v;.

Sub-expressions in the above cases do not need to be syntactically identical, which means that higher relations are
recognized also in cases where term rewriting and pattern matching algorithms in Mathematica fail. The disadvantage
of the procedure is that the code is generated correctly only with certain probability.

Let us first consider the two functions f; = x3 — x2 + 1 and f, = Abs[x] + x2.

In[131]:=
Plot[{x® - x%+1, Abs[x] +X?}, {X, -4, 4}, TextStyle -> { FontSize -> 12}]
15+
10 +
5|
-4 -2 2 4
5l
Out[131]=
- Graphics -

The value of f;is equal to the value of f, only for three discrete values of x. If we take random value for xg[-4,4], then
the probability of wrong simplification is for this case is negligible, although the event itself is not impossible. The
second example are functions f; = x and f, = Abs[x].

40 AceGen code generator

In[132]:=
Plot[{x, Abs[x]}, {X, -4, 4}, TextStyle -> { FontSize -> 12}]
41
2|
-4 -2 2 4
_2 1
4!
out[132]=
- Graphics -

We can see that, for a random x from interval [-4,4], there is 50% probability to make incorrect simplification and
consequently 50% probability that the resulting automatically generated numerical code will not be correct. The
possibility of wrong simplifications can be eliminated by replacing the Abs function with a new function (e.g.
SMSADbs[x]) that has unique high precision randomly generated number as a signature. Thus at the code derivation
phase the SMSADbs function results in random number and at the code generation phase is translated into the correct
form (Abs) accordingly to the chosen language. Some useful simplifications might be overlooked by this approach, but
the incorrect simplifications are prevented.

When the result of the evaluation of the function is a randomly generated number then by definition the function has an
unique signature. The AceGen package provides a set of "unique signature functions" that can be used as replacements
for the most critical functions as SMSAbs, SMSSqrt, SMSSign. For all other cases we can wrap critical function with
the general unique signature function SMSFreeze.

See also: Signatures of the expressions

Program Flow Control

AceGen can automatically generate conditionals (SMSIf, SMSElse, SMSEndIf construct) and loops

(SMSDo , SMSEndDo construct). The program structure specified by the conditionals and loops is created simulta-

neously during the AceGen session and it will appear as a part of automatically generated code in a specified language.
Additionally, we can include parts of the final source code verbatim (SMSVerbatim statement).

See also: SMSIf , SMSElse , SMSEndIf , SMSVerbatim , SMSDo , SMSEndDo .

Example 1: Newton-Raphson

The generation of the Fortran subroutine calculates the zero of function f(x) =x2 + 2 Sin [x3] by using Newton-Raph-
son iterative procedure. The source code is written in C language.

AceGen code generator

This initializes the AceGen system and starts description of the "test" subroutine.
In[133]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""C"];
SMSModule["test’, Real [x0$$, r$$]171;
X 1 SMSReal [x0$$] ;

This starts iterative loop.
In[137]:=
SMSDo[i, 1, 30, 1, {x}1;

Description of the Newton-Raphson iterative procedure.
In[138]:=
fex?+2Sin[x3];
f -
" SMSD[F, x] °
X 4 X +dX;

X E

This starts the "If" construct where convergence of the iterative solution is checked.
In[141]:=

SMSIF[Abs[dx] < .00000001] ;

Here we exit the "Do" loop. This is verbatim included in the source code.
In[142]:=

SMSBreak[];

This ends the "If" construct .
In[143]:=
SMSEndI1f[];

Here the divergence of the Newton-Raphson procedure is recognized and reported and the program is aborted
In[144]:=

SMSIF[i == 15];

SMSPrint[''no convergence"];
SMSReturn[];

SMSEndI1f[];

This ends the "Do" loop.
In[148]:=
SMSEndDo[X] ;
In[149]:=

SMSExport[x, r$$];
SMSWrite[];

Method : teSt 9 formulae, 61 sub-expressions

[0] File created : teSt - C Size

: 1017

42 AceGen code generator

In[151]:=
Iltest.c

/***

* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:31 *

AEEEAIXEEAAEXEAXEAAXAEAAAXAAXAAXAAALAXAAXAXAAXAXAAAAAAXAAAAAAAXAAAXAAAAXAAAXA LX)

User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae -9 Method: Automatic
Subroutine . test size :61

Total size of Mathematica code : 61 subexpressions

Total size of C code : 436 bytes*/

#include "'sms.h"

Y Seiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiale SUBROUT I N E *¥¥kdkddddix /
void test(double v[5005],double (*x0),double (*r))

{

int 12,b8,b10;
v[1]=(*x0);
for(i2=1;12<=30;i2++){
vI51=(vI1]*vI1D);
v[4]=Power(v[1]1,3);
VvL7]=-((v[5]+2e0*sin(Vv[4]1))/(2e0*v[1]+6e0*v[5]*cos(V[4]1)));
vl1]=v[1]+v[7];
if(fabs(v[7])<0.1e-7){
break;
} else {
}:
iT(i2==15){
printfF('"\n%s ","no convergence');
return;
} else {
}:
}:;/7* end for */
§*r)=V[1]:

Example 2: Gauss integration

Generation of the Fortran subroutine calculates the integral fabx2+28in[x3]dx by employing Gauss integration

scheme. The source code is written in FORTRAN language. The input for the subroutine are the Gauss points and the
Gauss weights defined on interval [-1,1] and an integration interval [a,b].

In[152]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real [gp$$[ng$$] ., gwS$[ng$$], a$$, b$$, r$$], Integer[ngs]];
inta10;
SMSDo[i, 1, SMSInteger[ng$$], 1, int];

AceGen code generator

43

Here the x which corresponds to the i-th Gauss point is calculated by the built-in Solve function.
In[157]:=
Clear[k, n];
X £ SMSReal [
(kgp$$[i] +n) /. Solve[{k (-1) +n==a%$$, k1 +n=b$$}, {k, n}1[[1]1] // Simplify] ;

int 4 int + SMSReal [gw$$[i]] (X +2Sin[x®]);

SMSEndDo[int] ;

SMSExport[int, r$$];

SMSWrite[];

Method : teSt 4 formulae, 52 sub-expressions

[0] File created : teSt-f Size : 950

In[163]:=
Iltest.f
! * * * * * * *
1* AceGen VERSION *

I Co. J. Korelc 2006 20.8.2006 23:31 *

R T e * e e T s

User : Korelc

1

I Evaluation time :0s Mode : Optimal

I Number of formulae -4 Method: Automatic
I Subroutine : test size :52

I Total size of Mathematica code : 52 subexpressions

I Total size of Fortran code : 382 bytes

| Rekaiolaialalaloialel SUBROUTINE *

SUBROUTINE test(v,gp,gw,a,b,r,ng)

IMPLICIT NONE

include "sms.h*

INTEGER ng,i2

DOUBLE PRECISION v(5005),gp(ng),.gw(ng),a,b,r
v(1)=0d0

DO i12=1,int(ng)

v(3)=(at+b+(-a+b)*gp(i2))/2d0
v(D)=v(D)+gw(i2)*((v(3)*v(3))+2d0*dsin(v(3)**3))
ENDDO

r=v(l)

END

44 AceGen code generator

Algebraic Operations

Automatic Differentiation

Differentiation is an arithmetic operation that plays crucial role in the development of new numerical procedures. The
procedure implemented in the AceGen system represents a version of automatic differentiation technique. The auto-
matic differentiation generates a program code for the derivative from a code for the basic function. The vector of the
new auxiliary variables, generated during the simultaneous simplification of the expressions, is a kind of 'pseudo’ code,
which makes the automatic differentiation with AceGen possible. AceGen uses Mathematica's symbolic differentiation
functions for the differentiation of explicit parts of the expression. The version of reverse or forward mode of
‘automatic differentiation' technique is then employed on the global level for the collection and expression of deriva-
tives of the variables which are implicitly contained in the auxiliary variables. At both steps, additional optimization of
expressions is performed simultaneously.

Higher order derivatives are difficult to be implemented by standard automatic differentiation tools. Most of the
automatic differentiation tools offer only the first derivatives. When derivatives are derived by AceGen, the results and
all the auxiliary formulae are stored on a global vector of formulae where they act as any other formula entered by the
user. Thus, there is no limitation in AceGen concerning the number of derivatives which are to be derived.

We can easily recognize some areas of numerical analysis where the problem of analytical differentiation is empha-
sized:

> evaluation of consistent tangent matrices for non-standard physical models,
> sensitivity analysis according to arbitrary parameters,

> optimization problems,

> inverse analysis.

In all these cases, the general theoretical solution to obtain exact derivatives is still under consideration and numerical
differentiation is often used instead.

Throughout this section we consider function y=f(v) that is defined by a given sequence of formulae of the following
form

For i=n+1,n+2,...m

Vi = fi(V) jea
Y =Vm
A=1{1,2 .., i-1)

Here functions f; depend on the already computed quantities v;. This is equivalent to the vector of formulae in AceGen
where v; are auxiliary variables. For functions composed from elementary operations, a gradient can be derived
automatically by the use of symbolic derivation with Mathematica. Let vj, i = 1...n be a set of independent variables
and vj, i=n+1,n+2,...,m a set of auxiliary variables. The goal is to calculate the gradient of y with respect to the set of
independent variables Vy = {% gv—yz g—\}’n}. To do this we must resolve dependencies due to the implicitly con-
tained variables. Two approaches can be used for this, often recalled as forward and reverse mode of automatic differen-
tiation.

The forward mode accumulates the derivatives of auxiliary variables with respect to the independent variables. Denot-
ing by Vv; the gradient of v;with respect to the independent variables v, j=1...n, we derive from the original
sequence of formulae by the chain rule:

AceGen code generator 45

VVI = {6”}]:12 ‘‘‘‘‘ n f0r i=1,2,...,n
For i=n+1,n+2,...m
_ i-1 af;)
V""Z,-=1 ﬁ_VjVVJ
Vy=Vvq,

In practical cases gradients Vv; are more or less sparse. This sparsity is considered automatically by the simultaneous
simplification procedure.

In contrast to the forward mode, the reverse mode propagates adjoints, that is, the derivatives of the final values, with
respect to auxiliary variables. First we associate the scalar derivative vi with each auxiliary variable v;.

- _ 9y i

i = o fori=m,m-1,...,n
vy ={g} = {v} fori=12,..n
As a consequence of the chain rule it can be shown that these adjoint quantities satisfy the relation

S N R
V'_Zj:nl v Vi
To propagate adjoints, we have to reverse the flow of the program, starting with the last function first as follows
For i=m,m-1,...,n-1

S N
v'_Z:j=i+1 Vi

Vy={vi,v3,....Vn}

Again, simultaneous simplification improves the efficiency for the reverse mode by taking into account the actual
dependency between variables.

The following simple example shows how the presented procedure actually works. Let us define three functions

f1, fp, f3, dependent on independent variables x;. The forward mode for the evaluation of gradient Vv = {——g‘f } leads to
1
=f, (X vy o .
vy =1 (X)) = i=1,2 ..,n
_ . Ny _ Ofy afy o P
V2 = fp (i, v1) e = ot e B i=1,2 ..n
_ . (3V3 _ 6f3 Bfg aVl Bfg (3V2 H—
Vs = f3 (XI’ V2, V3) oxi OXi + Ny OX + vy 0% 1= l’ 2’ s I

The reverse mode is implemented as follows

vz = f3 (X, V2, V3) V3 = gvvz -1
V2=f2(Xi,V1) Vz:%:gv_five’
Xi g—‘;f=%w+3—fév2+%vl i=12 ..n

By comparing both techniques, it is obvious that the reverse mode leads to a more efficient solution.

SMSD (see SMSD) function in AceGen does automatic differentiation by using forward or backward mode of
automatic differentiation (see examples in Standard AceGen Procedure)

Differentiation is an example where the problems involved in simultaneous simplification are obvious. The table below
considers the simple example of the two expressions x , y and the differentiation of y with respect to x. L(a) is an
arbitrary large expression and v; is an auxiliary variable. From the computational point of view, simplification A is the
most efficient and it gives correct results for both values x and y. However, when used in a further operations, such as

46 AceGen code generator

differentiation, it obviously leads to wrong results. On the other hand, simplification B has one more assignment and
gives correct results also for the differentiation. To achieve maximal efficiency both types of simplification are used in
the AceGen system. During the derivation of the formulae type B simplification is performed.

Original Simplification A Simplification B
X:=L(@) X:=L(a) vi:i=L(@a)
y =L (a)+x? Yy 1= X4+X? X:i=Vv;
%=2x g—§=1+2x Y= Vi+x2
dy _
=2 X

At the end of the derivation, before the FORTRAN code is generated, the formulae that are stored in global data base
are reconsidered to achieve the maximum computational efficiency. At this stage type A simplification is used. All the
basic undependent variables have to have an unique signature in order to prevent simplification A (e.g. one can

define basic variables with the SMSFreeze function x-SMSFreeze[L(a)], see SMSFreeze).

There are several situations when the formulae and the program structure alone are not sufficient to make proper
derivative code. These exceptions are described in chapter Exceptions in Differentiation .

In[164]:=

Example 1: simple derivative

Generation of the C subroutine which evaluates derivative of function z(x) with respect to x.
z(X)=3x2+2y+Logly]
y(x) = Sin[x?].

In[165]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""C"];
SMSModule["test", Real [x$$, r$$]];
X £ SMSReal [x$$] ;
y ESIin[x?];
za3x?+2y+Llogly];

Here the derivative of z with respect to x is calculated.
In[171]:=
zX £ SMSD[z, X];

In[172]:=
SMSExport[zx, r$$];
SMSWrite[];

Method : teSt 4 formulae, 38 sub-expressions

[0] File created : teSt- C Size : 783

AceGen code generator 47

In[174]:=
Iltest.c

/***

* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:31 *
AEAAEAAIXAAAAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX
User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae 4 Method: Automatic
Subroutine . test size :38

Total size of Mathematica code : 38 subexpressions

Total size of C code : 216 bytes*/

#include "sms.h"

[FFAAIII A S K SUBROUT I NE **rsstrittrik /
void test(double v[5001],double (*x),double (*r))

{

v[5]=2e0*(*x);

v[3]=Power ((*x),2);
v[6]=v[5]*cos(v[3]);
(*r)=3e0*v[5]+Vv[6]*(2e0+1e0/sin(V[3]));
}:

Example 2: differentiation of the complex program structure

Generation of the Matlab M-function file which evaluates derivative of function f (x) = 3 z2 with respect to x, where z is
x>0 x2+2y+Log[y]

2(x) = { y ; aly
x>0 Cos[x°]

andy is y = Sin[x?].

In[175]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Matlab"];
SMSModule["test”, Real [x$$, r$$]171;
X £ SMSReal [x$$] ;
SMSIF[x > 0] ;
y ESINn[x°];
za3x2+2y+Llogly];
SMSElse[];
z 41Cos[x3];
SMSEndI1f[z] ;
x £ SMSD[3 22, X];
SMSExport[fx, r$$];
SMSWrite[];

Method : teSt 11 formulae, 88 sub-expressions

0] File created : LEST .M size : 1157

48

AceGen code generator

In[188]:=
Iltest.m

%**

%* AceGen VERSION
%> Co. J. Korelc 2006

*

20.8.2006 23:31 *

%**

% User : Korelc

% Evaluation time

% Number of formulae
% Subroutine

0s Mode : Optimal
11 Method: Automatic

: test size :88
% Total size of Mathematica code :
% Total size of Matlab code : 370 bytes

88 subexpressions

function[x,r]=test(x,r);
v=zeros(5001, "double®);
v(10)=Power(x,2);
v(13)=3e0*v(10);

if(x>0)

v(6)=2e0*x;
v(7)=v(6)*cos(v(10));
v(3)=sin(v(10));
v(8)=3e0*v(6)+(2e0+1/v(3))*v(7);
v(5)=v(13)+2e0*v(3)+log(v(3));
else;

v(9)=Power(x,3);
v(8)=-(v(13)*sin(v(9)));
v(5)=cos(v(9));

end;

r=6e0*v(5)*v(8);

function [x]=SMSKDelta(i,]})
it(i==j)

x=1;

else

x=0;

end

function [x]=SMSDeltaPart(a,i,j,k)
I=round(i/j);
if mod(i,j) ~ 0 || I>k
x=0;
else
x=a(l);
end

function [x]=Power(a,b)
x=a"b;
end

end

Symbolic Evaluation

Symbolic evaluation means evaluation of expressions with the symbolic or numerical value for a particular parameter.
The evaluation can be efficiently performed with the AceGen function SMSReplaceAll (see SMSReplaceAll).

Example

Atypical example is a Taylor series expansion,

AceGen code generator 49

oF(x)

F(X) = F(X) [x=x, + == [x=x, (X—X0),
0X

where the derivatives of F have to be evaluated at the specific point with respect to variable x. Since the optimized
derivatives depend on x implicitly, simple replacement rules that are built-in Mathematica can not be applied.

IF(x)
ox

This generates FORTRAN code that returns coefficients F(x) |x=x, and
3x2+Sin[x2] -Log[x2-1].
In[189]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran™] ;
SMSModule["Test", Real [x0$$, FO$$, Fx0$%$]] ;
X0 = SMSReal [x0$$] ;
X £ SMSFictive[];
fe3x2+Sin[x?] -Log[x?-17;
TO = SMSReplaceAll[f, x -> x0] ;
X e SMSD[F, X];
X0 = SMSReplaceAll [fx, x -> x0] ;
SMSExport[{f0, fx0}, {f0$$, Fx0$$}1];
SMSWrite[];

Ix=x, OF the Taylor expansion of the function

Method : TeSt 3 formulae, 48 sub-expressions

[0] File created : teSt-f Size : 889

In[200]:=
IMltest.f
! AAEEAAIXAAALAAAAAAAAAAALAAAXAXAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAXNX
I* AceGen VERSION *
1> Co. J. Korelc 2006 20.8.2006 23:31 *
! * * EAE * * * * * * * *
I User : Korelc
I Evaluation time :0s Mode : Optimal
I Number of formulae -3 Method: Automatic
I Subroutine : Test size :48
I Total size of Mathematica code : 48 subexpressions
I Total size of Fortran code : 324 bytes

SUBROUTINE Test(v,x0,f0,¥x0)

IMPLICIT NONE

include "sms_h*

DOUBLE PRECISION v(5001),x0,f0,Tx0
v(11)=x0**2

v(12)=(-1d0)+v(11)
f0=3d0*v(11)-dlog(v(12))+dsin(v(1l))
x0=2d0*x0*(3d0-1d0/v(12)+dcos(v(11l)))
END

Linear Algebra

Enormous growth of expressions typically appears when the SAC systems such as Mathematica are used directly for
solving a system of linear algebraic equations analytically. It is caused mainly due to the redundant expressions,
repeated several times. Although the operation is "local" by its nature, only systems with a small number of unknowns
(up to 10) can be solved analytically. In all linear algebra routines it is assumed that the solution exist (det(A) #0).

50

AceGen code generator

Example

This generates the FORTRAN code that returns the solution to the general linear system of equations:

a;; a;p aiz aus X1 by
ap; axp azz ax X2 | _| b2
asy azx assz ass X3 | | bs
a1 a4 a3 asu X4 b4
In[201]:=

<< AceGen;

SMSInitialize["test", "Language™ -> "'C"];
SMSModule["Test"”, Real [a$$[4, 4], b$$[4], x$B[4]11];
a e SMSReal [Array[a$$, {4, 4}]11;

b £ SMSReal [Array [b$$, {4}]1]1;

X £ SMSLinearSolve[a, b];

SMSExport[x, x$$] ;

SMSWrite[];

Solution of 4 linear equations.
Method : TeSt 18 formulae, 429 sub-expressions

[1] File created : teSt- C Size : 1427

AceGen code generator 51

In[209]:=
Iltest.c

/***

* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:32 *
AEAAEAAIXAAAAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX
User : Korelc

Evaluation time :1s Mode : Optimal
Number of formulae : 18 Method: Automatic
Subroutine : Test size :429

Total size of Mathematica code : 429 subexpressions

Total size of C code . 841 bytes*/

#include "sms.h"

/ FrAxFFFE S UB R O U T I N E Frorddksdrstask /
void Test(double v[5001],double a[4][4].,double b[4],double x[4])

{

v[40]=1e0/a[0][0O];

v[21]=a[1]1[0]1*Vv[40];
vl22]=a[1][1]-a[0][1]*V[21];
v[23]=a[1][2]-a[0][2]*Vv[21];
vl24]=a[1][3]-a[0]1[3]*Vv[21];
v[25]=a[2][0]*Vv[40];

v[26]=a[3][0]*Vv[40];

v[27]=b[1]1-b[0]*Vv[21];
vi28]=(al2][1]-a[0][1]1*Vv[25])/v[22];
v[29]=a[2][2]-a[0]1[2]1*Vv[25]-Vv[23]*Vv[28];
v[30]=a[2][3]-al0]1[3]*Vv[25]-Vv[24]*Vv[28];
vi3l]=(al3][1]-a[0][1]*Vv[26])/v[22];
v[32]=b[2]-b[0]*Vv[25]-Vv[27]*Vv[28];
v[33]=(al[3]1[2]-a[01[2]1*v[26]1-Vv[23]*Vv[31])/Vv[29];
v[35]=(-b[3]+b[0]*Vv[26]+Vv[27]*Vv[31]+Vv[32]*Vv[33])/(-a[3]1[3]+a[0][3]1*Vv[26]+Vv[24]*
v[31]+Vv[30]*V[33]D);
v[36]=(v[32]-v[30]*Vv[35])/Vv[29];
v[37]1=(v[27]-v[24]*Vv[35]-Vv[23]*Vv[36])/V[22];
x[0]=(b[0]-a[0] [3]*Vv[35]-al01[2]*Vv[36]-a[0][1]*V[37])*Vv[40];
x[1]=v[37];

x[2]=v[36];

x[31=v[35];

}:

Other Algebraic Computations

Symbolic integration is rarely used in numerical analysis. It is possible only in limited cases. Additionally, the integra-
tion is an operation of 'non-local' type. Nevertheless we can still use all the built-in capabilities of Mathematica and

then optimize the results (see example in section Non — local operations).

52 AceGen code generator

Advanced Features

Arrays

AceGen has no prearranged higher order matrix, vector, or tensor operations. We can use all Mathematica built-in
functions or any of the external packages to perform those operations. After the operation is performed, we can sim-
plify the result by using AceGen optimization capabilities. In this case, one auxiliary variable represents one element of
the vector, matrix or tensor.

However, sometimes we wish to express an array of expressions with a single auxiliary variable, or to make a reference
to the arbitrary element of the array of expressions. AceGen enables some basic operations with one dimensional
arrays. We can create one dimensional array of symbolic expressions with the fixed length and contents or variable
length and contents one dimensional array.

Arrays are physically stored at the end of the global vector of formulae. The dimension of the global vector (specified
in SMSinitialize) is automatically extended in order to accommodate additional arrays. In the final source code, the

fixed length array is represented as a sequence of auxiliary variables and formulae. Definition of the variable length
array only allocates space on the global vector.

Fixed length array is represented by the data object with the head SMSGroupF (AceGen array object). The variable
length array data object has head SMSArrayF. Array data object represents array of expressions together with the
information regarding random evaluation. Reference to the particular or arbitrary element of the array is represented by
the data object with the head SMSIndexF (AceGen index object).

See also: SMSArray , SMSPart .

Example : Arrays

We wish to create a function that returns a dot product of the two vectors of expressions and the i-th element of the
second vector.

This initializes the AceGen system and starts the description of the "test" subroutine.
In[541]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran™] ;
SMSModule["test", Real [x$$, r$$, s$$, t$$], Integer[n$$, m$$]1;
X £ SMSReal [x$$] ;
n e SMSInteger [n$$] ;

This creates the AceGen array object with fixed length and contents. If we look at the result of the SMSArray function we can see
that a single object has been created (G[...]) representing the whole array.
In[546]:=
SMSArray[{x, X2, 0, x}]

Out[546]//DisplayForm=
G[X, X2, 0,]

AceGen code generator 53

If an array is required as auxiliary variable then we have to use one of the functions that introduces a new auxiliary variable. Note
that a single auxiliary variable has been created representing arbitrary element of the array. The signature of the array is calculated
as perturbed average signature of all array elements.

In[547]:=
fixedA £ SMSArray[{x, x~2, 0, n}]

out[547]=
fixedA

This creates the second AceGen array object with fixed length and contents
In[548]:=
fixedB e SMSArray[{3 X, 1 +Xx”2, Sin[x], Cos[Xx]}];

This calculates a dot product of vectors g1 and g2.

In[549]:=
dot = SMSDot[FixedA, fixedB];

This creates an index to the n-th element of the second vector.
In[550]:=
FfixedBnth r SMSPart[fixedB, n]

Out[550]=
FfixedBnth

This allocates space on the global vector of formulae and creates variable length AceGen array object varlength.
In[551]:=
varlength a SMSArray[10] ;

This sets the elements of the varlength array to be equal varlength; = % i=1,2 ..,10
In[552]:=
SMSDo[i, 1, 10];
var length 1 SMSReplacePart[varlength, 1/1i, i];
SMSEndDo [varlength] ;

This creates an index to the n-th element of the varlength array.

In[555]:=
var lengthmth SMSPart[varlength, SMSInteger[m$$]];

In[556]:=
SMSExport[{dot, fixedBnth, varlengthmth}, {r$$, s$$, t$$}1;
SMSWrite["test"];

Method : tESt 6 formulae, 96 sub-expressions

[0] File created : teSt-f Size : 1137

54

AceGen code generator

In[558]:=

Iltest.f

| R o AR R R R o b ok o ok ok R R Rk R R R

1* AceGen VERSION *

1*

Co. J. Korelc 2006 21.8.2006 11:20 *

| R o R AR R o ok R R AR R R Rk x x

User : Korelc
Evaluation time
Number of formulae

0s Mode : Optimal
6 Method: Automatic

Subroutine test size :96
Total size of Mathematica code : 96 subexpressions
Total size of Fortran code : 560 bytes

SUBROUTINE test(v,X,r,s,t,n,m)
IMPLICIT NONE

include "sms.h*

INTEGER n,m,i9

DOUBLE PRECISION v(5023),x,r,s,t
v(4)=x**2
v(5000)=x
v(5001)=v(4)
v(5002)=0d0
v(5003)=0.3141592653589793d1
v(5004)=3d0*x

v(5005)=1d0+v(4)
v(5006)=dsin(x)
v(5007)=dcos(0.3141592653589793d1*x)
DO 19=1,10

v(5007+19)=1d0/i9

ENDDO
r=SMSDot(v(5000),v(5004),4)
s=v(5003+int(n))
t=v(5007+int(m))

END

User Defined Functions

The user can define additional output formats for standard Mathematica functions or new functions. The advantage of
properly defined function is that allows optimization of expressions.

Optimization is only possible for a scalar function of scalar input parameters and not for user defined subroutines with
several input/output parameters of various types (how to incorporate arbitrary subroutines see SMSCall).

Example 1: Simple case where function in MMA exists, but it does not produce a proper C or

FORTRAN output

In[391]:=

<< AceGen;
SMSInitialize["test", "Language" - ""Fortran™];

This is an additional definition of output format for function tangent.

In[393]:=

SMSAddFormat[
Tan[i_] =» Switch[SMSLanguage, ""Mathematica",

13

"mytan”[i], "Fortran", "mydtan[i], "C", "mytan"[i]]

AceGen code generator

In[394]:=
SMSModule["subl”, Real [x$$, Y$$[5]111;
X £ SMSReal [x$$] ;
SMSExport[Tan[x], y$$[1]11;
SMSWritel[];

Method : SUbl 1 formulae, 7 sub-expressions

[0] File created : teSt-f Size : 765

In[398]:=
11 test.f

* * * * * * * * * * * * * * * *

1* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:39 *
User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae o1 Method: Automatic
Subroutine : subl size :7

Total size of Mathematica code 7 subexpressions
Total size of Fortran code 205 bytes

| Relaiaieiaiaiaiaiaiaiaiaiaiaiaiaiaie S UBROUT I N E *rrddrdrtdkdrdhthrirs
SUBROUTINE subl1(v,X,y)
IMPLICIT NONE
include "sms.h"
DOUBLE PRECISION v(5001),x,y(5)

y(1)=mydtan(x)
END

Example 2: General user defined function

This adds alternative definition of Power function MyPower[x, y] = x¥ that assumes that x>0 and

D[MyPower[x,y] x] = y Poxetey]

D[MyPower[x,y],y] = MyPower[x, y] Log[x].
In[399]:=
<< AceGen™;
SMSInitialize["test", "Language" -» ""'C"];

This is an additional definition of output format for function MyPower.
In[401]:=
SMSAddFormat[MyPower[i_, j] =
Switch[SMSLanguage, ""Mathematica", i™j, "Fortran™, i”j, "C", "Power”[i, j]1]
13

Here the derivatives of MyPower with respect to all parameters are defined.
In[402]:=
Unprotect[Derivative] ;
Derivative[l, O] [MyPower] [i_,
Derivative[0, 1] [MyPower][i_,
Protect[Derivative];

= j MyPower([i, j1/1i;

J_1:
Jj_]1 :=MyPower[i, j] Log[i];

56 AceGen code generator

Here is defined numerical evaluation of MyPower with p-digit precision.
In[406] :=
N[MyPower[i_, J_1,p_] :=i"];
In[407]:=
SMSModule["subl", Real [x$$, y$F5, z$$11;

X £ SMSReal [x$$] ;
y £ SMSReal [y$$] ;

SMSExport[SMSD [MyPower[x, Y1, X], z$$];
SMSWritel[];

Method : SUbl 1 formulae, 22 sub-expressions

[0] File created : teSt- C Size : 731

In[412]:=
11 test.c

/x * *hhkkhk * * * * * * * * *
* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:39 *
User : Korelc
Evaluation time :0s Mode : Optimal
Number of formulae 1 Method: Automatic
Subroutine I subl size :22
Total size of Mathematica code : 22 subexpressions
Total size of C code : 167 bytes*/

#include "'sms.h"

Y feiaiaiaiaiaiaioiaiaiale SUBROUTINE Fekex /
void subl(double v[5001],double (*x),double (*y),double (*z))

{
2)=(Cy)*Power (), (*¥)))/ (%) ;

Exceptions in Differentiation

There are several situations when the formulae and the program structure alone are not sufficient to make proper
derivative code. The basic situations that have to be considered are:

> there exists implicit dependency between variables that has to be considered for the differentiation,
> there exists explicit dependency between variables that has to be neglected for the differentiation,
= the evaluation of the derivative code would lead to numerical errors.

It was shown in the section Automatic Differentiation that with a simple chain rule we obtain derivatives with respect

to the arbitrary variables by following the structure of the program (forward or backward). However this is no longer
true when variables depend implicitly on each other. This is the case for nonlinear coordinate mapping, collocation
variables at the collocation points etc. These implicit dependencies cannot be detected without introducing additional
knowledge into the system. In the case of implicitly dependent relations, the gradient has to be provided by the user
with the SMSDefineDerivative command.

With the SMSFreeze[exp, "Dependency"] the true dependencies of exp with respect to auxiliary variables are neglected
and all partial derivatives are taken to be 0.

AceGen code generator 57

With the SMSFreeze[exp, "Dependency” —> {{p;, d;—r’)‘lp} {p2, %ETXZ"}, eos { P ‘;e—’f”}}] the true dependencies of the exp

are ignored and it is assumed that exp depends on auxiliary variables pq, ..., pn. Partial derivatives of exp with respect

to auxiliary variables py, ..., p, are then taken to be ’Ze%ff—;p’ze% (see also SMSFreeze).
1 n n

Example 1: Implicit dependencies

The generation of the FORTRAN subroutine calculates the derivative of function f = (¢ +n)? with respect to X.
Transformation from (X,Y) coordinate system into the (£,57) coordinate system is defined by:

X = Nj X;,
Y =N;Yi,
where

N={1-HA-mn,1+H)A-m, A+ A+m, A-A+n}
X = {le X21 X3! X4},
X ={Y1, Y2, Y3, Y4}

In[413]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran']
SMSModule["Test”, Real [Xi$$[4], Yi$$[4], ksi$$, etas$, Fx$$]11;
Xi e SMSReal [Array [Xi$$, 41];
Yi = SMSReal [Array[Yi$$, 4]1]1;
{£, n} £ {SMSReal [ksi$$], SMSReal [eta$$] };

.1
NIFZ {(1-8 1-n), 1+ (1-m), (1+8&) (1+n), (1-8&) (L+m)};

X and Y are the basic derivative variables. To prevent wrong simplifications, we have to define unique signatures for the definition
of Xand Y.

In[420]:=
X £ SMSFreeze [Ni .Xi];
Y £ SMSFreeze[Ni.Yi];

Here the Jacobian matrix of nonlinear coordinate transformation is calculated.

In[422]:=

SMSD[X, €1 [SMSDIX, n1 |) .
SMSD[Y, £] [SMSD[Y, n1 ||~

Jme

Jmi £ SMSInverse[Jm] ;

Here the implicit derivatives are defined.

In[424]:=
SMSDefineDerivative[{&, n}, {X, Y}, Imi];

The implicit dependencies of £ and n are now taken into account when the derivation of f is made with respect to X.
In[425]:=
fe(s+m)?;
X e SMSD[F, X]
out[426]=
X

58 AceGen code generator

In[427]:=
SMSExport[fX, fx$$];
SMSWrite[];

Method : TeSt 12 formulae, 235 sub-expressions

[1] File created : teSt-f Size : 1253

In[429]:=
Iltest.f
! * * * * * * * * * * * * * * * * * *
1* AceGen VERSION *
1> Co. J. Korelc 2006 20.8.2006 23:39 *
! * * * * * * * * * * * * * * * * * *
I User : Korelc
I Evaluation time :1s Mode : Optimal
I Number of formulae 12 Method: Automatic
I Subroutine : Test size :235
I Total size of Mathematica code : 235 subexpressions
I Total size of Fortran code : 677 bytes

! SUBROUTINE
SUBROUTINE Test(v,Xi,Yi,ksi,eta,fx)
IMPLICIT NONE
include "sms.h*

DOUBLE PRECISION v(5001),Xi(4),Yi(4),ksi,eta,fx
v(16)=1d0-ksi

v(14)=1d0+ksi

v(17)=1d0+eta

v(12)=1d0-eta
v(23)=(-(v@2)*Yi1 (D))+v(@2)*Yi (2)+v@A7D)*(Yi(3)-Yi(4)))/4d0
v(37)=v(14)*v(23)

v(34)=v(16)*v(23)
v(A)=(-(v(@4)*Yi(2))+v(@4)*Yi(3)+v(@16)*(-Yi(1)+Yi(4)))/4d0
v(36)=v(17)*v(24)

v(35)=v(12)*v(24)

v(25)=4d0/ (v(34)*Xi (1) -v(35)*Xi (1) +(v(35)+v(37))*Xi (2)+(v(36)-Vv
&(37))*Xi (3)-v(B4)*Xi(4)-v(36)*Xi(4))
x=2d0*(etatksi)*(-v(23)+v(24))*v(25)

END

Example 2: Partial derivative
The generation of the FORTRAN subroutine calculates the derivative of function f = S'—”f@ where a = Cos(x) with
respect to x. Due to the numerical problems arising when @ — 0 we have to consider exceptions in the evaluation of the

function as well as in the evaluation of its derivatives as follows:

Sin(2 a?) 9 (SinQa?
Ny {———a a#0 ot {Fa—(——a) a#0
= . ¢ 2 y o = . ¢ 2 .
Lim Sin(2 a%) a=0 o Lim 0 (Sin(2 a%)) a=0
a—0 a a0 O a

AceGen code generator 59

In[430]:=
SMSInitialize["test", "Language" -> ""Fortran']
SMSModule["Test", Real [x$$, F$$, dfdx$$11];
X + SMSReal [x$$] ;
ar Cos[X];
SMSIF[SMSAbs[a] > 107107 ;
faSin[2a®]/a;
SMSElse[];
T 4 SMSFreeze[Limit[Sin[2 a®’] /a, a » 0], "'Dependency" ->
{{a, Limit[D[SiNn[2a®] /a, a] // Evaluate, a > 0]}}];
SMSEndI1f[True, f];
dfdx e SMSD[F, X];
SMSExport[dfdx, dfdx$$] ;
SMSWrite[];

Method : TeSt 6 formulae, 51 sub-expressions

[0] File created : teSt-f Size : 995

In[442]:=
Iltest.f
! * * * * * * * * * * * * * * * * * *
1* AceGen VERSION *
I* Co. J. Korelc 2006 20.8.2006 23:39 *
! * * * * * * * * * * * * * * * * * *
I User : Korelc
I Evaluation time :0s Mode : Optimal
I Number of formulae -6 Method: Automatic
I Subroutine : Test size :51
I Total size of Mathematica code : 51 subexpressions
I Total size of Fortran code : 424 bytes
P oekedededkekeokeokeok SUBROUTINE

SUBROUTINE Test(v,x,T,dfdx)
IMPLICIT NONE

include "sms.h*

LOGICAL b3

DOUBLE PRECISION v(5001),x,T,dfdx
v(5)=-dsin(x)

v(2)=dcos(x)
IF(dabs(v(2)).gt.0.1d-9) THEN
v(6)=2d0*(v(2)*v(2))
v(8)=v(5)*(4d0*dcos(v(6))-dsin(v(6))/v(2)**2)
ELSE

v(8)=2d0*v(5)

ENDIF

dfdx=v(8)

END

60 AceGen code generator

Characteristic Formulae

If the result would lead to large number of formulae, we can produce a characteristic formula. Characteristic formula is
one general formula, that can be used for the evaluation of all other formulae. Characteristic formula can be produced
by the use of AceGen functions that can work with the arrays and indices on a specific element of the array.

If Ngo¢ unknown parameters are used in our numerical procedure, then an explicit form of the gradient and the
Hessian will have at least Ng o 1 + (Ng.o.1)? terms. Thus, explicit code for all terms can be generated only if the number
of unknowns is small. If the number of parameters of the problem is large, then characteristic expressions for arbitrary
term of gradient or Hessian have to be derived. The first step is to present a set of parameters as a union of disjoint
subsets. The subset of unknown parameters, denoted by a; , is defined by

ajca
L
Uiz @i=a
aifaj=¢ i#.
Let f (a) be an arbitrary function, L the number of subsets of a, and % the gradient of f with respect to a.
at _ (of of af
= =la m - w)

Let @; be an arbitrary element of the i-th subset. At the evaluation time of the program, the actual index of an arbitrary
element & becomes known. Thus, @j; represents an element of the i-th subset with the index j. Then we can calculate a
characteristic formula for the gradient of f with respect to an arbitrary element of subset i as follows

gg_] = SMSDIf, a, jl.

Let ay represents an element of the k-th subset with the index I. Characteristic formula for the Hessian of f with respect
to arbitrary element of subset k is then

o f

of
m—; = SMSD[——, ag, I]

6%&,—

Example 1: characteristic formulae - one subset

Let us again consider the example presented at the beginning of the tutorial. A function which calculates gradient of
function f = u?, with respect to unknown parameters u; is required.

u= Yl Niy;
Np=3,No=1-F Ng=7F(1-7)
The code presented here is generated without the generation of characteristic formulae. This time all unknown parame-

ters are grouped together in one vector. AceGen can then generate a characteristic formula for the arbitrary element of
the gradient.

AceGen code generator

61

In[443]:=
<< AceGen~;
SMSInitialize["test", "Language" -> ""Fortran']
SMSModule["Test", Real [u$$[3], x$$, L$S, g$$[3111;
{xX, L} £ {SMSReal [x$$], SMSReal [L3]};
ui £ SMSReal [Array [u$$, 311;

X X X X
Nln{r, 1- . T (1'f)};
ueNi.ui;
fru?;

SMSDori, 1, 3];

Here the derivative of f with respect to i-th element of the set of unknown parameters ui is calculated.

In[452] :=
fui £ SMSD[F, ui, i];

This is how the formula is displayed if we explore the structure of the created auxiliary variable.
In[453]:=
fui
Out[453]=
fui

In[454]:=
SMSExport[fui, g$$[i]];
SMSEndDo[] ;
SMSWrite[];

Method : TeSt 6 formulae, 95 sub-expressions

[1] File created : teSt-f Size : 1013

62

AceGen code generator

In[457]:=
Iltest.f
! AEEAAIXAAALAAAAXAAAAAAALAAAAXAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAANX
I* AceGen VERSION *
I* Co. J. Korelc 2006 20.8.2006 23:39 *
! AEEEAAIXAAALAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAXNX
I User : Korelc
I Evaluation time :1s Mode : Optimal
I Number of formulae : 6 Method: Automatic
I Subroutine : Test size :95
I Total size of Mathematica code : 95 subexpressions
I Total size of Fortran code : 441 bytes

SUBROUTINE Test(v,u,Xx,L,Q)
IMPLICIT NONE

include "sms_h*

INTEGER i1l

DOUBLE PRECISION v(5011),u(3),x,L,g(3)
v(6)=x/L

v(7)=1d0-v(6)

v(8)=v(6)*Vv(7)
v(9)=u()*v(6)+u(2)*v(7)+u(3)*v(8)
v(5007)=v(6)*Vv(9)
v(5008)=v(7)*v(9)
v(5009)=v(8)*v(9)

DO i11=1,3
g(i11)=2d0*v(5006+i11)
ENDDO

END

Example 2: characteristic formulae - two subsets

f

Write function which calculates gradient g—; and the Hessian ——— of the function,

(92
i daj 0a j

f = f(uy, vi, Uz, Vo, Ug, V3, Ug, V4) = U2 + V2 + UV,

with respect to unknown parameters u; and v;, where

u= Y Niu;
U= Niv;
and

N={1-X)A-Y),Q1+X)A-Y), 1+X)A+Y),A-X)A+Y)}.

We make two subsets u; and v; of the set of independent variables a;.

a;={Uy,, V1, U, Vo, U3, V3, Ug, V4}

Ui = {Ug, Uy, U3, Usa}, Vj={V1, Vo V3, Va}

In[458]:=

<< AceGen~;

SMSInitialize["test", "Language" -> ""C"]

SMSModule["Test", Real [ul$$[4], VI$S[4], X$$, Y$5, g$$[8], H$S[8, 8111;
{X, Y} £ {SMSReal [X$$], SMSReal [Y3]};

ui £ SMSReal [Array [ul$$, 4]1];

vi e SMSReal [Array[vI$$, 4]11;

Nie{(1-X) (1-Y), (L+X) (1-Y), (1+X) (L+Y), (L-X) (1L+Y)};:
ueNi.ui; veNi.vi;

FruZ+VvZiuv;

SMSDo[i, 1, 4];

AceGen code generator 63

Here the characteristic formulae for the sub-vector of the gradient vector are created.

In[468]:=
{gli, 921} = {SMSD[F, ui, 1], SMSD[F, vi, i]};

Characteristic formulae have to be exported to the correct places in a gradient vector.
In[469]:=
SMSExport[{gli, g2i}, {g$$[2i-1], g$$[2i]1}]1:
SMSDo[j, 1, 41;

Here the 2*2 characteristic sub-matrix of the Hessian is created.
In[471]:=
He {{SMSD[gli, ui, j], SMSD[gli, Vi, jJI},
{SMSD[g2i, ui, j], SMSD[g2i, Vi, j1}}:
SMSExport[H, {{H$$[21 -1, 2] -1], H$$[2i1-1,2]]},
(H$$[21, 2§ -1], HS$[21, 2J]1}}];

SMSEndDo[];

SMSEndDo[];

SMSWrite[];

Method : TeSt 19 formulae, 258 sub-expressions

[1] File created : teSt- C Size : 1510

64

AceGen code generator

In[476]:=
Iltest.c

/***

* AceGen VERSION *
* Co. J. Korelc 2006 20.8.2006 23:39 *

AEEEAIXEEAAEXEAXEAAXAEAAAXAAXAAXAAALAXAAXAXAAXAXAAAAAAXAAAAAAAXAAAXAAAAXAAAXA LX)

User : Korelc

Evaluation time :1s Mode : Optimal
Number of formulae - 19 Method: Automatic
Subroutine : Test size :258

Total size of Mathematica code : 258 subexpressions

Total size of C code : 913 bytes*/

#include "sms.h"

/ FrRAAFIAXX S UB R O U T I N E Frrdtdddkhrrx /
void Test(double v[5025],double ul[4],double vI[4],double (*X),double (*Y)
,double g[8],double H[8][8])

int 122,i131;

v[16]=1e0-(*X);

v[14]=1e0+(*X);

v[17]=1e0+(*Y);

v[12]=1e0-(*Y);

v[11]=v[12]*Vv[16];

v[13]=v[12]*v[14];

v[15]=v[14]*V[17];

v[18]=v[16]*V[17];

v[5012]=v[11];

v[5013]=v[13];

v[5014]=v[15];

v[5015]=v[18];

v[19]=ul[O]*V[11]+ul [1]*Vv[13]+ul [2]*Vv[15]+ul [3]*Vv[18];

v[20]=v[11]*vI[0]+Vv[13]*vI[1]+v[15]*vI[2]+v[18]*VvI[3];

v[26]=v[19]+2e0*Vv[20];

v[24]=2e0*v[19]+Vv[20];

for(122=1;i22<=4;i122++){

v[28]=v[5011+i22];
gl[(-2+2*i22)]=v[24]*Vv[28];

gl (-1+2*i22)]=v[26]*Vv[28];
Ffor(i31=1;i131<=4;i31++){
v[38]=v[5011+i31];
v[37]=2e0*v[28]*Vv[38];
Vv[39]=v[37]/2€0;
HL(-2+2*i22)]1[(-2+2*i31)]=V[37];
HL(-2+2*i22)][(-1+2*i31)]=V[39];
HE(-1+2*i122)][(-2+2*i31)]=Vv[39];
HL(-1+2*i22)][(-1+2*i31)]=V[37];

};/* end for */

};/* end for */

}:

AceGen code generator 65

Non-local Operations

Many high level operations in computer algebra can only be implemented when the whole expression to which they are
applied is given in an explicit form. Integration and factorization are examples for such 'non-local operations'. On the
other hand, some operations such as differentiation can be performed 'locally’ without considering the entire expres-
sion. In general, we can divide algebraic computations into two groups:

Non-local operations have the following characteristics:

> symbolic integration, factorization, nonlinear equations,
> the entire expression has to be considered to get a solution,
> all the relevant variables have to be explicitly “visible”.

Local operations have the following characteristics:

> differentiation, evaluation, linear system of equations,
> operation can be performed on parts of the expression,
> relevant variables can be part of already optimized code.

For 'non-local’ operations, such as integration, the AceGen system provides a set of functions which perform optimiza-
tion in a 'smart’ way. 'Smart' optimization means that only those parts of the expression that are not important for the
implementation of the 'non-local’ operation are replaced by new auxiliary variables. Let us consider expression f which
depends on variables x, y, and z.

In[23]:= << AceGen~;
SMSInitialize["test", "Language' -> ""Mathematica'];
SMSModule["Test', Real [x$$, y$5, z$$11;
{X, ¥, 2} £ {SMSReal [x$$] , SMSReal [y$$], SMSReal [z$$] } ;
F=x?+2Xy+Yy?+2Xy+ 2yZ+2?

out[27]= X® +4Xy+y?>+2yz+27?

Since integration of f with respect to x is to be performed, we perform 'smart' optimization of f by keeping the integra-
tion variable x unchanged which leads to the optimized expression fx. Additionally Normal converts expr to a normal
expression, from a variety of AceGen special forms.

In[28]:= fXx = SMSSmartReduce[f, x, Collect[#, X] &] // Normal

out[28]= x° + 81 +x§2
The following vector of auxiliary variables is created.

In[29]:= SMSShowVector[0]
1 $V[1, 1] {X} = x$%$
2 $V[2, 1] {y} = y$$
3 $V[3, 1] {z} = z$%
4 $Vi4, 1] {81}
5 $VI[5, 1] {82} = 4y

y2+2yz+7?

66 AceGen code generator

In[31]:= Fint = fo dx

3 2
out[31]= % x84 X 2§2

After the integration, the resulting expression fint is used to obtain another expression fr. fr is identical to fint, however
with an exposed variable y. New format is obtained by 'smart' restoring the expression fint with respect to variable y.

In[32]:= fr = SMSSmartRestore[fint, y, Collect[#, y] &] // Normal
out[32]= xy?+83+y8&4
At the end of the Mathematica session, the global vector of formulae contains the following auxiliary variables:

In[33]:= SMSShowVector[0];
1 $Vi1, 1] (X} = x$%

2 $Vi2, 1] {y} = y$$
3 $V[3, 1] (z} = z$%
4 $Vi4, 1] (81} = y?+2yz+¥%
5 $V[5, 1] (82} = 4y
6 $V[6, 1] = z?
X3
7 $VI7, 1] {83} = F +X¥
8 $V[8, 1] (84} = 2X?+2x2z

See also: SMSSmartReduce , SMSSmartRestore .

Signatures of the Expressions

The input parameters of the subroutine (independent variables) have assigned a randomly generated high precision real
number or an unique signature. The signature of the dependent auxiliary variables is obtained by replacing all auxil-
iary variables in the definition of variable with corresponding signatures and is thus deterministic. The randomly
generated high precision real numbers assigned to the input parameters of the subroutine can have in some cases effects
on code optimization procedure or even results in wrong code. One reason for the incorrect optimization of the expres-
sions is presented in section Expression optimization. Two additional reasons for wrong simplification are
round-off errors and hidden patterns inside the sets of random numbers. In AceGen we can use randomly generated
numbers of arbitrary precision, so that we can exclude the possibility of wrong simplifications due to the round-off
errors. AceGen also combines several different random number generators in order to minimize the risk of hidden
patterns inside the sets of random numbers.

The precision of the randomly generated real numbers assigned to the input parameters is specified by the "Precision”
option of the SMSInitialize function. Higher precision would slow down execution.

In rare cases user has to provide it’s own signature or increase default precision in order to prevent situations where
wrong simplification of expressions might occur. This can be done by providing an additional argument to the symbol-
ic-numeric interface functions SMSReal and SMSInteger, by the use of function that yields an unique signature
(SMSFreeze, SMSFictive, SMSAbs, SMSSqrt) or by increasing the general precision (SMSInitialize).

AceGen code generator 67

SMSReal[exte,code] create real type external data object
with the signature accordingly to the code

SMSinteger[exte,code] create integer type external data object with the
definition exte and signature accordingly to the code

SMSReal[i_List,code] = Map[SMSReal[#,code]&,i]

User defined signature of input parameters.

code the signature is:

v_Real real type random number form interval [0.95 v, 1.05 v]
{vmin_Real,vmax_Real} real type random number form interval [vmin,vmax]
False default signature

Evaluation codes for the generation of the signature.

Example 1

The numerical constants with the Infinity precision (11, &, Sqrt[2], 2/3, etc.) can be used in AceGen input without
changes. The fixed precision constants have to have at least SMSEvaluatePrecision precision in order to avoid wrong
simplifications. If the precision of the numerical constant is less than default precision (SMSInital ize) then AceGen
automatically increase precision with the SetPrecision[exp,SMSEvaluatePrecision] command.

In[41]:= << AceGen~;
SMSInitialize["test", "Language' -> ""Mathematica', ""Mode' -> ""Debug"] ;
SMSModule["test"] ;
time=0 variable= 0 = {}
In[44]:= X+ 7;
In[45]:= y+ 3.1415;
Precision of the user input real number
3.1415 has been automatically iIncreased.
See also: Signatures of the Expressions Troubleshooting
Example 2

This initializes the AceGen system, starts the description of the “test" subroutine and sets default precision of the signatures to 40.

In[46]:= << AceGen";
SMSInitialize["test", "Language" -> ""Fortran", "Precision” - 40] ;
SMSModule["test', Real [x$$, y$$], Integer[n$$]];

Here variable x gets automatically generated real random value from interval [0,1], for variable y three interval is explicitly
prescribed, and an integer external variable n also gets real random value.

In[49]:= X e SMSReal [x$$] ;
y = SMSReal [y$$, {-100, 100}];
n e SMSInteger[n$$] ;

68 AceGen code generator

This displays the signatures of external variables x, y,and n .
In[52]:= {X, Yy, n} // SMSEvaluate // Print

{0.3574209237764040255138108256518102476625,
-81.0812438877469432056774710062273571087,
7.751178453512526294063978427737580644062}

AceGen code generator

69

Reference Guide

AceGen Session

SMSinitialize

SMSinitialize[name] start a new AceGen session with the session name name
SMSinitialize[name, opt] start a new AceGen session with the session name name and options opt

Initialization of the AceGen system.

"Debug"=True
"Prototype"=False
"Optimal">False

"Precision” 100

option name default value
"Language" "Mathematica" source code language
"Environment" "None" is a character constant that identifies the numerical
environment for which the code is generated
"VectorLength" 500 length of the system vectors (very large system
vectors can considerably slow down execution)
"Mode" " Optimal" define initial settings for the options of the AceGen functions
"GlobalNames" {"v","i","b"} first letter of the automatically generated auxiliary real,
integer, and logical type variables
"SubroutineName" #& pure function applied on the
names of all generated subroutines
"Debug" for "Mode™: if True extra (time consuming) tests of code

correctness are performed during derivation of
formulas and also included into generated source code

default precision of the signatures

Options for SMSinitialize.

L anguage description Generic name

" Fortran" fixed form FORTRAN 77 code "Fortran"

"Fortran90" free form FORTRAN 90 code "Fortran"

" Mathematica" code written in Mathematica " Mathematica"
programming language

"C" ANSI C code "c"

"C++" ANSI C++ code "c"

"Matlab" standard Matlab "M" file "Matlab™

Supported languages.

70

AceGen code generator

mode
"Plain” all expression optimization procedures are excluded
" Debug" options are set for the fastest derivation of the code, all the expressions
are included into the final code and preceded by the explanatory comments
" Prototype" options are set for the fastest derivation of the code,
with moderate level of code optimization
" Optimal" options are set for the generation of the fastest and the shortest

generated code (it is used to make a release version of the code)

Supported optimization modes.

environment description Language
"None" plain code defined by
"Language” option
"MathLink" the MathL ink program is build from the generated source "c"
code and installed (see Install) so that functions defined in
the source code can be called directly from Mathematica
(see Generation of MathLink code,
SMSInstal IMathLink)
"User" arbitrary user defined finite element defined by
environment (see Standard FE Procedure, "Language" option
User defined environment interface)
"AceFEM" Mathematica based finite element "c"

"AceFEM—MDriver"

"FEAP"

"ELFEN"

environment with CDriver numerical module

(element codes and computationally intensive parts are written
in C and linked with Mathematica via the MathLink protocol)
(see Standard FE Procedure, AceFEM Structure)

AceFEM finite element environment with MDriver "Mathematica"
numerical module (elements and all procedures written

entirely in Mathematica's programming language)

(see Standard FE Procedure, AceFEM Structure)

research finite element environment written in FORTRAN "Fortran"
(see Standard FE Procedure, About FEAP)

commercial finite element environment written in FORTRAN "Fortran"
(see Standard FE Procedure, About ELFEN)

Currently supported numerical environments.

In a "Debug" mode all the expressions are included into the final code and preceded by the explanatory comments.
Derivation of the code in a "Optimal" mode usually takes 2-3 times longer than the derivation of the code in a "Proto-
type" mode.

In[1]:=

This initializes the AceGen system and starts a new AceGen session with the name "test”. At the end of the session, the FORTRAN

code is generated.

SMSInitialize['test", "Language" -> "Fortran'];

AceGen code generator 71

SMSModule

SMSModule[name] start a new module with the name
name without input/output parameters

SMSModule[name, start a new module with the name name
typel[pi1,P12,...1, type2[po1,P22,...1,...] and a list of input/output parameters pi1,
P12,...Pa1, P22, OF Specified types

Syntax of SMSModule function.

parameter types

Real[p1,p2,...] list of real type parameters

Integer[p1, p2,.--] list of integer type parameters

Logical[p1,p2,...] list of logical type parameters

"typename"[p1,p2,..-] list of the user defined type "typename" parameters
Automatic[p1, p2,...] list of parameters for which type is not defined

(only allowed for interpreters like Mathematica and Matlab)

Types of input/output parameters

The name of the module (method, subroutine, function, ...) name can be arbitrary string or Automatic. In the last case
AceGen generates an unique name for the module composed of the session name and an unique number. All the
parameters should follow special AceGen rules for the declaration of external variables as described in chapter

External Variables . An arbitrary number of modules can be defined within a single AceGen session. An exception is
Matlab language where the generation of only one module per AceGen session is allowed.

option name default value
"Verbatim"—>"text" None string "text" is included at the end of the
declaration block of the source code verbatim
"Input"” All list of input parameters
"Output” All list of output parameters
Options for SMSModule.

By default all the parameters are labeled as input/output parameters. The "Input” and the "Output” options are used in
MathLink (see Generation of MathLink code) and Matlab to specify the input and the output parameters.

The SMSModule command starts an arbitrary module. However, numerical environments usually require a standardized
set of modules (traditionally called "user defined subroutines™) that are used to perform specific task (e.g. to calculate

tangent matrix) and with a strict set of 1/0 parameters. The SMSStandardModule command can be used instead of
SMSModule for the definition of the standard user subroutines for supported finite element numerical environments.

72

AceGen code generator

This creates a subroutine named "subl" with real parameters x, z, real type array y(5), integer parameter i, and parameter m of the

user defined type "mytype" .

In[45]:= <<AceGen;

SMSInitialize['test", " Language"->"Fortran'];
SMSModule[""'subl™,Real [x$$,y$$[5]1], Integer[1$$] ,Real [z$$] ,
"mytype” [m$$],"Verbatim”->"COMMON /xxx/a(5)"];

SMSWrite[];
Iltest.f

Method : SUbl 0 formulae, 0 sub-expressions

[0] File created : teSt-f Size : 816

User : Korelc

* * * * * *

1*
*

*hdhhhhhhdihkx

AceGen VERSION
Co. J. Korelc 2006

20.8.2006 22:34

$ %

* * * * * *

User : Korelc
Evaluation time

Subroutine

*hdkKhk

Number of formulae

IMPLICIT NONE
include "sms.h*

INTEGER 1

Total size of Mathematica code :
Total size of Fortran code

SUBROUTINE
SUBROUTINE subl(v,x,y,i,z,m)

0 s Mode
0 Method
subl size :0

* * *

Optimal
Automatic

0 subexpressions

254 bytes

%

DOUBLE PRECISION v(5001),x,y(5),z
TYPE (mytype)::m
COMMON /xxx/a(5)

END

SMSWrite

B R

SMSWrite[" file",opt] write source code in the file " file.ext"

SMSWrite[] write source code in the file "session_name.ext"

Create automatically generated source code file.

language file extension
"Fortran" name. f
"Fortran90" name.f90

" Mathematica" name.m

"ct name.c
"C++" name.cpp
"Matlab" name.m

File extensions.

AceGen code generator

73

option name default value
"Splice" file prepended to the generated source code file
"Substitutions" {} list of rules applied on all
expressions before the code is generated
"IncludeNames" False the name of the auxiliary variable
is printed as a comment before definition
"IncludeAllFormulas" False also the formulae that have no effect on the output
parameters of the generated subroutines are printed
"OptimizingLoops" 1 number of the additional
optimization loops over the whole code
"IncludeHeaders" Automatic header files to be included in the
declaration block of all generated subroutines
(INCLUDE in Fortran and USE in Fortran90) or in
the head of the C file. Default values are as follows:
"Fortran" = {""sms.h"}
"Fortran90" = {"SMS"}
"Mathematica" = {}
"C" = {"sms.h"}
"C++" = {"sms.h"}
"MaxLeafCount" 3000 due to the limitations of Fortran compilers,
break large Fortran expressions into
subexpressions of the size less than "MaxLeafCount"
(size is measured by the LeafCount function)
"LocalAuxiliaryVariables False The vector of auxiliary variables
" is defined locally for each module.
Options for SMSWrite.

The "splice-file" is arbitrary text file that is first interpreted by the Mathematica’s Splice command and then prepended
to the automatically generated source code file. Options "IncludeNames" and "IncludeAllFormulas™ are useful during
the "debugging" period. They have effect only in the case that AceGen session was initiated in the "Debug" or "Proto-
type" mode. Option "OptimizingLoops" has effect only in the case that AceGen session was initiated in the "Optimal"

or a higher mode.

The default header files are located in Mathematica’s ../AddOns/Applications/AceGen/Include/ directory together with
the collection of utility routines (SMSUtility.c and SMSUTility.f). The header files and the utility subroutines should be
available during the compilation of the generated source code.

See also: Standard AceGen Procedure .

This write the generated code on the file "source.c" and prepends contents of the file "test.mc" interpreted by the Splice command.

In[6]:= <<AceGen";

strm=OpenWrite[''test.mc'];

WriteString[strm,"/*This is a \"splice\" file <*100+1*> */"];

Close[strm];

In[10]:= !! test.mc

/*This is a "splice”™ file <*100+1*> */

74

AceGen code generator

In[11]:= SMSInitialize['"test", "Language" -> "C"];

In[15]:=

SMSModule['sub1™, Real[x$$, y$$[2111:;
SMSExport[BesselJ[SMSReal [y$$[1]].SMSReal [y$$[2]11].x$$];
SMSWrite["'source™,"Splice"™ -> "test.mc",

"Substitutions"->{BesselJ[i_,j_]:>"mybessel"[1,j]1}]1:

Method :

[0] File created :

Ilsource.c

SUbl 1 formulae, 13 sub-expressions

source.cC size : 742

/x * *Kkhkhkk * * * * * * * *

* AceGen VERSION *
* Co. J. Korelc 2006 10.10.2006 17:24 *
User : USER

Evaluation time
Number of formulae
Subroutine

Total
Total size of C code

#include "sms.h"

/*This is a "splice" file 101 */

/ SUBROUTINE

size of Mathematica code :
: 146 bytes*/

:0s Mode : Optimal
-1 Method: Automatic
: subl size :13

13 subexpressions

void subl(double v[5001],double (*x),double y[2])

{
g_‘X):mybessel (vI01.y[1D;

SMSEvaluateCellsWithTag

SMSEvaluateCellsWithTag[tag] find and evaluate all

SMSEvaluateCellsWithTag[tag,"Session"] find and reevaluate notebook cells with the cell tag
tag where search is limited to the cells that has
already been evaluated once during the session

notebook cells with the cell tag tag

Cell tags are used to find single notebook cells or classes of cells in notebook. Add/Remove Cell Tags opens a dialog
box that allows you to add or remove cell tags associated with the selected cell(s). Mathematica attaches the specified
cell tag to each of the selected cells. The cell tags are not visible unless Show Cell Tags in the Find menu is checked.
To search for cells according to their cell tags, you can use either the Cell Tags submenu or the Find in Cell Tags

command. SMSEvaluateCellsWithTag command finds and evaluates all cells with the specified tag.

See also: Solid, Finite Strain Element for Direct and Sensitivity Analysis

Example:

CELLTAG, b:3.0.3
Print["this is cell with tag CELLTAG"]

AceGen code generator

75

In[186]:=
<<AceGen" ;
SMSInitialize["test”, 'Language'™ -> "C"];
SMSModule[sub1™];
SMSEvaluateCel IsWithTag[""CELLTAG"]

[0-0] Include Tag : CELLTAG (1 input cells)
this is cell with tag CELLTAG

SMSVerbatim

SMSVerbatim[source] write textual form of the parameter source
into the automatically generated code verbatim

SMSVerbatim[" language, "—>source;, write textual form of the source which
"language,"—>sourcey,...] corresponds to the currently used program language
into the automatically generated file verbatim

SMSVerbatim[...,"Checklf"—>False] Since the effect of the
SMSVerbatim statement can not be predicted,
some optimization of the code can be prevented by the
"verbatim" statement. With the option "CheckIf"—>False,
the verbatim code is ignored for the code optimization.

SMSVerbatim[...,"Close"—>False] The SMSVerbatim command automatically
adds a separator character at the end of the code
(.e.g. ";" in the case of C++). With the option "Close"—>
False, no character is added.

Input parameters source, sources, source,,... have special form. They can be a single string, or a list of arbitrary
expressions. Expressions can contain auxiliary variables as well. Since some of the characters (e.g. ") are not allowed

in the string we have to use substitution instead accordingly to the table below.

substitution character
[/ \
/I 1
i v
[/n \n

Character substitution table.

The parameter "language” can be any of the languages supported by AceGen ("Mathematica", "Fortran","Fortan90","-
C","C++",...). It is sufficient to give a rule for the generic form of the language ("Mathematica", "Fortran”,"C") (e.g

instead of the form for language "Fortran90" we can give the form for language "Fortran™).

The source can contain arbitrary program sequences that are syntactically correct for the chosen program language,

however the source is taken verbatim and is neglected during the automatic differentiation procedure.

76 AceGen code generator

In[945]:=

SMSInitialize["test", "Language" -> ""C"];

SMSModule[""test'];

SMSVerbatim[
"Fortran™ -> {"write(x,*) "Hello™", "\nstop'"}
, "Mathematica™ -> {"Print["Hello"];", "\nAbort[];"}
, "C" > {"printf("Hello");", "\nexit(0);"}

1;

SMSWrite["test"];

Method : teSt 1 formulae, 2 sub-expressions

[0] File created : teSt- C Size : 685

In[950]:=
Iltest.c
/x *hhkhhkik * * * * * * * * *
* AceGen VERSION *
* Co. J. Korelc 2006 21.8.2006 12:23 *
User : Korelc
Evaluation time :0s Mode : Optimal
Number of formulae -1 Method: Automatic
Subroutine : test size :2
Total size of Mathematica code : 2 subexpressions
Total size of C code . 122 bytes*/
#include "'sms.h"
Y Sciiaiaiaioiaiaioioioiaile SUBROUT I NE **rssrriirrx /
void test(double v[5001])
{
printf("'Hello");
exit(0);
};
SMSPrint
SMSPrint[exprl,expr2,...,options] create a source code sequence that prints out all the
expressions expr; accordingly to the given options
option description default value
"Output" "Console" =standard output device "Console"
{"File", filename} = create a source code sequence that
prints out all the expressions expr; to the file filename
"Optimal” By default the code is included into source code only in False
"Debug" and "Prototype™ mode. With the option "Optimal"—
True the source code is always generated.
"Condition" at the run time the print out is actually executed True
only if the given logical expression yields True

Options for the SMSPrint function.

AceGen code generator

i

Expression expr; can be a string constant or an arbitrary AceGen expression. If the chosen language is Mathematica

language or Fortran, then the expression can be of integer, real or string type.

The following restrictions exist for C language:

> the integer type expression is allowed, but it will be cased into the real type expression;
> the string type constant is allowed and should be of the form "text™;
> the string type expression is not allowed and will result in compiler error.

The actual meaning of the standard output device depends on a chosen language as follows:

Language standard output device ("Console")
"Mathematica" current notebook

"c" console window (printf (...)
"Fortran" console window (write(x,x) ...)
"Matlab" matlab window (disp (...)

Standard output device.

Example 1: printing out to standard output device

In[17]:= << AceGen~;
SMSInitialize["test", "Language" -> "'C'", ""Mode" - "Prototype'];
SMSModule["test', Real [x$$]1];
SMSPrint["pi="", x];

SMSPrint["time="", SMSTime[], "Output” » {"File', "test.out"}];

SMSPrint["e=", E, "Output” -» {"File", "test.out"}, "Condition" -» SMSReal [x$$] > 0] ;

SMSWrite[];

Method : tESt 4 formulae, 11 sub-expressions

[0] File created : teSt- C Size : 993

78

AceGen code generator

In[24]:= lltest.c

Y e e ke e e e ke ke e e e e e ke ke ok

* AceGen VERSION *
* Co. J. Korelc 2006 21.8.2006 18:22 *
AEAAEEAAIXAAAAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAXX
User : Korelc

Evaluation time :0s Mode : Prototype
Number of formulae - 4 Method: Automatic
Subroutine . test size :11

Total size of Mathematica code : 11 subexpressions

Total size of C code : 417 bytes*/

#include "'sms.h"

Y Solaiadeiaiaiaioioiolaiaiaiaioiotole SUBROUT I N E *F¥¥drrttdddirr /
void test(double v[5001],double (*x))

{

FILE *SMSFile;

printf('"\n%s %g ","pi="", (double)0.3141592653589793¢el);
v[2]=Time();

SMSFile=fopen(*'test.out”,"a");

fprintf(SMSFile,"\n%s %g ","time=",(double)Vv[2]);
fclose(SMSFile);

i T((*x)>0e0){

SMSFile=fopen(*'test.out","a");

fprintf(SMSFile,"\n%s %g ' ,"e=",(double)0.2718281828459045¢e1);
fclose(SMSFile);

}:

}:

Numerical environments specific options

"Condition"—>"DebugElement" Within some numerical environment there is an additional

"Output”—>"File" create a source code sequence that prints out to the standard output
file associated with the specific numerical environment (if exist)

possibility to limit the print out. With the "DebugElement"

option the print out is executed accordingly to the value of the
SMTIData["DebugElement"] environment variable (if applicable):
—1 = print outs are active for all elements

0 = print outs are disabled (default value)

>0 = print out is active if SMTIData["DebugElement"]=
SMTIData["CurrentElement"]

Example 2: printing out from numerical environment

In[33]:=

<< AceGen~;
SMSInitialize["test", "Environment" -> ""AceFEM", ""Mode" - "Prototype'] ;
SMSTemplate["'SMSTopology" -> "T1"] ;
SMSStandardModule["Tangent and residual®];
SMSPrint[""pi=""", x];
SMSPrint[""load=""", rdata$$["'Multiplier'],
"Output" -» "File", "Condition" -> ""DebugElement'] ;
SMSWrite[];

Method : SSP(FQ 3 formulae, 8 sub-expressions

0] Fite created : LEST . C size - 3807

AceGen code generator 79

In[40]:= lltest.c
head deleted ...

Y felaiaiaiaioiaiaiaiaiaialale SUBROUTINE ialaieiale /

void SKR(double v[5001],ElementSpec *es,ElementData *ed,NodeSpec **ns
,NodeData **nd,double *rdata,int *idata,double *p,double **s)

{

v[1]=0.3141592653589793€e1;

es->Execute(

"Print[\"pi=\",\" \",SMTVData[1]];"

,""SMSPrint'™);

if((idata[1D_DebugElement]==(-1) ||
idata[ID_CurrentElement]==idata[ID_DebugElement])){
if(strcmp(es->0utFileName,"NONE') I=0){SMTFi le=fopen(es->0utFileName,"a");
fprintf(SMTFile,"\n%s %g ' ,"load="", (double)rdata[RD_Multiplier]);
fclose(SMTFile);}

}:

};

Basic Assignments

SMSR or e

SMSR[symbol,exp] create a new auxiliary variable if introduction of
a new variable is necessary, otherwise symbol=exp

symbol £ exp infix form of the SMSR function is
equivalent to the standard form SMSR[symbol,exp]

The SMSR function first evaluates exp. If the result of the evaluation is an elementary expression, then no auxiliary
variables are created and the exp is assigned to be the value of symbol. If the result is not elementary expression, then
AceGen creates a new auxiliary variable, and assigns the new auxiliary variable to be the value of symbol. From then
on, symbol is replaced by the new auxiliary variable whenever it appears. Evaluated expression exp is then stored into
the AceGen data base.

Precedence level of k operator is specified in precedence table A.2.7. It has higher precedence than arithmetical opera-
tors like +, -,*,/, but lower than postfix operators like // and /., /... . In these cases the parentheses or standard form of
functions have to be used. For example, X £ a+b/.a->3 statement will cause an error. There are several alternative ways
how to enter this expression correctly. Some of them are:

X E(atb/.a->3),

X £ ReplaceAll[a+h,a->3],
SMSR[x,a+b/.a->3],
x=SMSSimplify[a+b/.a->3].

See also: Auxiliary Variables , SMSM , SMSS , SMSSimplify

80 AceGen code generator

Numbers are elementary expressions thus a new auxiliary is created only for expression Sin[5].

In[56]:= SMSInitialize["test", "Language’” - ""Fortran'] ;
SMSModule["'sub™] ;
XEl
Yy e SIin[5]

Modulle : sub

out[58]= 1
Out[59]= vy
SMSV or F

SMSV[symbol,exp] create a new auxiliary variable regardless of the contents of exp

symbol + exp an infix form of the SMSR function is
equivalent to the standard form SMSV/[symbol,exp]

The SMSV function first evaluates exp, then AceGen creates a new auxiliary variable, and assigns the new auxiliary
variable to be the value of symbol. From then on, symbol is replaced by the new auxiliary variable whenever it appears.
Evaluated expression exp is then stored into the AceGen database.

Precedence level of k£ operator is specified in precedence table A.2.7 and described in SMSR .

See also: Auxiliary Variables , SMSM , SMSS , SMSSimplify

The new auxiliary variables are created for all expressions.

In[60]:= SMSInitialize["test", "Language' - "Fortran'];
SMSModulle["'sub™] ;
Xkl
y + Sin[5]

Module : sub

out[62]= X
out[63]= y
SMSM or 4

SMSM[symbol,exp] create a new multi—valued auxiliary variable

symbol 4 exp an infix form of the SMSM function is
equivalent to the standard form SMSM{symbol,exp]

The primal functionality of this form is to create a variable which will appear more than once on the left-hand side of
equation (multi-valued variables). The SMSM function first evaluates exp, creates a new auxiliary variable, and assigns
the new auxiliary variable to be the value of symbol. From then on, symbol is replaced by a new auxiliary variable
whenever it appears. Evaluated expression exp is then stored into the AceGen database. The new auxiliary variable will
not be created if exp matches one of the functions which create by default a new auxiliary variable. Those functions are

AceGen code generator 81

SMSReal, SMSinteger, SMSLogical, SMSFreeze,and SMSFictive. The result of those functions is assigned directly to
the symbol.

Precedence level of k£ operator is specified in precedence table A.2.7 and described in SMSR .

See also: SMSR , SMSS , SMSFreeze , Auxiliary Variables , SMSReal |,
SMSinteger, SMSLogical , SMSFictive , SMSIf , SMSDo .

SMSS or A4

SMSS[symbol,exp] a new instance of the previously created multi—
valued auxiliary variable is created

symbol 4 exp this is an infix form of the SMSS function and
is equivalent to the standard form SMSS[symbol,exp]

At the input the value of the symbol has to be a valid multi-valued auxiliary variable (created as a result of functions
like SMSS, SMSM, SMSEndIf, SMSEndDo, etc.). At the output there is a new instance of the i-th auxiliary variable with
the unique signature. SMSS function can be used in connection with the same auxiliary variable as many times as we
wish.

Precedence level of F operator is specified in precedence table A.2.7 and described in SMSR .

See also: Auxiliary Variables , SMSIf , SMSDo .

Successive use of the 4 and 4 operators will produce several instances of the same variable x.
In[129]:=
SMSInitialize["test", "Language" - "'Fortran™];
SMSModule["sub’, Real [x$$]];
X3l
X4X+2
X45

Module : sub

out[131]=
X

Out[132]=
2X

Out[133]=
3X

In[134]:=
SMSExport[x, x$$] ;
SMSWrite[];

Function : SUb 4 formulae, 12 sub-expressions

[0] File created : teSt-f Size : 764

82 AceGen code generator

In[136]:=
11 test.f
C**
C* SMS 4.0 - Symbolic Mechanics System - FORTRAN *
c* Co. J. Korelc Sept. 1999 6.7.2000 14:13 *
C**********************7\-***************************************
C Evaluation time : 0 seconds Mode : TFFFOFF
C Number of formulae -4
C Subroutine : sub size :12
C Total size of Mathematica code : 12 subexpressions
C Total size of Fortran code : 238 bytes
"""""""" SUBROUTINE Fekeokekek
SUBROUTINE sub(v,x)
IMPLICIT NONE
include "sms.h*
DOUBLE PRECISION v(501),x
v(1)=1d0
v(1)=2d0+v(1)
v(1)=5d0
x=v(1)
END
SMSInt

SMSint[exp] create an integer type auxiliary variable

If an expression contains logical type auxiliary or external variables then the expression is automatically considered as
logical type expression. Similarly, if an expression contains real type auxiliary or external variables then the expression
is automatically considered as real type expression and if it contains only integer type auxiliary variables it is consid-
ered as integer type expression. With the SMSint function we force the creation of integer type auxiliary variables also
in the case when the expression contains some real type auxiliary variables.

See also: Auxiliary Variables , SMSM .

SMSSimplify

SMSSimplify[exp] create a new auxiliary variable if the introduction of new variable is necessary,
otherwise the original exp is returned

The SMSSimplify function first evaluates exp. If the result of the evaluation is an elementary expression, then no
auxiliary variables are created and the original exp is the result. If the result is not an elementary expression, then
AceGen creates and returns a new auxiliary variable. SMSSimplify function can appear also as a part of an arbitrary
expression.

See also: Auxiliary Variables , SMSM .

This creates a new auxiliary variable inside the formula.

In[234]:=
SMSInitialize["test"]; SMSModule["'sub'"];

Module : sub

AceGen code generator 83

In[235]:=
1+5%SMSSimplify[Tan[5] + 1]

Out[235]=
1+5 (1¥%1)

SMSVariables

SMSVariables[exp] givesa list of all auxiliary variables in expression
in the order of appearance and with duplicate elements removed

Symbolic-numeric Interface

SMSReal

SMSReal[exte] = create real type external data object (SMSExternalF)
with the definition exte and an unique signature

SMSReal[i_List] = Map[SMSReal[#]&,i]

Introduction of the real type external variables .

option name default value

"Dependency" True define partial derivatives of external data object
(SMSExternalF) with respect to given auxiliary
variables (for the details of syntax see SMSFreeze)

"Subordinate" {} list of auxiliary variables that represent control structures
(e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression

Options for SMSReal.

The SMSReal function does not create a new auxiliary variable. If an auxiliary variable is required, then we have to use
one of the functions that introduces a new auxiliary variable (e.g. r-SMSReal[r$$]). The exte is, for the algebraic
operations like differentiation, taken as independent on any auxiliary variable that might appear as part of exte. The
parts of the exte which have proper form for the external variables are at the end of the session translated into FOR-
TRAN or C format.

By default an unique signature (random high precision real number) is assigned to the SMSExternalF object. If
the numerical evaluation of exte (N[exte]) leads to the real type number then the default signature is calculated by it’s
pertubation, else the signature is a real type random number form interval [0,1]. In some cases user has to provide it's
own signature in order to prevent situations where wrong simplification of expressions might occur (for mode details
see Signatures of the Expressions).

See also: External Variables, Expression Optimization

84 AceGen code generator

SMSinteger

SMSinteger[exte] = create integer type external data object
(SMSExternalF) with the definition exte and an unique signature

Introduction of integer type external variables .

option name default value

"Subordinate"—> {} list of auxiliary variables that represent control structures

{vi, Vo ...} (e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression

"Subordinate"—>v, = "Subordinate"—>{v4}

Options for SMSinteger.

The SMSinteger function does not create a new auxiliary variable. If an auxiliary variable is required, then we have to
use one of the functions that introduces a new auxiliary variable (e.g. irSMSInteger[i$$]). In order to avoid wrong
simplifications an unique real type signature is assigned to the integer type variables.

See also: SMSReal , External Variables.

SMSLogical
SMSLogical[exte] create logical type external data object with definition exte
option name default value
"Subordinate"—> {} list of auxiliary variables that represent control structures
(v, Vo ...} (e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression
"Subordinate"—>v, = "Subordinate"—>{v4}
Options for SMSLogical.

Logical expressions are ignored during the simultaneous simplification procedure. The SMSLogical function does not
create a new auxiliary variable. If an auxiliary variable is required, then we have to use one of the functions that
introduces a new auxiliary variable (e.g. brSMSLogical[b3]).

See also: SMSReal , External Variables.

AceGen code generator 85

SMSReallList

SMSRealList[{elDq,elD,,...}, array_Function] create a list of real type external data objects that corresponJi
to the list of array element identifications {eIDq,elD>,...}
and represents consecutive elements of the array

SMSRealL.ist[pattern] gives the real type external data objects that correspond to
elements which array element identification elD match patte

=

SMSRealList[pattern,code_String] gives the data accordingly to the code that correspond to
elements which array element identification elD match patte

=

Introduction of the list of real type external variables .

option name default value
"Description"—>{...} {elDq,elDy,...} a list of descriptions that corresponds to the

list of array element identifications {eID,elD,,...}
"Length"—>I 1 each array element identification elD; can

also represent a part of array with the given length
"Index"—>i 1 index of the actual array element taken

from the part of array associated with the array

element identification elD; (index starts with 1)
"Signature” {1,1,...} a list of characteristic real type values that corresponds to

the list of array element identifications {eIDy,elD,,...}

Options for SMSRealList

code description
"Description” the values of the option "Description"
"Signature" the values of the option "Signature"
"Export" the patterns (e.g. ed$$[5]) suitable
as parameter for SMSExport function
"Length" the accumulated length of all elements which
array element identification elD match pattern
"ID" array element identifications
"Plain" external data objects with all

auxiliary variables replaced by their definition

Return codes for SMSRealList.

The SMSRealList commands remembers the number of array elements allocated. When called second time for the
same array the consecutive elements of the array are taken starting from the last element form the first call. The array
element identifications elD is a string that represents the specific element of the array and can be used later on
(through all the AceGen session) to retrieve the element of the array that was originally assigned to elD.

The parameter array is a pure function that returns the i-th element of the array. For the same array it should be always
identical. The definitions x$$[#]& and x$$[#+1]& are considered as different arrays.

86 AceGen code generator

See also: SMSReal

Example
In[107]:=
<< AceGen~
SMSInitialize["test", "Language" -> ""C"];
SMSModule["test", Real [a$$[10], b$$[10], c$$[100]], Integer[L$S, i$$]];
SMSRealList[{"al", "a2"}, a$$[#] &]

Out[110]=
{a$%1, a$$,}

In[111]:=
SMSRealList[{'a3", "a4"}, a$$[#] &]

out[111]=
{a$$3, a$ds}

In[112]:=
SMSRealList["a3"]

Out[112]//DisplayForm=
a$$3

In[113]:=
SMSRealList[{"'bl", "b2"}, b$$[#] &, ""Length” -» 5, "Index" -» 2]

out[113]=
{b$$,, b$$7}

In[114]:=

SMSRealList[{"b3", "b4"}, b$$[#] &, "Length” » 20, "Index" » 4]
out[114]=

{b$$14, bPP3s}

The arguments "Length™ and "Index" are left unevaluated by the use of Hold function in order to be able to retrieve the same array
elements through all the AceGen session. The actual auxiliary variables assigned to L and i can be different in different
subroutines!!

In[115]:=

{L, i} £ SMSInteger[{L$$, i$$}];

SMSRealList[{"'cl", "c2"}, c$$[#] &, "Length” - Hold[2L], "Index" - Hold[i +1]]
Out[1l16]=

{C$P1.i, CPP1.i21L)

In[117]:=
SMSRealList[Array["B", 2], c$$[#] &, "Length” -» Hold[L], "Index" - Hold[i]]

out[117]=
{C$Pi.aL, CPBi5L)

AceGen code generator 87

In[118]:=
TableForm[{SMSRealList["B"[_], "ID"], SMSRealList["B"[_]11,
SMSRealList["B"[_], "Plain™], SMSRealList["B"[_], "Export']},
TableHeadings -» {{""ID", ""AceGen", "Plain', "Export"}, None}]

Out[118]//TableForm=
1D B[1] B[2]
AceGen C$$i.aL C$Pi.sL
Plain CHS[(Iint) [i$$] +4 (int) [L$SB]] CHS[(int) [i$$] +5 (int) [L$S]]
Export CHS[i +4L) cP$[i +5L]

In[119]:=
SMSRealList["p"[_]1, "Length"]

out[119]=
2 (int) [L$$]

SMSEXxport

SMSExport[exp,ext] export the expression exp to the external variable ext

SMSExport[{expl,exp2,....expN},ext] export the list of expressions {expl,exp2,...}
to the external array ext formed as Table[ext[i],{i,1,N}]

SMSExport[{expl,exp2,....expN}, export the list of expressions {expl,exp2,...}
{extl,ext2,...,ex2N}] to a matching list of the external variables {ext1,ext2,...}

SMSEXxport[exp, ext, "AddIn"—>True] add the value of exp to the
current value of the external variable ext

The expressions that are exported can be any regular expressions. The external variables have to be regular AceGen
external variables (see External Variables). At the end of the session, the external variables are translated into the

FORTRAN or C format.
See also: External Variables .

In[1]:= << AceGen~;
SMSInitialize["test", "Language' -> ""Fortran’];
SMSModule["'test', Real [x$$, a$$[2], r$$[2, 2]111;
X £ SMSReal [x$$] ;

SMSExport[x?, x$$];

(* three equivalent forms how to export list of two valuesx)
SMSExport[{1, 2}, a$$];

SMSExport[{3, 4}, {a$$[1], a$$[2]1}1;

SMSExport[{5, 6}, a$$[#] &];

SMSExport[Array[#1#2 &, {2, 2}]1, r3];
SMSWrite["test"];

Method : teSt 5 formulae, 26 sub-expressions

[0] File created : teSt-f Size : 936

88 AceGen code generator

In[11]:= !ltest.f

I e S e e T

I* AceGen VERSION *
1> Co. J. Korelc 2006 20.8.2006 23:31 *

| R R AR R R R o R b ok o ok ok R Rk S R R R R R ok

1 User : Korelc

I Evaluation time :0s Mode : Optimal

I Number of formulae : 5 Method: Automatic
I Subroutine : test size :26

I Total size of Mathematica code : 26 subexpressions

I Total size of Fortran code : 364 bytes

1 SUBROUTINE

SUBROUTINE test(v,x,a,r)
IMPLICIT NONE

include "sms.h*

DOUBLE PRECISION v(5001),x,a(2),r(2,2)
X=X**2

a(1)=1do

a(2)=2do

a(1)=3do

a(2)=4d0

a(1)=5d0

a(2)=6d0

r(1,1)=1do

r(1,2)=2d0

r(2,1)=2d0

r(2,2)=4do

END

SMSCall

sc=SMSCall["sub™,p;,p,....] returns auxiliary variable sc that represents the call of external
subroutine sub with the given set of input and output parameters

The name of the subroutine can be arbitrary string. The SMSCall commands inserts into the generated source code the
call of external subroutine with the given set of input and output parameters. The input parameters can be arbitrary
expressions.

The declaration of output parameters and their later use in a program should follow AceGen rules for the declaration
and use of external variables as described in chapter External Variables (e.g. Real[x$$$,"Subordinate"—sc],

Integer[i$$[5],"Subordinate"—sc], Logical[b$$$,"Subordinate”—sc]). The output parameters are defined as local
variables of the master subroutine.

The proper order of evaluation of expressions is assured by the "Subordinate"—sc option where the parameter sc is an
auxiliary variable that represents the call of external subroutine. Additionally the partial derivatives of output parame-

ters with respect to input parameters can be defined by the option
"Dependency”->{ {vi, 2&te 3 (v,, 9=te} .} (seealso SMSReal SMSInteger SMSLogical).

AceGen code generator

89

option name description default value

"Dependency"—> defines partial derivatives of output {}

{{v1, @g\fe 1{va, 6;328 },...} parameters with respect to input parameters

"System"—>truefalse the subroutine that is called True
has been automatically generated as well

Options for SMSCall.

Example

In[175]:=
<< AceGen™;
SMSInitialize["test”, "Language' » {"Fortran', "C", "Mathematica}[[2]]];

This generates subroutine f with an input parameter x and the output parameters y = f(x) and dy = %. The triple $$$ in declara-
tion of input parameter x indicates that x is transferred by value and not by pointer and it only effects C code.
IN[177]:=
SMSModule["F", Real [x$$$, y$$, dy$$]];
X £ SMSReal [x$$$] ;
Yy e SIN[X];
dy £ SMSD[y, X];
SMSExport[y, y$$];
SMSExport[dy, dy$$];

This generates subroutine main that calls subroutine f.

In[183]:=
SMSModule['main™, Real [x$$, r$$11];
X £ SMSReal [x$$] ;
arXxnN2;

f = SMSCall["f", a, Real [y$$], Real [dy$$]1];
da r SMSReal [dy$$$, "'Subordinate™ - f];

The "Dependency"->{sin,{a,da}} option defines that output parameter y depends on input parameters of external subroutine call f
and defines partial derivative of y with respect to input parameter a. By default all partial derivatives of output parameters with
respect to input parameters are set to 0.

The triple $$$ here is required because y is defined as local variable of the master subroutine and it only effects C code.
In[188]:=
sina e SMSReal [y$$$, ""Subordinate™ - f, "Dependency' -> {a, da}];

In[189]:=
dd £ SMSD[sina, X];
SMSExport[dd, r$$];

SMSWrite[];
Method : f 2 formulae, 14 sub-expressions

Method : mal ﬂ 2 formulae, 29 sub-expressions

[1] File created : teSt- C Size : 954

90

AceGen code generator

In[192]:=
Iltest.c

/***

Total size of Mathematica code
Total size of C code
#include "'sms.h"

43 subexpressions
339 bytes*/

* AceGen VERSION *
* Co. J. Korelc 2006 30.9.2006 17:14 *
KA AAAAAAAAARAAAAAARAAAAAAAAAAAARAAAAAA A AAAX
User : USER

Evaluation time :1s Mode : Optimal
Number of formulae " | Method: Forward
Subroutine : F size 14

Subroutine . main size :29

Y feiaiaiaiaioiaioiaiaiaialale S UBROUT I N E ¥k /
void f(double Vv[5001],double x,double (*y),double (*dy))

{
Cy)=sin(x);
(rdy)=cos(x);

void main(double v[5001],double (*x),double (*r))
{

double dy;double y;

T(v,Power((*x),2),&y,&dy);

(*r)=2e0*dy*(*x);

};

Smart Assignments

SMSFreeze

SMSFreeze[exp] create data object (SMSFreezeF) that represents expression exp,
however its numerical evaluation yields an unique signature
obtained by the perturbation of numerical value of exp

SMSFreeze[{exp; ,exp,,...}] create list of data objects (SMSFreezeF)
that represent expressions {exp;,exp,, ...}

Imposing restrictions on an optimization procedure.

AceGen code generator

91

option name default value
"Contents" False whether to prevent the search for common
sub expressions inside the expression exp
"Code" False whether to keep all options
valid also at the code generation phase
"Differentiation” False whether to use SMSFreeze also
for the derivatives of given expression exp
"Verbatim" False SMSFreeze[exp,"Verbatim"—>True] =
SMSFreeze[exp,"Contents"—>True ,
"Code"->True , "Differentiation"—>True]
"Dependency" False see below
"Subordinate" {} list of auxiliary variables that represent control structures

(e.g. SMSCall, SMSVerbatim, SMSExport) that have to
be executed before the evaluation of the current expression

Options for SMSFreeze.

SMSFreeze[exp," Dependency" —>value]

True

False

({po 5o Mp2 52)}

(Ipa 22, 222

assume that SMSFreezeF data object is
independent variable (all partial derivatives of exp are 0)

assume that SMSFreezeF data object

depends on the same auxiliary variables as

original expression exp (partial derivatives of
SMSFreezeF are the same as partial derivatives of exp)

assume that SMSFreezeF data object

depends on given auxiliary variables p,,

p2,... and define the partial derivatives of SMSFreezeF data
object with respect to given auxiliary variables p;,pz,...

={{pe Zr hp2 T)
define gradient of exp with respect

to variables {p;,p,,...py) to be { &, 22}

Values for "Dependency"” option when the input is a single expression.

92 AceGen code generator

SMSFreeze[{exp;,eXp,, ..},
"Dependency" —>value]

True assume that all expressions are independent
variables (all partial derivatives of exp; are 0)
False assume that after SMSFreeze expressions depend
on the same auxiliary variables as original expressions
{p ﬂfyxsl , ‘7;’(;32 vl define partial derivatives of {exp;,exp,, ...}
with respect to variable p to be { 62";’1 , ‘9zxpp2 .
{{ P1, P2,---}, define Jacobian matrix of the transformation from {exp,,exp,,...}
(25 0) (2o 2) N} 0By o) tobe matix | S22 2 (220 250)
{11, a;;ﬁl L{pa, ";;121 [define arbitrary partial derivatives
{{ Dot a;;zz }{ Poas a;;zz }}} of vector of expressions {exp;,exp,,...}

Values for "Dependency"” option when the input is a vector of expressions.

The SMSFreeze function creates SMSFreezeF data object that represents input expression. The numerical value of
resulting SMSFreezeF data object (signature) is calculated by the random pertubation of the numerical value of input
expression (unique signature). The SMSFreeze function can impose various additional restrictions on how expressions
are evaluated, simplified and differentiated (see options).

An unique signature is assigned to exp, thus optimization of exp as a whole is prevented, however AceGen can still
simplify some parts of the expression. The "Contents"->True option prevents the search for common sub expressions
inside the expression.

Original expression is recovered at the end of the session, when the program code is generated and all restrictions are
removed. With the "Code"->True option the restrictions remain valid also in the code generation phase. An exception
is the option "Dependency" which is always removed and true dependencies are restored before the code generation
phase. Similarly the effects of the SMSFreeze function are not inherited for the result of the differentiation. With the
"Differentiation"->True option all restrictions remain valid for the result of the differentiation as well.

With SMSFreeze[exp, "Dependency” —> {{pz, ";;p} {p2, %egf} AP, %e;p 1} the true dependencies of exp are

ignored and it is assumed that exp depends on auxiliary variables ps, ..., pn. Partial derivatives of exp with respect to
auxiliary variables py, ..., pn are taken to be ‘Ze;p,‘?;;p, .32 (see also SMSDefineDerivative where the
definition of the total derivatives of the variables is described).

SMSFreeze[exp,"Verbatim"] stops all automatic simplification procedures.

SMSFreeze function is automatically threaded over the lists that appear as a part of exp.

option name default value
"lgnoreNumbers" False whether to apply SMSFreeze functions only on parts of
the list that are not numbers (NumberQlexp] yields True)
"KeepStructure" False whether to keep the structure of the input expression
(sparsity, symmetry and antisymmetry is preserved)
"Variables" False whether to apply SMSFreeze function on all auxiliary
variables in expression rather than on expression as a whole

Additional options for input expression that is arbitrarily structured list of expressions.

See also: Auxiliary Variables , SMSInteger , SMSReal , Exceptions in Differentiation .

AceGen code generator

93

Here the various options of SMSFreeze function are demonstrated.
In[712]:=
<< AceGen™;
SMSInitialize["test"];
SMSModule["sub", Real [x$$]];
X £ SMSReal [x$$] ;

Here the original matrix, the result of numerical evaluation of the matrix and optimized matrix are presented.

In[716]:=
X 2x Cos[x]
matrix = (2 X 2 0 ;
-Cos[x] O 0
In[717]:=

matrix // SMSEvaluate // MatrixForm

Out[717]//MatrixForm=
0.5304699360852496 1.060939872170499 0.8625694068930539

1.060939872170499 2.000000000000000 O
-0.8625694068930539 O 0

In[718]:=
mr e matrix;
mr // MatrixForm

Out[719]//MatrixForm=
mria mrz; Mrais
mroq 2 0
-mriz3 O 0

Here the elements of the matrix are replaced by the SMSFreezeF data objects.

In[720]:=
a = SMSFreeze[matrix];
a // MatrixForm

Out[721]//MatrixForm=
Freeze[mri1] Freeze[2mri1] TFreeze[Cos[mrii]]
Freeze[2mri] Freeze[2] Freeze[0]]
Freeze[-Cos[mri11]] Freeze[0] Freeze[0]

Here the new numerical values of matrix are displayed.

In[722]:=
a // SMSEvaluate // MatrixForm
Out[722]//MatrixForm=
0.5261162843211248 0.9930915332003850 0.8243787060707944
0.9799062724161880 1.995023026311400 0.006499404590254645
-0.7941996183163959 0.002476043404718058 0.004036575708692753

AceGen code generator

Optimisation procedures can not optimize the matrix, thus new auxiliary variables are generated for each element of the matrix.

In[723]:=
ar e a;
ar // MatrixForm

Out[724]//MatrixForm=
arqp; arje aras

arp; arpz arszs }

arz; ars> arss

Here the affects of various options on results are presented .
In[725]:=
b = SMSFreeze[matrix, "lIgnoreNumbers" -> True] ;
b // MatrixForm
b // SMSEvaluate // MatrixForm

Out[726]//MatrixForm=
Freeze[mri1] Freeze[2mri1] Freeze[Cos[mrii]]
Freeze[2mri;] 2 0]
Freeze[-Cos[mry;]] O 0
Out[727]//MatrixForm=

0.4919362278509971 0.9940983400487229 0.8222124988595418
1.034330904328028 2.000000000000000 O
-0.8460541623782876 O 0

In[728]:=
breb;
br // MatrixForm

Out[729]//MatrixForm=
brll brlz br13
br21 2 0
br31 0 0

In[730]:=
Cc = SMSFreeze[matrix, "KeepStructure" -> True];
c // MatrixForm
c // SMSEvaluate // MatrixForm

Out[731]//MatrixForm=
Freeze[mri1] Freeze[2mri1] Freeze[Cos[mrii]]
Freeze[2mri;] 2 0]
-Freeze[Cos[mr1;]] O 0
Out[732]//MatrixForm=

0.5254870667632555 1.053916845282593 0.8055348146768811
1.053916845282593 2.000000000000000 ©
-0.8055348146768811 O 0

In[733]:=
Crec;
cr // MatrixForm

Out[734]//MatrixForm=
Cri1 Crz1 CrIi3
Croq 2 0
-criz O 0

AceGen code generator 95

In[735]:=
d = SMSFreeze[matrix, "Variables" -> True] ;
d // MatrixForm

Out[736]//MatrixForm=
Freeze[mri1] 2Freeze[mri1] Cos[Freeze[mrii]]
2 Freeze[mrii] 2 0
-Cos[Freeze[mr1;]] O 0
SMSFictive

SMSFictive["Type" —>fictive_type] create fictive variable of the
type fictive_type (Real, Integer or Logical)

SMSFictive[] = SMSFictive["Type" —>Real]

Definition of a fictive variable.

A fictive variable is used as a temporary variable to perform various algebraic operations symbolically on AceGen
generated expression (e.g. integration, finding limits, solving algebraic equations symbolically, ...). For example, the

integration variable x in a symbolically evaluated definite integral fa f(x) dx can be introduced as a fictive variable
since it will not appear as a part of the result of integration.

The fictive variable has unique signature but it does not have assigned value, thus it must not appear anywhere
in a final source code. The fictive variable that appears as a part of the final code is replaced by random value and a
warning message appears.

See also: Auxiliary Variables , Non - local Operations .

Example

Here the pure fictive auxiliary variable is used for x in order to evaluate expression f(n) = an_l Og(xx) x=0, Where g(x) is arbitrary

expression (can be large expression involving If and Do structures). Not that O cannot be assigned to x before the differentation.

In[1]:= << AceGen;
SMSInitialize['test", "Language'" -> ""C"];
SMSModule["sub”, Real [f$$, a$$, b$$S], Integer[m$$]1];
fa0;
SMSDo[n, 1, SMSInteger[m$$], 1, f];
X £ SMSFictivel[];

X X
Sin| — Cos|—1;

g =Sin[=] +Cos[]

T4+ SMSReplaceAll[SMSD[g, X], X - 0];

SMSEndDo[f] ;
SMSExport[f, f$$];

In[11]:= SMSWrite[];

Method : SUb 3 formulae, 15 sub-expressions

[0] File created : teSt- C Size : 804

96 AceGen code generator

In[12]:= !! test.cC
/***
* AceGen VERSION *
* Co. J. Korelc 2006 29.8.2006 18:49 *
A AAAAAAAAARAAAAAARAAAAAAAAAAAARAAAAAA A AAAX
User : Korelc
Evaluation time :0s Mode : Optimal
Number of formulae -3 Method: Automatic
Subroutine : sub size :15
Total size of Mathematica code : 15 subexpressions
Total size of C code : 236 bytes*/

#include "sms.h"

Y Salaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiale SUBROUT I N E **x&xsrddrditx /

void sub(double v[5005],double (*f),double (*a),double (*b),int (*m))
{

int i12;

v[1]=0e0;

Ffor(i2=1;i2<=(int) ((*m));i2++){
v[1]=1e0/i2+Vv[1];

}:/* end for */

§*f)=v [11:

SMSReplaceAll

SMSReplaceAll[exp, replace any appearance of auxiliary variable v;
V1 —>Newy, Vo —>News, ...] in expression exp by corresponding expression new;

At the output the SMSReplaceAll function gives exp |y,=new; v,=new....- The SMSReplaceAll function searches entire
database for the auxiliary variables that influence evaluation of the given expression exp and at the same time depend
on any of the auxiliary variables v;. The current program structure is then enhanced by the new auxiliary variables.
Auxiliary variables involved can have several definitions (multi-valued auxiliary variables).

See also: Symbolic Evaluation .

It is users responsibility that the new expressions are correct and consistent with the existing program structure. Each
time the AceGen commands are used, the system tries to modified the entire subroutine in order to obtain optimal
solution. As the result of this procedures some variables can be redefined or even deleted. Several situations when the
use of SMSReplaceAll can lead to incorrect results are presented on examples.

However even when all seems correctly the SMSReplaceAll can abort execution because it failed to make proper
program structure. Please reconsider to perform replacements by evaluating expressions with the new values directly
when SMSReplaceAll fails.

AceGen code generator

Example 1: the variable that should be replaced does not exist

The £ command creates variables accordingly to the set of rules. Here the expression y£-x did not create a new variable y resulting
in wrong replacement.
In[749]:=
<< AceGen™;
SMSInitialize["test"];
SMSModule["'sub™, Real [x$%$]1];
X £ SMSReal [x$$] ;
Y E - X;
zeSin[y]l;
SMSReplaceAll[z, y » x/ 3]

Out[755]=
Z

The + command always creates new variable and leads to the correct results.

In[756]:=
<< AceGen™;
SMSInitialize["test"];
SMSModule["sub’, Real [x$$]];
X £ SMSReal [x$$] ;
Yk - X;
zeSin[y]l;
SMSReplaceAll[z, y » xt/ 3]

out[762]=

V3

2

Example 2: repeated use of SMSReplaceAll

Repeated use of SMSReplaceAll can produce large intermediate codes and should be avoided if possible.

In[763]:=
<< AceGen~;
SMSInitialize["test"];
SMSModule["'sub™, Real [x$%$]1];
X £ SMSReal [x$$] ;
Yy £ SIN[X];
z 1 Cos[X];
y0 £ SMSReplaceAll[y, x - 0] ;
z0 = SMSReplaceAll[z, x - 0] ;

98

AceGen code generator

Better formulation.
In[771]:=

<< AceGen™;
SMSInitialize["test"];
SMSModule["sub", Real [x$$]];
X £ SMSReal [x$$] ;
Y e SIN[X];
z a1 Cos[X];

{y0, z0} £ SMSReplaceAll[{y, z}, X 0] ;

SMSSmartReduce

SMSSmartReduce[exp,v1|v2|...]

SMSSmartReduce[exp,v1|v2]..., func]

replace those parts of the expression exp that do not depend on
any of the auxiliary variables v1|v2|.... by a new auxiliary variable

apply pure function func to the sub—
expressions before they are replaced by a new auxiliary variable

The default value for func is identity operator #&. Recommended value is Collect[#,v1|v2|...]&. The function func
should perform only correctness preserving transformations, so that the value of expression exp remains the same.

See also: Non — local Operations .

SMSSmartRestore

SMSSmartRestore[exp,v1|v2|...]

SMSSmartRestore[exp,v1|v2]..., func]

SMSSmartRestore[exp,
vljv2|...,{evaluation_rules}, func]

replace those parts of expression exp
that depend on any of the auxiliary variables v1|
v2|.... by their definitions and simplify the result

apply pure function func to the sub—
expressions that do not depend on v1|
v2|.. before they are replaced by a new auxiliary variable

restore expression exp and apply
list of rules {evaluation_rules} to all sub—
expressions that depend on any of auxiliary variables v1,v2,...

At the output, all variables v1|v2|... become fully visible. The result can be used to perform non-local operations. The
default values for func is identity operator #&. Recommended value is Collect[#,v1|v2|...]&. The function func should
perform only correctness preserving transformations, so that the values of expression remain the same.

The list of rules evaluation_rules can alter the value of exp. It can be used for a symbolic evaluation of expressions (see

Symbolic Evaluation).

The difference between the SMSSmartReduce function and the SMSSmartRestore function is that SMSSmartRestore
function searches the entire database of formulae for the expressions which depend on the given list of auxiliary
variables vy, vy, while SMSSmartReduce looks only at parts of the current expression.

The result of the SMSSmartRestore function is a single symbolic expression. If any of auxiliary variable involved has
several definitions (multi-valued auxiliary variables), then the result can not be uniquely defined and the SMSSmartRe-

store function can not be used.

AceGen code generator

99

See also: Non — local operations .

SMSRestore

SMSRestore[exp,v1v2|...]

SMSRestore[exp,
viv2|...,{evaluation_rules}]

SMSRestore[exp]

replace those parts of expression exp that depend on
any of the auxiliary variables v1|v2|.... by their definitions

restore expression exp and apply
list of rules {evaluation_rules} to all sub—
expressions that depend on any of auxiliary variables v1,v2,..

replace all visible auxiliary variables in exp by their definition

At the output, all variables v1|v2|... become fully visible, the same as in the case of SMSSmartRestore function. How-
ever, while SMSSmartRestore simplifies the result by introducing new auxiliary variables, SMSRestore returns original

expression.

If any of auxiliary variable involved has several definitions (multi-valued auxiliary variables), then the result can not be
uniquely defined and the SMSRestore function can not be used.

See also: Non — local operations .

Arrays

SMSArray

SMSArray[{expl,exp2,...}]

SMSArray[len]

SMSArray[len, func]

SMSArray[{n,len}, func]

create an SMSGroupF data object that represents
a fixed length array of expressions {expl, exp2,...}

create an SMSArrayF data object that represents variable length real typ
array of length len and allocate space on the global vector of formulas

create a multi—valued auxiliary variable that represents a variable length
array data object of length len, with elements func[i] , i=1,...,len

create n multi—valued auxiliary variables that
represents n variable length array data objects of length len,
with elements { func[i] [1], func[i] [2],..., funcli] [n]}, i=1,...,len

The SMSArray[{expl,exp2,...}] function returns the SMSGroupF data object. All elements of the array are set to have
given values. If an array is required as auxiliary variable then we have to use one of the functions that introduces a new

auxiliary variable (e.g. r-SMSArray[{1,2,3,4}]).

The SMSArray[len] function returns the SMSArrayF data object. The elements of the array have no default values. The
SMSArrayF object HAS TO BE introduced as a new multi-valued auxiliary variable (e.g. rs=SMSArray[10]). The value
of the i-th element of the array can be set or changed by the SMSReplacePart[array, new value, i] command.

The SMSArray[len,func] function returns a multi-valued auxiliary variable that points at the SMSArrayF data object.
The elements of the array are set to the values returned by the function func. Function func has to return a representa-
tive formula valid for the arbitrary element of the array.

The SMSArray[{n,len},func] function returns n multi-valued auxiliary variables that points at the n SMSArrayF data

100 AceGen code generator

objects. The elements of the array are set to the values returned by the function func. Function func has to return n
representative formulae valid for the arbitrary elements of the arrays.

See also: Arrays , SMSPart , Characteristic Formulae , SMSReplacePart .

SMSPart

SMSPart[{expl, exp2,...},index] create an index data object that represents the index—
th element of the array of expressions {expl, exp2,...}

SMSPart[arrayo,index] create an index data object that represents the index—th element
of the array of expressions
represented by the array data object arrayo

The argument arrayo is an array data object defined by SMSArray function or an auxiliary variable that represents
array data object. The argument index is an arbitrary integer type expression. During the AceGen sessions the actual
value of the index is not known, only later, at the evaluation time of the program, the actual index of an arbitrary
element becomes known. Consequently, AceGen assigns the new signature to the index data object in order to prevent
false simplifications. The values are calculated as perturbated mean values of the expressions that form the array.

The SMSPart function does not create a new auxiliary variable. If an arbitrary element of the array is required as an
auxiliary variable, then we have to use one of the functions that introduces a new auxiliary variable (e.g. r-
SMSPart[{1,2,3,4},i]).

See also: Arrays .

In[813]:=
SMSInitialize["test"];
SMSModule["test’, Real [x$$, r$$], Integer[i$$]];
X £ SMSReal [x$$]; 1 £ SMSInteger[i$$] ;
g £ SMSArray[{x, x~2, 0, n}];
gi = SMSPart[g, i];
SMSExport[gi, r$$];
SMSWrite['test"];

Method : teSt 2 formulae, 29 sub-expressions

[0] File created : teSt- m Size : 721

AceGen code generator

101

In[820]:=
I1test.m
(*******************7\-***
* AceGen VERSION *
* Co. J. Korelc 2006 21.8.2006 12:5 *

AEEEAIXEEAAEXEAXEAAXAEAAAXAAXAAXAAALAXAAXAXAAXAXAAAAAAXAAAAAAAXAAAXAAAAXAAAXA LX)

User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae -2 Method: Automatic
Module . test size : 29

Total size of Mathematica code : 29 subexpressions *)
C M O D U L E *r¥dddddrttdddirttdddirrs

SetAttributes[test,HoldAll];
test[x$$_,r$$_,i$$_1:=Module[{},
$VV[5000]=x$$;

$VV[5001]=x$$"2;

$VV[5002]=0;

$VV[5003]=Pi;

r$$=$VV[4999+i$$];

1:

SMSReplacePart

SMSRe

placePart[array,new,i] set i—th element of the array to be equal new

(array has to be an auxiliary variable that represents a variable length array data ob

=

See also: Arrays , SMSArray , SMSPart .

SMSDot

SMSDot[arrayo, ,arrayo,] dot product of the two arrays of expressions

represented by the array data objects arrayo, and arrayo,

The arguments are the array data objects (see Arrays). The signature of the dot product is a dot product of the signa-

tures of the array components.

See also: Arrays , SMSArray , SMSPart .

In[803]:=
SMSInitialize["test", "Language" -> ""C"];
SMSModule["test’”, Real [x$$, r$$]17;

XE

SMSReal [x$$] ;

gl e SMSArray[{x, x*2, 0, =7}];

g2 £ SMSArray[{3 X, 1 +x72, Sin[x], Cos[Xxx]}]:
dot « SMSDot[gl, g2];

SMSExport[dot, r3];

SMSWrite['test"];

Method : teSt 4 formulae, 57 sub-expressions

[0] File created : teSt- C Size : 913

102 AceGen code generator

In[811]:=
Iltest.c

/***

* AceGen VERSION *
* Co. J. Korelc 2006 21.8.2006 12:5 *
AEAAEAAIXAAAAAAAXAAAAAAALAAAXAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX
User : Korelc

Evaluation time :0s Mode : Optimal
Number of formulae 4 Method: Automatic
Subroutine . test size :57

Total size of Mathematica code : 57 subexpressions

Total size of C code : 340 bytes*/

#include "'sms.h"

Y Solaiadeiaiaiaioioiolaiaiaiaioiotole SUBROUT I N E ¥ *krrtkdddrrx /
void test(double v[5009],double (*x),double (*r))

{

v[3]=Power ((*x),2);
v[5004]=3e0*(*x);
v[5005]=1e0+Vv[3];
v[5006]=sin((*x));
v[5007]=cos(0.3141592653589793e1*(*x));
v[5000]=(*x);

v[5001]=v[3];

v[5002]=0e0;
v[5003]=0.3141592653589793e1;
(*r)=sSMSDot(&v[5000] ,&v[5004],4);
}:

SMSSum

SMSSumlarrayo] sum of all elements of the array represented by an array data object arrayo

The argument is an array data object that represents an array of expressions (see Arrays). The signature of the result
is sum of the signatures of the array components.

See also: Arrays , SMSArray , SMSPart .

AceGen code generator 103

Differentiation

SMSD
- - - oexp
SMSDl[exp,v] partial derivative =7
SMSD[exp,{v1,v2,..}] gradient of exp{ag\flp ,";\2’ oer}
SMSD[{expl,exp2,...},{v1,v2,..}]] the Jacobian matrix [ﬂggjpi]
SMSD[exp,{{Vi1,V12,... 1 {V21,V22,...},...}] differentiation of scalar with respect to matrix [‘?—j‘ij"]

SMSDI[exp,{vl,v2,...}, index] create a characteristic expression for an arbitrary element of

the gradient { %2, %2 .} and return an index data object that

represents characteristic element of the gradient with the index index

SMSDJexp, array, index] create a characteristic expression for an arbitrary element of the

gradient { g:rxrgy } and return an index data object that represents

characteristic element of the gradient with the index index

Automatic differentiation procedures.

option name default value
"Constant"—>{v1,v2,...} { perform differentiation under assumption
that formulas involved do not depend on
given variables (directional derivative)
"Constant"—>v = "Constant"—>{v}
"Method"—>admode " Automatic" Method used to perform differentiation:
"Forward" = forward mode of automatic differentiation
"Backward" = backward mode of automatic differentiation
"Automatic" =
appropriate AD mode is selected automatically
"Implicit"—>{...,{v,z, ‘;—‘Z’},...} {} during differentiation assume that derivative of auxiliary
variable v with respect to auxiliary variable z is ‘;—‘Z’
"PartialDerivatives"—> False whether to account also for partial derivatives of
truefalse auxiliary variables with respect to arbitrary auxiliary
variable defined by SMSDefineDerivatives command
(by default only total derivatives of auxiliary variables
with respect to independent variables are accounted for)
"Symmetric"—>truefalse False see example below
"lgnoreNumbers"—>truefalse False see example below
Options for SMSD.

The derivatives are evaluated by the automatic differentiation technique (see Automatic Differentiation). The argu-

ment index is an integer type auxiliary variable, array is an auxiliary variable that represents an array data object (the
SMSArray function returns an array data object, not an auxiliary variable) , and arrayindex is an auxiliary variable that
represents index data object.

Sometimes differentiation with respect to auxiliary variables can lead to incorrect results due to the interaction of

104 AceGen code generator

automatic differentiation and expression optimization (see Automatic Differentiation). In order to prevent

this, all the basic independent variables need to have unique signature. Functions such as SMSFreeze, SMSReal,
and SMSFictive return auxiliary variable with the unique signature.

See also: Automatic Differentiation .

Example: Differentiation with respect to matrix

The differentiation of a scalar value with respect to the matrix of differentiation variables can be nontrivial if the matrix
has a special structure.
Vi1 Vi2

If the scalar value exp(V) depends on a symmetric matrix of independent variables V£| vio vao .. } then we have to

possibilities to make proper differentiation:

A) the original matrix V can be replaced by the new matrix of unique variables
VIFESMSFreeze[V];

0expESMSD[exp(VF),VIF};

B) if the scalar value exp is an isotropic function of V then the "Symmetric"->True option also leads to proper deriva-
tive as follows

1 1 oexp oexp

2 oV11 OV12

oexpk SMSD[exp(V),V,"Symmetric*->True] = | 1L 1 x| 0exp gexp
2 OVi2 OV22

By default all differentiation variables have to be defined as auxiliary variables with unique random value. With the
option "IgnoreNumbers" the numbers are ignored and derivatives with respect to numbers are assumed to be 0.

aexp aexp

Vi1 Vi2 dV11 V12
SMSD[exp,| V21 O .. |,"IgnoreNumbers"->True] = @é%o_ 0
12
In[53]:= << AceGen";

SMSInitialize["test"];
SMSModule["test", Real [a$$, b$S, c$$]];
{a, b, c} £ SMSReal [{a$$, b$S, c$$}1;

In[57]:

x e {{a, b}, {b, c}};
T =Det[X];

The result of differentiation is incorrect under the assumption that x is a symmetric matrix of independent variables.
In[59]:= SMSD[F, Xx] // MatrixForm

Out[59]//MatrixForm=
X22 -2 X21
-2X21 X11

AceGen code generator

105

Various ways how the correct result can be obtained.
In[60]:= SMSD[F, X, ""Symmetric" - True] // MatrixForm

Out[60]//MatrixForm=
X22 -X21
-X21 X1

In[61]:= Xk SMSFreeze[X];
T =Det[X];
SMSD[f, x] // MatrixForm

Out[63]//MatrixForm=
X22 -X21
-X12 X11

Example: Incorrect structure of the program

Differentiation cannot start inside the "If" construct if the variables involved have multiple instances defined on
separate branches of the same "If" construct. The limitation is due to the interaction of the simultaneous simplification

procedure and the automatic differentiation procedure.

SMSIf[x > 0] ;
faSin[x];

SMSElse[];
f4x?;

X e SMSD[F, X];

SMSEndI1f[f] ;

The first instance of variable f can not be evaluated at the same time as the second instance of variable f. Thus, only the
derivative code of the second expression have to be constructed. However, if the construct appears inside the loop,
then some indirect dependencies can appear and both branches have to be considered for differentiation. The problem
is that AceGen can not detect this possibility at the point of construction of the derivative code. There are several

possibilities how to resolve this problem.

With the introduction of an additional auxiliary variable we force the construction of the derivative code only for the

second instance of f.

SMSIFf[x > 0] ;
faSin[x];
SMSElse[];
tmp E X2

X £ SMSD[tmp, X];
T4 tmp;
SMSEndIf[];

If the differentiation is placed outside the "If" construct, both instances of f are considered for the differentiation.

SMSIf[x > 0] ;
faSin[x];
SMSElse[];
f4x?;
SMSEnd1f[];

fx = SMSD[F, X];

106 AceGen code generator

If f does not appear outside the "If" construct, then f should be defined as a single-valued variable (f£...) and not as
multi-valued variable (f+...). In this case, there are no dependencies between the first and the second appearance of f.
However in this case f can not be used outside the "If" construct. First definition of f is overwritten by the second
definition of f.

SMSIFf[x > 0] ;
feSin[x];
SMSElse[];
fex?;
X e SMSD[F, X];
SMSEndI1f[];

SMSDefineDerivative

SMSDefineDerivative[v, z, exp] define the derivative of auxiliary variable
v with respect to auxiliary variable z to be exp

2 =exp
SMSDefineDerivative[v, {z1,2;,..., Zzy}, D] define gradient of auxiliary variable v with respect to variables
{21, 22,2n} to be vector D:={4x} ...i=1,2,...,N and set g—fzzdij
SMSDefineDerivative[define a Jacobian matrix of the transformation from
V1, Vo,V b {22,220, 201, 31 {V1, Vo, oV) 1O {24, 2, ..., 2y} tO be matrix J: = g—‘z’l] .. i=1,

2,.,M; j=12,..,N, and set =5

The SMSDefineDerivative function should be used cautiously since derivatives are defined permanently and globally.
The "Dependency” option of the SMSFreeze and SMSReal function or the "Implicit" option of the SMSD

function should be used instead whenever possible.

See also: Exceptions in Differentiation, SMSFreeze .

In the case of coordinate transformations we usually first define variables z; in terms of variables v; as zj = fi(vj).
Partial derivatives ‘9"' are then defined by [M] = [afk] . The definition of partial derivatives BV' will make indepen-

oV
‘92' =) Oh v 52' =4\ is obtalned by defining additional

i
= P #0. Correct result

dent variables z; dependent leading to
partial derivatives with

SMSDefineDerivative[{z1, .., Zv}, {Z1, -, Zn}, ldentityMatrix[N]].
This is by default done automatically. This automatic correction can also be suppressed as follows

SMSDefineDerivative[{V1, .., WV}, {Z1, .., Zn}, J, False]

AceGen code generator 107

Program Flow Control

SMSIf

SMSIf[condition] start the TRUE branch of the if .. else .. endif construct
SMSElse[] start the FALSE branch of the if .. else .. endif construct
SMSEnNdIf[] endtheif .. else .. endif construct

SMSEndIf[out_var] end the if .. else .. endif construct and create
fictive instances of the out_var auxiliary variables
with the random values taken as perturbated
average values of all already defined instances

SMSEndIf[True, out_var] create fictive instances of the out_var auxiliary variables
with the random values taken as perturbated values of the
instances defined in TRUE branch of the "If" construct

SMSEndIf[False, out_var] create fictive instances of the out_var auxiliary variables
with the random values taken as perturbated values of the
instances defined in FALSE branch of the "If" construct

Syntax of the "If" construct.

Formulae entered in between SMSIf and SMSElse will be evaluated if the logical expression condition evaluates to
True. Formulae entered in between SMSElse and SMSEndIf will be evaluated if the logical expression evaluates to
False. The SMSElse statement is not obligatory. New instances and new signatures are assigned to the out_var auxiliary
variables. The out_var is a symbol with the value which has to be multi-valued auxiliary variable or a list or collection
of lists of symbols.

The condition of the "If" construct is a logical statement. The SMSIf command returns the logical auxiliary variable
where the condition is stored. The SMSEIse command also returns the logical auxiliary variable where the condition is
stored. The SMSEndIf command returns new instances of the out_var auxiliary variables or empty list. New instances
have to be created for all auxiliary variables defined inside the "If" construct that are used also outside the "If"
construct.

See also: AuxiliaryVariables , Signatures of the Expressions

Warning: The "==" operator has to be used for comparing expressions. In this case the actual comparison will be
performed at the run time of the generated code. The "===" operator checks exact syntactical correspondence between
expressions and is executed in Mathematica at the code derivation time and not at the code run time.

Example 1: Generic example

Generation of the Fortran subroutine which evaluates the following function
x<=0 x?
x>0 Sin[x]

108 AceGen code generator

This initializes the AceGen system and starts the description of the "test" subroutine.
In[821]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Fortran"];
SMSModule["test", Real [x$$, F$35]];
X £ SMSReal [x$$] ;

Description of the "If" construct.
In[825]:=
SMSIf[x <=0];
fax?;
SMSElse[];
F4Sin[x];
SMSEndIf[] ;

This assigns the result to the output parameter of the subroutine and generates file "test.for".

In[830]:=
SMSExport[f, $$];
SMSWrite["test];

Method : teSt 3 formulae, 16 sub-expressions

[0] File created : teSt-f Size : 863

This displays the contents of the generated file.

In[832]:=
Iltest.f
! * * * * * * *
1* AceGen VERSION *
1> Co. J. Korelc 2006 21.8.2006 12:16 *
! * * * * * * *
I User : Korelc
I Evaluation time :0s Mode : Optimal
I Number of formulae -3 Method: Automatic
I Subroutine : test size :16
I Total size of Mathematica code : 16 subexpressions
I Total size of Fortran code : 295 bytes
P ekedededkekeokeokeok SUBROUTINE *

SUBROUTINE test(v,x,f)
IMPLICIT NONE

include "sms.h"
LOGICAL b2

DOUBLE PRECISION v(5001),x,Ff
IF(x.1e.0d0) THEN
v(3)=x**2

ELSE

v(3)=dsin(x)

ENDIF

=v(3)

END

AceGen code generator 109

Example 2: Incorrect use of the "If" structure

Generation of the Fortran subroutine which evaluates the following function

x<=0 x2

fo={" ¢ sinpx

Symbol f appears also outside the "If" construct. Since f is not specified in the SMSEndIf statement, we get "variable
out of scope™ error message.

In[833]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran'];
SMSModule["test”, Real [x$$, F$$]171;
X £ SMSReal [x$$] ;
SMSIF[x <=0];
fax?;
SMSElse[];
F4Sin[x];
SMSEnd1f[];
SMSExport[f, $$];

Some of the auxilirary
variables i1n expression are defined out

of the scope of the current position.
Modulle: test Description: Error in user input parameters for function:
SMSExport
Input parameter: ,T Current scope:
Misplaced variables :
>F = $V[3, 2] Scope: If-False[x < 0]
Events: 0O

See also: AuxiliaryVariables Troubleshooting

SMC: :Fatal :
System cannot proceed with the evaluation due to the fatal error In SMSExport .

out[842]=
$Aborted

By combining "if" construct and multivalued auxiliary variables the arbitrary program flow can be generated. When
automatic differentiation interacts with the arbitrary program structure a lot of redundant code can be generated. If the
construct appears inside the loop, then some indirect dependencies can appear and all branches have to be considered
for differentiation. The user is strongly encouraged to keep "if" constructs as simple as possible and to avoid redundant
dependencies.

Example 3: Unnecessary dependencies
Generation of the C subroutine which evaluates derivative of f with respect to x.

x=<0 X2

f(x):{x>0 Sin[x]

The first input given below leads to the construction of redundant code. The second differentiation involves f that is
also defined in the first "if" construct, so the possibility that the first "if" was executed and that somehow effects the
second one has to be considered. This redundant dependency is avoided in the second input by the use of temporary
variable tmp and leading to much shorter code.

110

AceGen code generator

In[843]:=

<< AceGen;

SMSInitialize["test", "Language" -> ""C"];

SMSModule["test", Real [x$$, T$$, d$$]];
X £ SMSReal [x$$] ;
SMSIf[x <=0];
fax%;
daSMSD[F, X];
SMSEndIf[Ff, d];
SMSIf[x > 0] ;
f4Sin[x];
d4SMSD[F, X];
SMSEndIf[f, d];
SMSExport[{f, d}, {f$$, d$$}1;
SMSWrite[]

Method : teSt 7 formulae, 39 sub-expressions

[0] File created : teSt- C Size : 933

out[856]=

0.441

In[857]:=

11 test.c

/ * * *
* AceGen VERSION
* Co. J. Korelc 2006

21.8.2006 12:17

*

*

* * * *

User : Korelc

Evaluation time :0s
Number of formulae -7

* * *

Mode : Optimal
Method: Automatic

Subroutine : test size :39
Total size of Mathematica code : 39 subexpressions
Total size of C code : 351 bytes*/

#include "'sms.h"

/ SUBROUTINE

*

void test(double v[5001],double (*x),double (*f),double (*d))

{

int b2,b6,b7;

b2=(*x)<=0e0;

if(b2){
v[3]=Power((*x),2);
Vv[5]=2e0*(*x);

} else {

}:

iIT((*x)>0e0){
if(b2){
v[8]=2e0*(*x);

} else {

};

vl8]=cos((*x));

VI3]=sin((*x));

v[5]=vI8];

} else {

}:

H=v[3];

g*d)=V[5];

AceGen code generator

111

In[858]:=

SMSInitialize["test", "Language" -> "C", "Mode"

SMSModule["test”, Real [x$$, T$$, d$$]171;

X £ SMSReal [x$$] ;
SMSIFf[x <=0];
fax2;
daSMSD[F, X];
SMSEndIf[Ff, d];
SMSIF[x > 0] ;
tmp = Sin[Xx];
f4tmp;
d 4 SMSD[tmp, X];
SMSEndIf[f, d];

SMSExport[{Ff, d}, {FS, d$$}1;

SMSWrite[]

Method :

[0] File created :

teSt 5 formulae, 30 sub-expressions

Test.C siz : sss

-> "Optimal'];

out[871]=
0.431
In[872]:=
11 test.c
/ * * * * * * *
* AceGen VERSION *
* Co. J. Korelc 2006 21.8.2006 12:17 *

* * * *

User : Korelc
Evaluation time

Number of formulae

Subroutine

Total size of Mathematica code
Total size of C code

#include "'sms.h"

*

:0s Mode

. test size :30
: 30 subexpressions
: 289 bytes*/

/

*

: Optimal
: 5 Method: Automatic

*

*

SUBROUTINE

void test(double v[5001],double (*x),double (*f),double (*d))

{
int b2,b6;
iF((*x)<=0e0){

v[3]=Power((*x),2);

Vv[5]=2e0*(*x);
} else {

}:

iF((*x)>0e0){
vI3]=sin((*x));
vI5]=cos((*x));
} else {

};

H=v[3];
§*d)=V[5];

SMSElse

See : SMSIT .

112 AceGen code generator

SMSEndIf

See : SMSIT .

SMSDo

SMSDolv, imin, imax] start the "Do" loop with an auxiliary variable v
successively taken on the values imin through imax (in steps of 1)

SMSDolv, imin, imax, step] start the "Do" loop with an auxiliary variable v
successively taken on the values imin through imax in steps of step

SMSDolv, imin, start the "Do" loop with an auxiliary variable v
imax, step, init_var] successively taken on the values imin through imax in steps of
step and create fictive instances of the init _var auxiliary variables

SMSEndDo[] end the loop
SMSEndDo[out_var] end the loop and create fictive instances of the out_var auxiliary variables

Syntax of the loop construct.

New instances are assigned to the init_var/out_var auxiliary variables. The init_var/out_var is a symbol with the value
which has to be an multi-valued auxiliary variable or a list or collection of lists of symbols. The iteration variable of the
"Do" loop is an integer type auxiliary variable v. Variable v is generated automatically. The values of the v are real
numbers between 0 and 1. The reason for this is to prevent incorrect simplifications that might arise as a consequence
of using the integer random values. The SMSDo command returns new instances of the init_var auxiliary variables or
empty list. The SMSEndDo command returns new instances of the out_var variables or empty list. The new instances
have to be created for all auxiliary variables, that are imported from the outside of the loop and their values are changed
inside the loop. The same is valid for variables that are used after the loop and their values have been changed inside
the loop.

See also: Auxiliary Variables .

Example 1: Generic example

Generation of the Fortran subroutine which evaluates the following sum f(x) =1 + X, x'.

This initializes the AceGen system and starts the description of the "test" subroutine.
In[873]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Fortran"] ;
SMSModule['"test”, Real [x$$, F$$], Integer[n$$1];
X £ SMSReal [x$$] ; n = SMSInteger[n$$] ;

Description of the loop.
In[877]:=
fal;
SMSDo[i, 1, n, 1, f];
faf+xt;
SMSEndDo[F] ;

AceGen code generator 113

This assigns the result to the output parameter of the subroutine and generates file "test.for".

In[881]:=
SMSExport[f, f3] ;
SMSWrite["test"];

Method : teSt 4 formulae, 23 sub-expressions

[0] File created : teSt-f Size : 869

This displays the contents of the generated file.

In[883]:=
ITltest.f
! * * * * * * * Kk * * * * * * * * * * * *
1* AceGen VERSION *
1> Co. J. Korelc 2006 21.8.2006 12:19 *

| R o R A R R R R o o o ok o ok ok R R Rk S R R

1 User : Korelc

I Evaluation time :0s Mode : Optimal

I Number of formulae 4 Method: Automatic
I Subroutine : test size :23

I Total size of Mathematica code : 23 subexpressions

I Total size of Fortran code : 301 bytes

1 SUBROUTINE

SUBROUTINE test(v,x,f,n)
IMPLICIT NONE

include "sms.h*

INTEGER n,i2,i4

DOUBLE PRECISION v(5005),x,¥Ff
i2=int(n)

v(3)=1d0

DO i4=1,i2
v(3)=v(3)+x**i4

ENDDO

=v(3)

END

Example 2: Incorrect and correct use of "Do" construct

Generation of Fortran subroutine which evaluates the n-th term of the following series So =0, S,, = Cos Sy_1.

Incorrect formulation

Since the value of the S variable is not random at the beginning of the loop, AceGen makes wrong simplification and
the resulting code is incorrect.

114 AceGen code generator

In[904]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran™] ;
SMSModule["test"”, Real [S$$], Integer[n$$]];
n e SMSInteger [n3] ;
Sa0;
SMSDo[i, 1, n];
S41Cos[S];
SMSEndDo[S] ;
SMSEXport[S, S$$];
SMSWrite['test"];

Method : teSt 4 formulae, 12 sub-expressions

[0] File created : teSt-f Size : 858

In[914]:=
ITltest.f
! * * * * * * * * * * * * * * * * * *
1* AceGen VERSION *
> Co. J. Korelc 2006 21.8.2006 12:20 *

| R R o Rk kR R o o ko ok ok Rk R R AR

1 User : Korelc

I Evaluation time :0s Mode : Optimal

I Number of formulae -4 Method: Automatic
I Subroutine : test size :12

I Total size of Mathematica code : 12 subexpressions

I Total size of Fortran code : 290 bytes

| SUBROUTINE
SUBROUTINE test(v,S,n)
IMPLICIT NONE
include "sms.h*
INTEGER n,il,i3
DOUBLE PRECISION v(5005),S
il=int(n)
v(2)=0d0
DO i3=1,i1
v(2)=1d0
ENDDO
S=v(2)
END

Correct formulation

Assigning a new random value to the S auxiliary variable prevents wrong simplification and leads to the correct code.

AceGen code generator

115

In[915]:=
SMSInitialize["test", "Language" -> "Fortran', "Mode" - "Optimal'];
SMSModule['test’, Real [S$$], Integer[n$$]1];
n e SMSInteger [n$$] ;
Sa0;
SMSDo[i, 1, n, 1, S];
S4Cos[S];
SMSEndDo[S] ;
SMSExport[S, S$$];
SMSWrite[''test"];

Method : teSt 4 formulae, 15 sub-expressions

[0] File created : teSt-f Size : 865

In[924]:=
Iltest.f
! * * * * * * * * * * *
1* AceGen VERSION *
1> Co. J. Korelc 2006 21.8.2006 12:20 *
! * * * * * * * kX * * * * * * * * * * * * *
I User : Korelc
I Evaluation time :0s Mode : Optimal
I Number of formulae -4 Method: Automatic
I Subroutine : test size :15
I Total size of Mathematica code : 15 subexpressions
I Total size of Fortran code > 297 bytes
L Eekelalaiaiaiaisiaiaiaiaiale SUBROUTINE Fekeokekek *

SUBROUTINE test(v,S,n)
IMPLICIT NONE

include "sms.h"
INTEGER n,il,i3

DOUBLE PRECISION v(5005),S
il=int(n)

v(2)=0d0

DO 13=1,i1
v(2)=dcos(v(2))

ENDDO

S=v(2)

END

Example 3: How to use variables defined inside the loop outside the loop?

Only the multi-valued variables (introduced by the 4 or 4 command) can be used outside the loop. The use of the
single-valued variables (introduced by the k or + command) that are defined within loop outside the loop will result in

Variables out of scope error.

116 AceGen code generator

Here the variable X is defined within the loop and used outside the loop.

Incorrect formulation
In[925]:=

<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran™] ;
SMSModule["test”, Real [S$$], Integer[n$$]];
n e SMSInteger [n$$] ;
Sa0;
SMSDo[i, 1, n, 1, S];

X e Cos[S];

S4S+X;
SMSEndDo[S] ;
Y e X?;

Some of the auxilirary

variables i1n expression are defined out

of the scope of the current position.
Module: test Description: Error in user input parameters for function: SMSR
Input parameter: X? Current scope:
Misplaced variables :
X = $V[4, 1] Scope: Do[i, 1, n, 1]
Events: O
See also: AuxiliaryVariables Troubleshooting

SMC: :Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSR .

out[934]=
$Aborted

Correct formulation
In[935]:=
<< AceGen™;
SMSInitialize["test", "Language" -> ""Fortran'] ;
SMSModule['test’, Real [S$$], Integer[n$$]1];
n e SMSInteger [n$$] ;
Sa0;
SMSDo[i, 1, n, 1, S];
X1 Cos[S];
S4S+X;
SMSEndDo[S, X]:;
Y e X?;

SMSENndDo

See: SMSDo .

AceGen code generator 117

SMSReturn, SMSBreak, SMSContinue

SMSReturn[] = SMSVerbatim["C"->"return;" ,
"Fortran"—>"return", "Mathematica"—>"Return[Null,Module];"]
(see Mathematica command Return)

SMSBreak|] = SMSVerbatim["C"—>"break;", "Fortran"—>"exit", "Mathematica"—>"Break[];"]
(see Mathematica command Break)

SMSContinue[] = SMSVerbatim["C"—>"continue;", "Fortran"—>"cycle", "Mathematica"—>"Continue[];"]
(see Mathematica command Continue)

118 AceGen code generator

Utilities
Debugging

SMSSetBreak

SMSSetBreak[breaklD] insert break point call into the source
code with the string breakID as the break identification

option name default value
"Active" True break point is by default active
"Optimal" False by default the break point is included into
source code only in "Debug" mode. With the option
"Optimal” the break point is always generated.
Options for SMSSetBreak.

If the debugging is used in combination with the finite element environment AceFEM, the element for which the break
point is activated has to be specified first (SMTIData["DebugElement”,elementnumber]).

See also: User Interface, Interactive Debugging, SMSAnalyze , AceFEM Structure

SMSLoadSession

SMSLoadSession[name] reload the data and definitions associated
with the AceGen session with the session name name

In "Debug" mode the system automatically generates file with the name "sessionname.dbg™ where all the information
necessary for the run-time debugging is stored.

SMSAnalyze

SMSAnalyze[i_Integer] open debug window with the structure of the i —th generated subroutine
SMSAnalyze[s_String] open debug window with the structure of the generated subroutine with the name $
SMSAnalyze[] open debug windows for all generated subroutines

AceGen code generator 119

option default value
name

"Depth" "Automatic" "Minimum" = only auxiliary variables
with the names assigned directly by the user are included
"Automatic" = auxiliary variables with the names assigned
directly by the user and the control structures are included
"Names" = all auxiliary variables with the names are included
"All" = all auxiliary variables and control structures are included

"Values" "None" "None" = no numeric values are presented
"Random" = signatures associated with the auxiliary
variables are included (available only during code generation session)
"AceFEM" = current values of auxiliary variables are
included (available only during AceFEM session)

Options for SMSAnalyze.

Command opens a separate window where the structure of the program is displayed together with the links to all
generated formulae, positions of the break points and the current values of selected auxiliary variables.

See also: User Interface, SMSLoadSession.

120 AceGen code generator

Refresh EKeep window Expand Shrink A1l OH All OFF Continw

}{=¥_'|_ L=10. 'Lli_'|_=|:|. 'Llig:l. 'Llig:?.
4 Toggle breakpoint
Mi;=0.314159 HNi,=0.6855841 Ni,=0.215463 u==.19405

- Toggle breakpoint

If u=10 = False
1E=%1,
1l Toggle breakpoint
Else
:E=¥1y
2 Toggle breakpoint
EndIf
If ¥;: = Falze
1Ups)£y =%1a
Elze
g5y =%19
EndIt
i=1,3,1 = ¥,
1=%;
Gi=¥17 O=%g

¥ =Export[¥;, - gf5[1],]
3 Toggle breakpoint

4 Toggle breakpoint

A = is the button that represents active user defined break point.
- = is the button that represents the position in a program where the program has stopped.

1 = is the button that represents automatically generated inactive break point. The break points are automatically
generated at the end of If.. else..endif and Do...enddo structures.

Refresh = refresh the contents of the debug window.
Keep window = prevents automatic closing of the debug window
Expand = increase the extend of the variables that are presented

Shrink = decrease the extend of the variables that are presented

AceGen code generator 121

All ON = enable all breaks points
All OFF = disable all breaks points

Continue = continue to the next break point

SMSClearBreak

SMSClearBreak[breakID] disable break point with the break identification breaklD
SMSClearBreak[" Default"] set all options to default values
SMSClearBreak[] disable all break points

This command is used to disable break point at the run time debugging phase and not at the code generation phase.
See also: User Interface.

SMSActivateBreak

SMSActivateBreak[activate break point with the break identification breaklD and options opt
breakID, opt]

SMSActivateBreak] = SMSActivateBreak[i," Function "— func,” Window "—False,"Interactive"—Falsg]
breakiD, func]

SMSActivateBreak[] enable all break points

option name default value

"Interactive" True initiates dialog (see also Dialog)

"Window" True open new window for debugging

"Function" None execute pure user defined function at the break point

Options for SMSActivateBreak.

This command is used to clear break point at the run time debugging phase and not at the code generation phase.
See also: User Interface.

If the debugging is used in combination with the finite element environment AceFEM, the element for which the break
point is activated has to be specified first (SMTIData["DebugElement”,elementnumber]).

See also: User Interface, Interactive Debugging, SMSAnalyze , AceFEM Structure

Random Value Functions

SMSADbs

SMSADbs[exp] absolute value of exp

122 AceGen code generator

The result of the evaluation of the SMSAbs function is an unique random value. The SMSAbs should be used instead of
the Mathematica’s Abs function in order to reduce the possibility of incorrect simplification and to insure proper
automatic differentiation.

See also: Expression Optimisation .

SMSSign

SMSSign[exp] -1, 0 or 1 depending on whether exp is negative, zero, or positive

The result of the evaluation of the SMSSign function is an unique random value. The SMSSign should be used instead
of the Mathematica’s Sign function in order to reduce the possibility of incorrect simplification and to insure proper
automatic differentiation.

See also: Expression Optimisation .

SMSKroneckerDelta

SMSKTroneckerDelta[i, j] 1 or 0 depending on whether i is equal to j or not

The result of the evaluation of the SMSKroneckerDelta function is an unique random value. The SMSKroneckerDelta
should be used in order to reduce the possibility of incorrect simplification and to insure proper automatic differentia-
tion.

See also: Expression Optimisation .

SMSSqrt

SMSSqrt[exp] square root of exp

The result of the evaluation of the SMSSqrt function is a unique random value. The SMSSqrt should be used instead of
the Mathematica’s Sqrt function in order to reduce the possibility of incorrect simplification and to insure proper
automatic differentiation.

See also: Expression Optimisation .

SMSMin,SMSMax

SMSMin[expl,exp2] = Min[expl,exp2]
SMSMax[expl,exp2] = Max[expl,exp2]

AceGen code generator 123

SMSRandom

SMSRandom[] random number on interval [0,1] with
the precision SMSEvaluatePrecision

SMSRandom(i,j] random number on interval [i, j] with
the precision SMSEvaluatePrecision

SMSRandom[i] gives random number from the interval [0.9xi ,1.1xi]
SMSRandom[i_List] = Map[SMSRandom[#]&, i]

See also: Signatures of the Expressions .

General Functions

SMSNumberQ

SMSNumberQl[exp] gives True if exp is a real number and False if the results of the evaluation is N/A

SMSPower

SMSPowerli,j] =1

SMSPower[i,j," Positive"] = il under assumption that i>0

SMSTime

SMSTime[exp] returns number of seconds elapsed since midnight (00:00:00),
January 1,1970, coordinated universal time (UTC)

SMSUnFreeze

SMSUnFreeze[exp] first search exp argument for all auxiliary variables that have been
freezed by the SMSFreeze command and then replace any
appearance of those variables in expression exp by its definition

The SMSUnFreeze function searches the entire database. The Normal operator can be used to remove all special object
(SMSFreezeF, SMSExternalF, ...) from the explicit form of the expression.

124 AceGen code generator

Linear Algebra

SMSLinearSolve

SMSLinearSolve[A,B] generate the code sequence that solves the system of linear equations A x=
B analytically and return the solution vector

Parameter A is a square matrix. Parameter B can be a vector (one right-hand side) or a matrix (multiple right-hand
sides). The Gauss elimination procedure is used without pivoting.

See also: Linear Algebra .

SMSLUFactor

SMSLUFactor[A] the LU decomposition along with the pivot list of M

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. The SMSLU-
Factor performs the factorization of matrix A and returns a new matrix. The matrix generated by the SMSLUFactor is a
compact way of storing the information contained in the upper and lower triangular matrices of the factorization.

See also: Linear Algebra .

SMSLUSolve

SMSLUSolve[LU,B] solution of the linear system represented by LU and right—hand side B

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. Parameter B
can be a vector (one right-hand side) or a matrix (multiple right-hand sides).

See also: Linear Algebra .

SMSFactorSim

SMSFactorSim[M] the LU decomposition along with the pivot list of symmetric matrix M

The Gauss elimination procedure is used and simultaneous simplification is performed during the process. The SMSFac-
torSim performs factorization of the matrix A and returns a new matrix. The matrix generated by the SMSFactorSim is
a compact way of storing the information contained in the upper and lower triangular matrices of the factorization.

See also: Linear Algebra .

AceGen code generator 125

SMSiInverse

SMSinverse[M] the inverse of square matrix M

Simultaneous simplification is performed during the process. The Krammer's rule is used and simultaneous simplifica-
tion is performed during the process. For more than 6 equations is more efficient to use SMSLinearSolve[M,ldentity-
Matrix[M//Length]] instead.

See also: Linear Algebra .

SMSDet

SMSDet[M] the determinant of square matrix M

Simultaneous simplification is performed during the process.

See also: Linear Algebra .

SMSKrammer

SMSKrammer[M,B] generate a code sequence that solves the system of linear equations A x=
B analytically and return the solution vector

The Krammer's rule is used and simultaneous simplification is performed during the process.

See also: Linear Algebra .

Tensor Algebra

SMSCovariantBase

SMSCovariantBase[{¢1, ¢2, #3}, {171, m2, 73}] the covariant base vectors of transformation from the
coordinates {1, 172, n3} to coordinates {¢1, @2, 3}

Transformations ¢1, ¢», ¢3 are arbitrary functions of independent variables ni, n2, n3. Independent variables
N1, N2, na have to be proper auxiliary variables with unique signature (see also SMSD).

126 AceGen code generator

Example: Cylindrical coordinates
In[961]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModule["'test'] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}1;
SMSCovariantBase[{r Cos[¢], r Sin[¢], 2z}, {r, ¢, z}] // MatrixForm

Out[965]//MatrixForm=
Cos[10] Sin[16] 0
-1rSin[1¢] Cos[i1¢]1r O
0 0 1

SMSCovariantMetric

SMSCovariantMetric[{¢1, ¢2, ¢3}, {m1, 172, n3}] the covariant metrix tensor of transformation from
coordinates {1y, 172, n3} to coordinates {¢1, @2, 3}

Transformations ¢1, ¢», ¢3 are arbitrary functions of independent variables ni, 12, n3. Independent variables
N1, N2, na have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates
In[966]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModule[""test'] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}]1;
SMSCovariantMetric[{r Cos[¢], r Sin[¢], z}, {r, ¢, 2}] // MatrixForm

Out[970]//MatrixForm=
1 0 0
0 1r2 0
(O0] 1

SMSContravariantMetric

SMSContravariantMetric[the contravariant metrix tensor of transformation
{¢1,02,83}, {n1, M2, N3] from coordinates {11, 172, 3} to coordinates {¢1, ¢2, ¢3}

Transformations ¢1, ¢2, ¢3 are arbitrary functions of independent variables ni, 12, ns. Independent variables
N1, N2, na have to be proper auxiliary variables with unique signature (see also SMSD).

AceGen code generator 127

Example: Cylindrical coordinates

In[971]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModule["'test'] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}1;
SMSContravariantMetric[{r Cos[¢], r Sin[¢], 2z}, {r, ¢, z}] // MatrixForm

Out[975]//MatrixForm=
1 0 0

SMSChristoffelll

SMSChristoffell1[{¢1,02,03}, {n1, 12, 13}] the first Christoffell symbol {i,j,k} of transformation
from coordinates {n1, 72, n3} to coordinates {¢1, @2, ¢3}

Transformations ¢1, ¢2, ¢3 are arbitrary functions of independent variables ni, 12, ns. Independent variables
N1, N2, na have to be proper auxiliary variables with unique signature (see also SMSD).

Example: Cylindrical coordinates
In[976]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModulle[""test"] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}1;
SMSChristoffelll[{r Cos[¢], r Sin[¢], 2z}, {r, ¢, z}] // MatrixForm

Out[980]//MatrixForm=
0 0 0
0 1r 0
0 0 0
0 -1 0
1r 0 0
0 0 0
0 0 0
0 0 0
0 0 0

SMSChristoffell2

SMSChristoffelll[{¢1,¢2,03}, {1, 12, n3}] the second Christoffell symbol Fﬁ- of transformation
from coordinates {n1, 72, 73} to coordinates {¢1, ¢2, @3}

Transformations ¢1, ¢2, ¢3 are arbitrary functions of independent variables ni, 12, ns. Independent variables
N1, N2, na have to be proper auxiliary variables with unique signature (see also SMSD).

128 AceGen code generator

Example: Cylindrical coordinates
In[981]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModule["'test'] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}1;
SMSChristoffell2[{r Cos[¢], r Sin[¢], 2z}, {r, ¢, z}] // MatrixForm

Out[985]//MatrixForm=
0 0 0
0 L 0
0 0 0
0 -1 0
+ 0 0
0 0 0
0 0 0
0 0 0
0 0 0

SMSTensorTransformation

SMSTensorTransformation[tensor transformation of arbitrary tensor field
tensor, transf, coord, index_types] tensor with indices index_types defined in curvilinear
coordinates coord under transformation transf

Transformations transf are arbitrary functions while coorinates coord have to be proper auxiliary variables with the
unique signature (see also SMSD). The type of tensor indices is specified by the array index_types where True means

covariant index and False contravariant index.

Example: Cylindrical coordinates

Transform contravariant tensor u' = {r2, r Sin[¢], rz} defined in cylindrical coordinates {r,¢,z} into Cartesian

coordinates.

In[986]:=
<< AceGen™;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModule[""test'] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}]1;
SMSTensorTransformation[{r?, r Sin[¢], r z},
{rCos[¢], rSin[¢], z}, {r, ¢, 2z}, {False}]

out[990]=
{Cos[1¢] 1r? + 1r Sin[1¢]2, Cos[1¢] Sin[1¢] - 1r Sin[1¢], 1112}

SMSDCovariant

SMSDCovariant[tensor, covariant derivative of arbitrary tensor field tensor with indices index_
transf, coord, index_types] defined in curvilinear coordinates coord under transformation transf

Ypes

AceGen code generator 129

Transformations transf are arbitrary functions while coordinates coord have to be proper auxiliary variables with
unique signature (see also SMSD). The type of tensor indices is specified by the array index_types where True means

covariant index and False contravariant index.

Example: Cylindrical coordinates

Derive covariant derivatives u'| j of contravariant tensor u' = {r?, r Sin[¢], rz} defined in cylindrical coordinates

{r¢.z}.

In[991]:=
<< AceGen;
SMSInitialize["test", "Language" -> "Mathematica'] ;
SMSModulle[""test"] ;
{r, ¢, z} £ Array[SMSFictive[] &, {3}1:
SMSDCovariant[{r?, r Sin[¢], r z},
{rCos[¢], rSin[¢], z}, {r, ¢, z}, {False}] // MatrixForm

Out[995]//MatrixForm=
21r —1r28in[1¢>} 0
2Sin[1¢] ir+Cos[i¢]1r O
1Z 0 1r

Mechanics of Solids

SMSLameToHooke, SMSHookeToLame, SMSHookeToBulk, SMSBulkToHooke

SMSLameToHooke[A,u] transform Lame's constants A, u to Hooke's constants E, v

SMSHookeToLame[E, v] transform Hooke's constants E, v to Lame's constants A, u
SMSHookeToBuUlk[E,v] transform Hooke's constants E, v to sheer modulus G and bulk modulus «
SMSBulkToHooke[G,x] transform sheer modulus G and bulk modulus « to Hooke's constants E, v

Transformations of mechanical constants in mechanics of solids.

This transforms Lame's constants A, u to Hooke's constants E, v. No simplification is preformed!

In[4]:= SMSLameToHooke[Ax, u] // Simplify

U (3x+2u) A }

out[4]= { TR

SMSPlaneStressMatrix, SMSPlaneStrainMatrix

SMSPlaneStressMatrix[E, v] linear elastic plane strain constitutive matrix for the Hooke's constants E, v
SMSPIlaneStrainMatrix[E, v] linear elastic plane stress constitutive matrix for the Hooke's constants E, v

Find constitutive matrices for the linear elastic formulations in mechanics of solids.

130 AceGen code generator

This returns the plane stress constitutive matrix. No simplification is preformed!

In[5]:= SMSPlaneStressMatrix[e, v] // MatrixForm

Out[5]//MatrixForm=
e ev O
12 152
ev e O
172 172
0 0 e

2 (1+v)

SMSEigenvalues

SMSEigenvalues[matrix] create code sequence that calculates the eigenvalues
of the third order matrix and return the vector of 3 eigenvalues

All eigenvalues have to be real numbers. Solution is obtained by solving a general characteristic polynomial. Ill-condi-
tioning around multiple zeros might occur.

SMSMatrixExp

SMSMatrixExp[matrix] create code sequence that calculates the matrix exponent of the third order matrix

All eigenvalues of the matrix have to be real numbers.

option name default value

"Order" Infinity Infinity = analytical solution
_Integer = order of Taylor series expansion

Options for SMSMatrixExp.

SMSinvariantsl,SMSInvariantsJ

SMSinvariantsl[matrix] Iy, I, I3 invariants of the third order matrix
SMSiInvariantsJ[matrix] Jq, Jo, J3 invariants of the third order matrix

AceGen code generator 131

General Numerical Environments

MathLink Environment

SMSinstallMathLink

SMSinstallMathLink[source] compile source.c and source.tm MathL ink source files,
build the executable program,
start the program and install Mathematica definitions to call functions ip

SMSinstallMathLink[] create MathLink executable from the last generated AceGen source code

The SMSinstallMathLink command executes the command line Visual studio C compiler (or MinGW) and linker. For
other C compilers, the user should write his own SMSinstallMathLink function that creates MathLink executable on a
basis of the element source file, the sms.h header file and the SMSUTtility.c file. Files can be found at the Mathematica
directory ... /AddOns/Applications/AceGen/Include/MathLink/).

See also: SMSInitialize, Generation of MathLink code

option name default value
"Optimize" Automatic use additional compiler optimization
"PauseOnExit" False pause before exiting the MathLink executable

Options for SMSinstallMathLink.

SMSLinkNoEvaluations

=

SMSLinkNoEvaluations[source] returns the number of evaluations of MathLink functions compiled frg
source source code file during the Mathematica session (run time comn

SMSLinkNoEvaluations[] = SMSLinkNoEvaluations[last AceGen session|

=)

SMSSetLinkOptions

SMSSetLinkOptions[source,options] sets the options for MathLink functions compiled
from source source code file (run time command)

SMSSetLinkOptions[options] = SMSLinkNoEvaluations[last AceGen session,options]

132

AceGen code generator

option name

"PauseOnExit"—value

"SparseArray"—value

True = pause before exiting the MathLink executable
False = exit without stopping

True = return all matrices in sparse format
False = return all matrices in full format
Automatic = return the matrices in a format
that depends on the sparsity of the actual matrix

Options for SMSSetLinkOptions.

Matlab Environment

The AceGen generated M-file functions can be directly imported into Matlab.

See also Generation of Matlab code.

AceGen code generator 133

Finite Element Environments

FE Environments Introduction

Numerical simulations are well established in several engineering fields such as in automotive, aerospace, civil engineer-
ing, and material forming industries and are becoming more frequently applied in biophysics, food production, pharma-
ceutical and other sectors. Considerable improvements in these fields have already been achieved by using standard
features of the currently available finite element (FE) packages. The mathematical models for these problems are
described by a system of partial differential equations. Most of the existing numerical methods for solving partial
differential equations can be classified into two classes: Finite Difference Method (FDM) and Finite Element Method
(FEM). Unfortunately, the applicability of the present numerical methods is often limited and the search for methods
which can provide a general tool for arbitrary problems in mechanics of solids has a long history. In order to develop a
new finite element model quite a lot of time is spent in deriving characteristic quantities such as gradients, Jacobean,
Hessian and coding of the program in a efficient compiled language. These quantities are required within the numerical
solution procedure. A natural way to reduce this effort is to describe the mechanical problem on a high abstract level
using only the basic formulas and leave the rest of the work to the computer.

The symbolic-numeric approach to FEM and FDM has been extensively studied in the last few years. Based on the
studies various systems for automatic code generation have been developed. In many ways the present stage of the
generation of finite difference code is more elaborated and more general than the generation of FEM code. Various
transformations, differentiation, matrix operations, and a large number of degrees of freedom involved in the derivation
of characteristic FEM quantities often lead to exponential growth of expressions in space and time. Therefore, addi-
tional structural knowledge about the problem is needed, which is not the case for FDM.

Using the general finite element environment, such as FEAP (Taylor, 1990), ABAQUS, etc., for analyzing a variety of
problems and for incorporating new elements is now already an everyday practice. The general finite element environ-
ments can handle, regardless of the type of elements, most of the required operations such as: pre-processing of the
input data, manipulating and organizing of the data related to nodes and elements, material characteristics, displace-
ments and stresses, construction of the global matrices by invoking different elements subroutines, solving the system
of equations, post-processing and analysis of results. However large FE systems can be for the development and testing
of new numerical procedures awkward. The basic tests which are performed on a single finite element or on a small
patch of elements can be done most efficiently by using the general symbolic-numeric environments such as Mathemat-
ica, Maple, etc. It is well known that many design flaws such as element instabilities or poor convergence properties
can be easily identified if we are able to investigate element quantities on a symbolic level. Unfortunately, symbolic-nu-
meric environments become very inefficient if there is a larger number of elements or if we have to perform iterative
numerical procedures. In order to assess element performances under real conditions the easiest way is to perform tests
on sequential machines with good debugging capabilities (typically personal computers and programs written in
Fortran or C/C++ language). In the end, for real industrial simulations, large parallel machines have to be used. By the
classical approach, re-coding of the element in different languages would be extremely time consuming and is never
done. With the symbolic concepts re-coding comes practically for free, since the code is automatically generated for
several languages and for several platforms from the same basic symbolic description.

The AceGen package provides a collection of prearranged modules for the automatic creation of the interface between
the finite element code and the finite element environmen. AceGen enables multi-language and multi-environment
generation of nonlinear finite element codes from the same symbolic description. The AceGen system currently sup-
ports the following FE environments:

> AceFem is a model FE environment written in a Mathematica's symbolic language and C (see
About AceFEM),

> FEAP is the research environment written in FORTRAN (see About FEAP),

134 AceGen code generator

> ELFEN® is the commercial environment written in FORTRAN (see About ELFEN).

The AceGen package is often used to generate user subroutines for various other environments. It is advisable for the
user to use standardized interface as described in User defined environment interface.

There are several benefits of using the standardized interface:

> automatic translation to other FE packages,

> other researchers are able to repeat the results,

= commercialization of the research is easier,

> eventually, the users interface can be added to the list of standard interfaces.

The AceGen system is a growing daily. Please check the www.fgg.uni-lj.si/symech/extensions/ page to see if your
environment is already supported or www.fgg.uni-lj.si/consulting/ to order creation of the interface for your specific
environment.

All FE environments are essentially treated in the same way. Additional interface code ensures proper data passing to
and from automatically generated code for those systems. Interfacing the automatically generated code and FE environ-
ment is a two stage process. The purpose of the process is to generate element codes for various languages and environ-
ments from the same symbolic input. At the first stage user subroutine codes are generated. Each user subroutine

performs specific task (see SMSStandardModule). The input/output arguments of the generated subrutines are
environment and language dependent, however they should contain the same information. Due to the fundamental
differences among FE environments, the required information is not readily available. Thus, at the second stage the
contents of the "splice-file" (see SMSWrite) that contains additional environment dependent interface and supple-

mentary routines is added to the user subroutines codes. The "splice-file" code ensures proper data transfer from the
environment to the user subroutine and back.

4 AceGen)
-symbolic input - interface code
- FE formulation - initialization
- user subroutines - numerical integration
_ ~/
:)
element source file

Lc i <Mathematica<< FORTRAN C)
N

N
e v | N

U Acrem v ELFEN | FEAP
[[e
\

CDriver] [MDriver] ABAQUS

FE environment /

Automatic interface is already available for a collection of basic tasks required in the finite element analysis (see
SMSStandardModule). There are several possibilities in the case of need for an additional functionality. Standard

AceGen code generator 135

user subroutines can be used as templates by giving them a new name and, if necessary, additional arguments. The
additional subroutines can be called directly from the environment or from the enhanced "splice-file". Source code of
the "splice-files" for all supported environments are available at directory ../AddOns/Applications/AceGen/Splice/. The
additional subroutines can be generated independently just by using the AceGen code generator and called directly
from the environment or from the enhanced "splice-file".

Since the complexity of the problem description mostly appears in a symbolic input, we can keep the number of data
structures that appear as arguments of the user subroutines at minimum. The structure of the data is depicted below. If
the "default form" of the arguments as external AceGen variables (see External Variables) is used, then they

are automatically transformed into the form that is correct for the selected FE environment. The basic data structures
are as follows:

= environment data defines a general information common to all nodes and elements (see Environment Data),
= nodal data structure contains all the data that is associated with the node (see Node Data),

= element specification data structure contains information common for all elements of particular type (see Domain
Specification Data),

= node specification data structure contains information common for all nodes of particular type (see Node Specifi-
cation Data),

= element data structure contains all the data that is associated with the specific element (see Element Data).

Standard FE Procedure

Description of FE Characteristic Steps
The standard procedure to generate finite element source code is comprised of four major phases:
A) AceGen initialization

-see SMSInitialize
B) Template initialization

- see SMSTemplate

- general characteristics of the element

- rules for symbolic-numeric interface
C) Definition of user subroutines

- see SMSStandardModule

- tangent matrix, residual, postprocessing, ...
D) Code generation

- see SMSWrite

- additional environment subroutines

- compilation, dll, ...

Due to the advantage of simultaneous optimization procedure we can execute each step separately and examine interme-
diate results. This is also the basic way how to trace the errors that might occur during the AceGen session.

136 AceGen code generator

Description of Introductory Example

Let us consider a simple example to illustrate the standard AceGen procedure for the generation and testing of a typical
finite element. The problem considered is steady-state heat conduction on a three-dimensional domain, defined by:

il (ka_¢)+ 9 (k8_¢)+ 9 (kg—f)+Q=O on domain (),

ax ™ ax By \™ by 7
d—d=0 essential boundary conditionon Ty,
k g—ﬁ -g=0 natural boundary conditionon T,

where ¢ indicates temperature, k is conductivity, Q heat generation per unit volume, and ¢ and q are the prescribed
values of temperature and heat flux on the boundaries. Thermal conductivity here is assumed to be a quadratic function
of temperature:

k=k0+k1¢+k2¢2.
Corresponding weak form is obtained directly by the standard Galerkin approach as

J[v7 60 k v¢—6¢Q]dQ—frq6¢qu:0.

Only the generation of the element subroutine that is required for the direct, implicit analysis of the problem is pre-
sented here. Additional user subroutines may be required for other tasks such as sensitivity analysis, postprocessing
etc.. The problem considered is non-linear and it has unsymmetric Jacobian matrix.

Step 1: Initialization

This loads the AceGen code generator.

In[215]:=
<< AceGen™;

This initializes the AceGen session. The AceFEM is chosen as the target numerical environment. See also SMSinitialize .

In[216]:=
SMSInitialize["heatconduction, "Environment" -> ""AceFEM"] ;

This initializes constants that are needed for proper symbolic-numeric interface (See Template Constants). Three-dimensional,
eight node, hexahedron element with one degree of freedom per node is initialized.
In[217]:=
SMSTemplate[''SMSTopology" - ""H1", "SMSDOFGlobal' » 1, ""SMSSymmetricTangent" -» False];

Step 2: Element subroutine for the evaluation of tangent matrix and residual

Start of the definition of the user subroutine for the calculation of tangent matrix and residual vector and set up input/output
parameters (see SMSStandardModule).

In[218]:=
SMSStandardModule["'Tangent and residual™];

AceGen code generator 137

Step 3: Interface to the input data of the element subroutine

Here the coordinates of the element nodes and current values of the nodal temperatures are taken from the supplied arguments of
the subroutine.
In[219]:=
Xi e Array[SMSReal [nd$$[#, "X, 111 &, 8];
Yi e Array[SMSReal [nd$$[#, "X, 211 &, 8];
Zi e Array[SMSReal [nd$$[#, "X", 311 &, 8];
¢1 £ Array [SMSReal [nd$$[#, "at', 1]1] &, 8];

The conductivity parameters kg, ki, ko and the internal heat source Q are assumed to be common for all elements in a particular
domain (material or group data). Thus they are placed into the element specification data field "Data" (see ElementData). In the
case that material characteristic vary substantially over the domain it is better to use element data field "Data" instead of element
specification data.
In[223]:=
SMSGroupDataNames = {"'Conductivity parameter k0", "Conductivity parameter k1",
"Conductivity parameter k2", ""Heat source'};
{kO, k1, k2, Q} ¢
SMSReal [{es$$[''Data’, 1], es$$["'Data”, 2], es$$[''Data’, 3], es$$["'Data’, 4]}1;

Element is numerically integrated by one of the built-in standard numerical integration rules (see Numerical Integration). This
starts the loop over the integration points, where &, i, £ are coordinates of the current integration point and wGauss is integration
point weight.
In[225]:=
SMSDo[IpIndex, 1, SMSInteger[es$$['id", "NolntPoints"]]];
{€, n, &, wGauss} + Array[SMSReal [es$$[""IntPoints", #1, IpIndex]] &, 41;

Step 4: Definition of the trial functions

This defines the trilinear shape functions N;j, i=1,2,...,8 and interpolation of the physical coordinates within the element. Jn, is
Jacobian matrix of the isoparametric mapping from actual coordinate system X, Y, Z to reference coordinates &, n, . The implicit

dependencies between the actual and the reference coordinates are given by %i‘— =t %Zf'— where Jy, is the Jacobean matrix of
[[£3]

the nonlinear coordinate mapping.

8(-1,-1,1)

7
(-LL1)

3
“T,1-1)

138 AceGen code generator

In[227]:=
Ni e MapThread[1/8 (1 + §#1) (L+n#2) (1 +E#3) &,
Transpose[{{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},
(-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}}1];
X+ SMSFreeze [Ni .Xi];
Y + SMSFreeze[Ni.Yi];
Z + SMSFreeze[Ni.Zi];
Jm e SMSD[{X, Y, Z}, {&, n, £}1;
SMSDefineDerivative[{&, nn, €}, {X, Y, Z}, SMSInverse[Jm]];

The trial function for the temperature distribution within the element is given as linear combination of the shape functions and the
nodal temperatures ¢ = Nj.¢;. The ¢; are unknown parameters of the variational problem.
In[233]:=
¢ eNI.gi;

Step 5: Definition of the governing equations

Here is the definition of the weak form of the steady state heat conduction equations. The strength of the heat source is multiplied
by the global variable rdata$$["Multiplier"].
In[234]:=
k e kO + Kkl ¢+ k2 ¢?;
&¢ £ SMSD[¢, ¢i];
A £ SMSReal [rdata$$["Multiplier™]];
ol £ Det[JIm] wGauss (kK SMSD[&6¢, {X, Y, Z}]-SMSD[¢, {X, Y, Z}] -6 A Q) ;

Element contribution to global residual vector ¥i is exported into the p$$ output parameter of the "Tangent and residual” subrou-
tine (see SMSStandardModule).

In[238]:=
SMSExport[SMSResidualSign zi, p$$, "AddIn" -» True] ;

Step 6: Definition of the Jacobian matrix

This evaluates the explicit form of the Jacobian (tangent) matrix and exports result into the s$$ output parameter of the user
subroutine. Another possibility would be to generate a characteristic formula for the arbitrary element of the residual and the
tangent matrix. This would substantially reduce the code size.
In[239]:=
Kij £ SMSD[Zi, ¢i];
SMSExport[Kij, s$$, "AddIn" - True] ;

This is the end of the integration loop.

In[241]:=
SMSEndDo[];

AceGen code generator 139

Step 7: Code Generation

At the end of the session AceGen translates the code from pseudo-code to the required script or compiled program language and
prepends the contest of the interface file to the generated code. See also SMSWrite . The result is heatconduction.c file with the
element source code written in a C language.
In[242]:=
SMSWritel[];

Method : SKR 352 formulae, 5270 sub-expressions

114) Fite created : NEATCONAUCTION . C size : 17407

User defined environment interface

Regenerate the heat conduaction element from chapter Standard FE Procedure for arbitrary user defined C
based finite element environment in a way that element description remains consistent for all environments.

Here the SMSStandardModule["Tangent and residual™] user subroutine is redefined for user environment. Mathematica has to be
restarted in order to get old definitions back !!

In[71]:= <<AceGen~;
SMSStandardModule[""Tangent and residual™]:=
SMSModule["'RKt" ,Real [D$$[2] , X$$[2,2],U$$[2,2], load$s,K$$[4,4],S$$[2111;

Here the replacement rules are defined that transform standard input/output parameters to user defined input/output parameters.

In[73]:= datarules = {(nd$$[i_, "X, J_1 = X$$S[i, j1,
nd$$[i_, "at”, j_1 = USS[i, §],
es$$["Data", i_] =» D$B[i],

S$S[i_, J_1 > KS$S[i, J1,
pSS[i_] =» S$$[i],
rdata$$["Multiplier”] » loads};

140

AceGen code generator

The element description remains essentially unchanged.

An additional subroutines (for initialization, dispatching of messages, etc..) can be added to the source code using the "Splice"
option of SMSWrite command. The "splice-file" is arbitrary text file that is first interpreted by the Mathematica’s Splice com-
mand and then prepended to the automatically generated source code file.

In[74]:=

SMSInitialize["userheatconduction”, "Environment" -> "User", "Language™ -> ""C"];
SMSTemplate[''SMSTopology' - ""H1", ""SMSDOFGlobal' - 1, ""SMSSymmetricTangent" - False
, ""SMSUserDataRules'" - datarules];
SMSStandardModule["Tangent and residual®];
Xi e Array[SMSReal [nd$$[#, "'X", 111 &, 8];
Yi e Array[SMSReal [nd$$[#, "X", 211 &, 81;
Zi e Array[SMSReal [nd$$[#, "X, 3]] &, 8];
o1 £ Array [SMSReal [nd$$[#, "at", 1]] &, 8];
SMSGroupDataNames = {"'Conductivity parameter k0", "Conductivity parameter k1",
"Conductivity parameter k2", ""Heat source'};
{kO, k1, k2, Q}
SMSReal [{es$$["'Data', 1], es$$["'Data", 2], es$$[''Data’, 3], es$$["'Data’”, 4]}];
SMSDo[IpIndex, 1, SMSInteger[es$$["id", "NoIntPoints"]]11];
{€, n, &, wGauss} r Array[SMSReal [es$$[" IntPoints™, #1, IpIndex]] &, 4];
Ni e MapThread[1/8 (1 + §#1) (1 +n#2) (1+¢E#3) &,
Transpose[{{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1,1, -1},
(-1, -1, 1y, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}}11;
X+ SMSFreeze[Ni.Xi];
Y + SMSFreeze[Ni.Yi];
Z + SMSFreeze[Ni.Zi];
JmeSMSD[{X, Y, Z}, {&§, n, E}];
SMSDefineDerivative[{E, n, £}, {X, Y, Z}, SMSInverse[Jm]];
¢ e Ni.gi;
k e kO + Kkl ¢+ k2 ¢?;
Ak SMSReal [rdata$$["Multiplier™]];
SMSDo[i, 1, SMSNoAIIDOF] ;
6¢ = SMSD[¢, o1, i];
@i £ Det[JIm] wGauss (kSMSD[6¢, {X, Y, Z}]1-SMSD[¢, {X, Y, Z}] - 662 Q) ;
SMSExport[SMSResidualSignei, p$$[i], "AddIn" - True] ;
SMSDo[j, 1, SMSNoAl IDOF] ;
Kij = SMSD[gi, ¢i, j];
SMSExport[Kij, s$$[i, j1, "AddIn" - True];
SMSEndDo[] ;
SMSEndDo[];
SMSEndDo[];
SMSWrite[];

Method : RKt 135 formulae, 2609 sub-expressions

6] Fite created : NEATCONAUCTION. C size : 6781

AceGen code generator 141

Reference Guide

SMSTemplate

SMSTemplate[options] initializes constants that are needed
for proper symbolic—numeric interface
for the chosen numerical environment

The general characteristics of the element are specified by the set of options options. Options are of the form
"Element_constant"->value (see also Template Constants for list of all constants). The SMSTemplate command

must follow the SMSInitial ize commands.

See also Template Constants section for a list of all constants and the Templates - AceGen - AceFEM section to
see how template constants relate to the external variables in AceGen and the data manipulation routines in AceFEM.

This defines the 2D, quadrilateral element with 4 nodes and 5 degrees of freedom per node.

SMSTemplate['"'SMSTopology" - "Q1", "SMSDOFGlobal' - 57 ;

SMSStandardModule

SMSStandardModule[code] start the definition of the user subroutine
with the default names and arguments

SMSStandardModule[code,name] start the definition of the user subroutine
with the default arguments and name name

SMSStandardModule[code,name,arg] start the definition of the
user subroutine with the name name,
and the default set of arguments extended
by the set of additional arguments arg

Methods for the generation of user subroutines.

142

AceGen code generator

codes for the user
defined subroutines

description

default name

"Tangent and residual”

"Postprocessing"

"Sensitivity pseudo—load"

"Dependent sensitivity"

"Residual”

"Nodal information”

"User n"

standard subroutine that returns the tangent matrix and
residual for the current values of nodal and element data

standard subroutine that returns postprocessing quantities

standard subroutine that returns the sensitivity pseudo—
load vector for the current sensitivity parameter

standard subroutine that resolves sensitivities of
the dependent variables defined at the element level

standard subroutine that returns residual for
the current values of the nodal and element data

standard subroutine that returns
position of the nodes at current and previous
time step and normal vectors if applicable

n—th user defined subroutine

"SKR"

"SPP"
"SSE"

"SHI"

"SRE"

"PAN"

"Usern"

Standard set of user subroutines.

There is a standard set of input/output arguments passed to all user subroutines as shown in the table below. The
arguments are in all supported source code languages are passed "by address", so that they can be either input or output
arguments. The element data structures can be set and accessed from the element code as the AceGen external variables
(see also the AceGen manual for the External Variables). For example, the command SMSReal[nd$$[i,"-

X",1]] returns the first coordinate of the i-th element node. The data returned are always valid for the current element
that has been processed by the FE environment.

nd3[1,...], nd$$[2,...],
...,nd$$[SMSNoNodes,...]

idata$$

rdata$$

parameter description
es$3[...] element specification data structure (see Element Data)
ed$$|...] element data structure (see Element Data)

nodal data structures for all element nodes (see Nodal Data)

integer type environment variables (see Environment Data)

real type environment variables (see Environment Data)

The standard set of input/output arguments passed to all user subroutines.

Some additional I/O arguments are needed for specific tasks as follows:

AceGen code generator 143

user subroutine argument description
"Tangent and residual” p$3[NoDOFGlobal] element residual vector
s$$[NoDOFGlobal,NoDOFGIlobal] element tangent matrix
"Postprocessing" gpost$$[NolntPoints,NoGPostData] integration point post—
processing quantities
npost$$[NoNodes,NoNPostData] nodal point post—
processing quantities
"Sensitivity pseudo—load" p3[NoDOFGlobal] sensitivity pseudo—load vector
"Dependent sensitivity" - -
"Tangent" s$$[NoDOFGlobal,NoDOFGlobal] element tangent matrix
"Residuum" p$S[NoDOFGlobal] element residual vector
"Nodal information" d$$[problem dependent , 6] (X528 X0 8 201 b v),)
"User n" - -

Additional set of input/output arguments.

The user defined subroutines described here are connected with a particular element. For the specific tasks such as
shape sensitivity analysis additional element independent user subroutines my be required (e.g. see
Sensitivity Input Data).

All the environments do not supprot all user subroutines. In the table below the accessibility of the user subroutine
according to the environment is presented. The subroutine without the mark should be avoided when the code is
generated for a certain environment.

user subroutine AceFEM FEAP ELFEN
"Tangent and residual” ° o

"Postprocessing" (]
"Sensitivity pseudo—load" °
[

"Dependent sensitivity"
"Tangent"

"Residuum"
"User n" o

144 AceGen code generator

This creates the element source with the environment dependent supplementary routines and the user defined subroutine "Tangent
and residual". The code is created for the 2D, quadrilateral element with 4 nodes, 5 degrees of freedom per node and two material
constants. Just to illustrate the procedure the X coordinate of the first element node is exported as the first element of the element
residual vector p$$. The element is generated for AceFEM and FEAP environments. The AceGen input and the generated codes are
presented.

In[2]:= << AceGen;
SMSInitialize["test", "Environment" -> ""AceFEM"] ;
SMSTemplate["SMSTopology' -» ""Q1", "*SMSDOFGlobal™ » 5,
""SMSGroupDataNames' -» {*'Constant 1", "Constant 2'}];
SMSStandardModule[""Tangent and residual'];
SMSExport[SMSReal [nd$$[1, "X, 111, p$$[1]];
SMSWrite[];

Method : E;P(FQ 1 formulae, 9 sub-expressions

[0] File created : teSt- C Size : 3548

In[8]:= !! test.cC
/ * * * * * *
* AceGen VERSION *
* Co. J. Korelc 2006 27.10.2006 18:56 *
User : USER
Evaluation time 0s Mode : Optimal
Number of formulae 1 Method: Automatic

Total size of Mathematica code 9 subexpressions

Total size of C code 225 bytes*/

#include "sms.h"

void SKR(double v[5001],ElementSpec *es,ElementData *ed,NodeSpec **ns,NodeData
**nd,double *rdata, int *idata,double *p,double **s);

FILE *SMTFile;

Subroutine : SKR size :9

DLLEXPORT int SMTSetElSpec(ElementSpec *es,int *idata,int ic,int ng)
{ int intc,nd,i;

static int pn[6]={1, 2, 3, 4, 0, 0};

static int dof[4]={5, 5, 5, 5};

static int nsto[4]={0, 0, O, O};

static int ndat[4];

static char *nid[]={"D","D","D","D"};

static char *gdcs[]={""Constant 1","Constant 2"};
static char *gpcs[]1={""}:;

static char *npcs[]={""}:;

static char *sname[]={""}:;

static char *idname[]={""""};

static int idindex[1];

static char *rdname[]={""};

static char *cswitch[]={""};

static int iswitch[1]={0};

static double dswitch[1]={0e0};

static char *MMAfunc[]={"""};

static char *MMAdesc[]={"""};

static int rdindex[1];

static int nspecs[4];

static double pnweights[4]={1e0,1e0,1e0,1e0};
static double rnodes[12]={-1e0,-1e0,0e0,1e0,-1e0,0e0,
1e0,1e0,0e0,-1e0,1e0,0e0};
es->ReferenceNodes=rnodes;

es->id.NoGroupData=2;
es->Code=""test";es->MainTitle=""";es->ProblemType=""SLU";

AceGen code generator 145

In[9]:=

es->SubTitle=""";
es->SubSubTitle=""";
es->Bibliography=""";

es—>i1d.NoDimensions=2;es->i1d.NoDOFGlobal=20;es->id.NoDOFCondense=0;es->i1d.NoNod
es=4;
es->id.NoSegmentPoints=5;es->Segments=pn;es->PostNodeWeights=pnweights;
es->i1d.NolntSwitch=0;es->IntSwitch=iswitch;
es->i1d.NoDoubleSwitch=0;es->DoubleSwitch=dswitch;
es->id.NoCharSwitch=0;es->CharSwitch=cswitch;
es->DOFGlobal=dof;es->NodelD=nid;es->id.NoGPostData=0;es->id.NoNPostData=0;

es->id.SymmetricTangent=1;es->id.CreateDummyNodes=0;es->id.PostlterationCall=0;
es->i1d.NoMMAFunctions=0;

es->Topology=""Q1";es->GroupDataNames=gdcs ; es->GPostNames=gpcs; es->NPostNames=np
cSs;

es->MMAFunctions=MMAfunc;es->MMADescriptions=MMAdesc;

es->AdditionalNodes="{}&";

es->AdditionalGraphics="{}&";

es->MMAInitialisation=""";

es->MMANextStep=""";

es->MMAStepBack=""";

es->MMAPrelteration=""";

es->I1DataNames=idname;es->I1Datalndex=idindex;es->RDataNames=rdname ;es->RDatalnd
ex=rdindex;
es->i1d.NolData=0;es->i1d.NoRData=0;

es->id.ShapeSensitivity=0;es->id.NoSensNames=0;es->SensitivityNames=sname;es->N
odeSpecs=nspecs;

es->user.SKR=SKR; ;

if(ng==es->id._NoGroupData){

es->id.DefaultlntegrationCode=2;

if(ic==-1){intc=2;} else {intc=ic;};

es->i1d. IntCode=intc;

es->IntPoints=SMTMulti IntPoints(&intc, idata,&es->id.NolntPoints,

&es->id.NolntPointsA,&es->id.NolntPointsB, &es->id.NolntPointsC);

es->id_NoTimeStorage=0;

es->id.NoElementData=0;

es->id._NoAdditionalData=0;

nd=es->id.NoDimensions*idata[ID_NoShapeParameters];for(i=0;i<4;i++)ndat[i]=nd;
es->NoNodeStorage=nsto;es->NoNodeData=ndat;
return O;
Yelse{
return 1;
};
};

/ SUBROUTINE /
void SKR(double v[5001],ElementSpec *es,ElementData *ed,NodeSpec **ns
,NodeData **nd,double *rdata,int *idata,double *p,double **s)

{
p[0]=nd[0]->X[0];
¥

<< AceGen™;

SMSInitialize["test", "Environment" -> "FEAP"];

SMSTemplate["SMSTopology" - "Q1", ""SMSDOFGlobal" -» 5,
""SMSGroupDataNames' -» {"'Constant 1", "Constant 2'}];

SMSStandardModule["Tangent and residual’];

SMSExport[SMSReal [nd$$[1, X", 111, p$$[1]]1;

SMSWrite[];

146 AceGen code generator

Method : SKRlO 1 formulae, 8 sub-expressions

[0] File created : teSt-f Size : 5113

subroutine elmt(d,ul,xl,ix,tl,s,p, ?éiQ;_gumber of projected quantities
& ndfe,ndme,nste, isw) C.... description of the postprocessing data

implicit none
include "sms.h"

integer ix(nen),ndme,ndfe,nste, isw idata(1D_OutputFile)=iow

_ return
double precision xI(ndfe,nen),d(*),ul(ndfe,nen,*) = . = M .
double precision s(nste,nste),p(nste),tl(nen),sxd(s)2 &gzzig*'*) User switch 2 not implemented
double precision ulo(ndfe,nen),sg(20),sg0(20) 3 continue
character*50 SELEM,datades(2),postdes(0) c tangent and residuum
logical DEBUG T
parameter (DEBUG=.false., gg{;riKR(v,d.ul,uIO,xI,s,p.hr(nhz),hr(nhl))
SELEM=""test') 4 continue
integer i,j,jj,10,1i,k,kk,i1,i2,i3,hlen,icode goto 8
double precision w,v(501),gpost(16,0),npost(4,0) - . = M .
integer ipordl(5) 5 &gzzig*,*) User switch 5 not implemented
data (ipordl(i),i=1,5)/1,2,3,4,1/ 6 goto 3
300 format(i5,20f11.5) PR B B .
301 format(i5.20f11.5) 7 fg{ﬁig ,*)"User switch 7 not implemented
1234 format(a4,”[",i3,"]=",¥20.10) c postprocessing
o 8 continue
dod;_};gd:gn Covunn Description of the post-processing data
pAi - - return
ulo@i, J=ul(.j,1)-ul(i.j.2) 9 continue
enddo 10 continue
enddo

11 continue
12 continue
13 continue
[T initialize history

idata(ID_Ilteration)=niter+1
go to(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21), isw

c
C.... input record 1 of material properties ig ;zz::zue
1 call dinput(d(1),2) 16 continue
write(*,) SELEM 17 continue
write(iow,*)SELEM 18 continue
Cocunn Description of the input data 19 continue
gg:ggzzg;;;"gggziggi ;" &gizig*.*)"User switch ",isw,” not implemented"
write(iow,"(10x,¥15.5,A3,A50)"") FRA R
(d(iy," = ", datades(i),i=1,2) gé....iggizﬁaglty analysis - external
C.... number of history variables return
idata(1D_NoSensParameters)=int(d(2)) c internal sensitivity
if(idata(1D_NoSensParameters).gt.0) then Zi----continue
call dinput(d(3), idata(ID_NoSensParameters)) return
write(iow,*)"Sensitivity parameters:” End
write(iow,"(5(i5,2x,T15.5))") SUBROUTI NE sk
_(i,d(2+i),i:1,idata(lD_NoSensParameters)) SUBROUTINE SKR(v,d,ul,ul0,x1,s,p,ht,hp)
endif IMPLICIT NONE
nsenpa=idata(1D_NoSensParameters) include *sms.h*
mct=0 -
DOUBLE PRECISION v(501),d(2),ul(5,4),
G-----number of data for TECPLOT & ulo(5,4),x1(2,4),5(20,20) ,p(20) ,ht(*) ,hp(*)
- - . p(D)=x1(1,1)
C.... define node numbering END
inordQ) =5
do ii = 1,5

ipord(ii,) = ipordi(ii)
end do

AceGen code generator 147

Template Constants

The AceGen uses a set of global constants that at the code generation phase define the major characteristics of the finite
element (called finite element template constants). In most cases the element topology (SMSTopology) and the number
of nodal degrees of freedom (SMSDOFGlobal) are sufficient to generate a proper interface code. Some of the FE
environments do not support all the possibilities given here. The AceGen tries to accommodate the differences and
always generates the code. However if the proper interface can not be done automatically, then it is left to the user. For
some environments additional constants have to be declared (see chapter Problem Solving Environments).

The template constants are initialized with the SMSTemplate function. Values of the constants can be also set or
changed directly after SMSTemplate command.

148

AceGen code generator

Abbreviation
SMSTopology
SMSMainTitle

SMSSubTitle
SMSSubSubTitle
SMSBibliography
SMSNoDimensions
SMSNoNodes
SMSDOFGIobal

SMSSymmetricTangent

SMSGroupDataNames

SMSGPostNames

SMNPostNames
SMSNoDOFCondense

SMSCondensationData

SMSNoTimeStorage

SMSNOoElementData
SMSNoNodeStorage

SMSNoNodeData

Description
element topology (see Element Topology)

description of the element
(see SMSVerbatim how to insert
special characters such as\n or ")

description of the element

description of the element

reference

number of spatial dimensions

number of nodes

number of d.o.f per node for all nodes

True = tangent matrix is symmetric
False = tangent matrix is unsymmetrical

description of the input data values that
are common for all elements with the same
element specification (e.g material characteristics)

description of the postprocessing
quantities defined per material point

description of the postprocessing quantities defined per node

number of d.o.f that have to be condensed
before the element quantities are assemble

(see Elimination of local unknowns,
Mixed 3D Solid FE for AceFEM)

storage scheme for local condensation
(see Elimination of local unknowns)

total number of history dependent real
type values per element that have to be stored
in the memory for transient type of problems

total number of arbitrary real values per element
total number of history dependent real type values per

node that have to be stored in the memory for transient
type of problems (can be different for each node)

total number of arbitrary real values
per node (can be different for each node)

Default value
?

Automatic
Automatic

Array[
SMSNoDimensions&,
SMSNoNodes]

True

0

Array[0&,
SMSNoNodes]

Array[idata$$[
"NoShapeParameters"]:
es$$["id",
"NoDimensions"] &,
SMSNoNodes]

AceGen code generator

149

SMSNoDOFGlobal total number of global d.o.f. Pluse@SMSDOFGlobal
SMSMaxNoDOFNode number of d.o.f per node used for dimensioning local arrays Max[SMSDOFGIobal]
SMSNoAIIDOF number of d.o.f. used for dimensioning local arrays SMSNoDOFGlobal+
SMSNoDOFCondense
SMSResidualSign 1 = equations are formed in the form K a+% =0 Automatic
—1 = equations are formed in the form K a=%¥
SMSSegments for all segments on the surface of the Automatic
element the sequence of the element node
indices that define the edge of the segment
(if possible the numbering of the nodes should be done
in a way that the normal on a surface of the
segment represents the outer normal of the element)
SMSNodeOrder ordering of nodes when compared to the standard ordering Automatic
(used in alternative environments ELFEN, FEAP, etc.)
SMSDefaultIntegrationC*. | default numerical integration Automatic
ode code (see Numerical Integration)
SMSUserDataRules user defined replacement rules that {}
transform standard input/output parameters
to user defined input/output parameters
(see also User defined environment interface)
SMSAdditionalNodes pure function that returns additional Hold[{}&]
nodes in the case of multi—field problems
SMSNodelD string that is used for Array["D"&,
identification of the nodes in the case of multi— SMSNoNodes]
field problems for all nodes (see Node Identification)
SMSReferenceNodes coordinates of the nodes in the reference Automatic
coordinate system in the case of elements with
variable number of nodes (used in post processing)
SMSPostNodeWeights additional weights associated with element nodes and Array[1&,
used for postprocessing of the results (see SMTPost) SMSNoNodes]
SMSCreateDummyNodes | enable use of dummy nodes False
SMSAdditionalGraphics | pure function that is called for each element and Hold[{}&]
returns additional graphics primitives per element
SMSAdditionalGraphics|
{element index, domain index,list of nodes},
True if node marks are required,
True if boundary conditions are required,
list of node coordinates for all element nodes]
SMSSensitivityNames description of the quantities for which
parameter sensitivity pseudo—load code is derived
SMSShapeSensitivity True = shape sensitivity pseudo—load code is derived False
False = shape sensitivity is not enabled

150

AceGen code generator

SMSMMAlnitialisation | Mathematica's code executed after SMTAnalysis
command (wrapping the code in Hold prevents evaluation)

SMSMMANextStep Mathematica's code executed after SMTNextStep
command (wrapping the code in Hold prevents evaluation)
SMSMMAStepBack Mathematica's code executed after SMTStepBack

command (wrapping the code in Hold prevents evaluation)

SMSMMAPrelteration Mathematica's code executed before SMTNextStep
command (wrapping the code in Hold prevents evaluation)

SMSIDataNames list of the names of additional integer
type environment data variables (global)
SMSRDataNames list of the names of additional real

type environment data variables (global)

SMSMMAFunctions list of external function patterns (eg. "adnode[i_,j_1")
that are included into the element source code
and read from the code at the execution time

SMSMMADescriptions list of descritions of external functions
(the same length as SMSMMAFunctions)

SMSNoAdditionalData | nhumber of additional input data values
that are common for all elements with the same
element specification (the value can be expression)

SMSCharSwitch list of character type user defined constants (local)
SMSIntSwitch list of integer type user defined constants (local)
SMSDoubleSwitch list of double type user defined constants (local)

SMSCreateDummyNodes | enable use of dummy nodes

SMSPostlterationCall force one additional call of the SKR user subroutines after
the convergence of the global solution has been archived
in order to improve solution of eventual local equations

FEAP$: FEAP specific template constants described in
chapter FEAP (see Specific FEAP Interface Data)

ELFENS$: ELFEN specific template constants described in
chapter ELFEN (see Specific ELFEN Interface Data)

Hold[]

Hold[]

Hold[]

Hold[]

{}

{}

{}
False
False

Constants defining the general element characteristics .

same home page (in principle they should have the
same SMSMainTitle and the SMSSubTitle constants)

SMSShortCodes list of the short codes used also by the element browser

Abbreviation Description Default value
SMSAddToLibrary automatically add element to FE library False
SMSHomePageCode elements with the same home page code will share the element_name

Automatic

Constants defining creation of the elemnt's home page and library position .

The library of the finite element codes is a part of AceFEM package. For details see FE Library.

AceGen code generator

151

Element Topology

C ode Description Node n umbering

"XX" | user defined or arbitrary
unknown topology

"D1" 1 D element with 2 nodes 1-2

"D2" 1 D element with 3 nodes 1-2-3

"DX" | 1D element with arbitrary
arbitrary number of nodes

152 AceGen code generator

Code Description Node n umbering

"L1" 2 D curve with 2 nodes Y, v, Fy

.

X, u, Fy
"L2" 2 D curve with 3 nodes 1-2-3
“LX" 2 D curve with arbitrary
arbitrary number of nodes
"T1" 2 D Triangle with 3 nodes 3
Y, v, Fy
1 2
X, u, Fy
"T2" 2 D Triangle with 6 nodes
Y,v,F
L
X, u, Ry
"TX" | 2D Triangle with arbitrary

arbitrary number of nodes

"QL" 2 D Quadrilateral with 4 nodes
Y, v, F,
X, u, Fy

"Q2" 2 D Quadrilateral with 8 nodes

"QX" | 2D Quadrilateral with arbitrary
arbitrary number of nodes

AceGen code generator

153

Code Description Node numbering
"C1" 3 D curve with 2 nodes
1

"c2" 3 D curve with 3 nodes 1-2-3

"CX" | 3D curve with arbitrary
arbitrary number of nodes

"pP1" 3D Triangle with 3 nodes

"p2" 3D Triangle with 6 nodes

"PX" | 3D Triangle with arbitrary
arbitrary number of nodes

"S1 3 D Quadrilateral with 4 nodes

"S2" 3 D Quadrilateral with 8 nodes

"SX" | 3D Quadrilateral with arbitrary
arbitrary number of nodes

154

AceGen code generator

Code Description

Node numbering

"O1" 3 D Tetrahedron with 4 nodes

"02" 3 D Tetrahedron with 10 nodes

3

Z,w, F,

arbitrary number of nodes

"OX" | 3D Tetrahedron with arbitrary
arbitrary number of nodes
"H1" 3 D Hexahedron with 8 nodes 8
7
Z’ W’ FZ 5 »
Y, v, F ‘
X, u, Fy 3
1
"H2" 3 D Hexahedron with 20 nodes 8
20 19
-
zZw,F, S 4
A"
Y,v, F
X, u, F, 3
10
1
2
"HX" 3 D Hexahedron with arbitrary

Default values for the Topology constant.

AceGen code generator 155

If the element topology is unknown (SMSTopology="XX"), then the number of dimensions and the number of nodes
have to be specified explicitly. If "default value" is Automatic, then the value according to the values of other constants
is taken.

The coordinate systems in the figures are only informative (e.g. X,Y can also stand for axisymmetric coordinate system
X,Y,¢). If the element has one of the standard topologies with the fixed number of nodes described above, then the
proper interface for all supported environments is automatically generated. For the nonstandard topology ("XX") or for
the variable numbers of nodes ("LT","TX",...) the proper interface is left to the user.

Node Identification

The node identification is a string that is used for identification of the nodes accordingly to the physical meaning of the
nodal unknowns. Node identification is used by the SMTAnalysis command. Two or more nodes with the same
coordinates and the same node identification are joined together into a single node. Node identification can have
additional switches (see table below). No names are prescribed in advance, however in order to have consistent set of
elements one has to use the same names for the nodes with the same physical meaning. Standard names are: "D" - node
with displacements for d.o.f., "DFi" - node with displacements and rotations for d.o.f., "T"-node with temperature
d.o.f, "M"- node with magnetic potential d.o.f. etc.. The string type identification is transformed into the integer type
identification at run time. Transformation rules are stored in a SMSNodelDIndex variable.

Node identification Description
"nid" node with node identification "nid"
"nid —F" nodes with the switch —F are taken as "fictive"

and are ignored by the SMTShowMesh command

"nid -C" nodes with the switch —
C are at the beginning by default constrained

“nid -D" nodes with the switch —
D or dummy nodes are by default constrained and fictive

"nid -CF" any combination of basic switches

Node identifications.

Dummy nodes can only appear as automatically generated additional nodes (see SMSAdditionalNodes). Only one real
node is generated for all dummy nodes of particular nid type. Dummy node can be changed during the run time into
real nodes with the same nid.

Numerical Integration

The coordinates and the weight factors for numerical integration for several standard element topologies are available.
Specific numerical integration is defined by its code number. Numerical integration is available under all supported
environments as a part of supplementary routines. The coordinates and the weights of integration points are set automati-
cally before the user subroutines are called. They can be obtained inside the user subroutines for the i-th integration
point in a following way

ci=SMSReal [es$F["IntPoints™,1,1]
ni=SMSReal [es$$ [IntPoints",2,i]
Ci=SMSReal [es$$["IntPoints",3,1]
wi=SMSReal [es$$[""IntPoints",4,i]

]
]
]
]

156 AceGen code generator

where {&; ni, i} are the coordinates and w; is the weight. The integration points are constructed accordingly to the
given integration code. Codes for the basic one two and three dimensional numerical integration rules are presented in
tables below. Basic integration codes can be combined in order to get more complicated multi-dimensional integra-
tional rules. The combined code is given in the domain specification input data as a list of up to three basic codes as
follows:

{codeA} = codeA
{codeA,codeB}
{codeA,codeB,codeC}

where codeA, codeB and codeC are any of the basic integration codes. For example 2x2x5 Gauss integration can be
represented with the code {2, 24} or equivalent code {21, 21, 24}. The integration code 7 stands for three dimensional
8 point (2x2x2) Gauss integration rule and integration code 21 for one dimensional 2 point Gauss integration. Thus the
integration code 7 and the code {21,21,21} represent identical integration rule.

The numbering of the points is depicted below.

? NaNg (Ne —1)+1

Code | Description No. of points

0 numerical integration is not used 0

default integration code is taken

topology d dent
accordingly to the topology of the element opology dependen

AceGen code generator

157

One dimensional

Range: {5,77: g} € ['1!1] X [0,0] x [O!O]

Code Description ’;\)lc?i.n(?tz Disposition

20 1 point Gauss 1 L

21 2 point Gauss 2 —_———
22 3 point Gauss 3 ————
23 4 point Gauss 4 —)——0—0—
24 5 point Gauss 5 -

25 6 point Gauss 6 -

26 7 point Gauss 7 -

27 8 point Gauss 8 -

28 9 point Gauss 9 -

29 10 point Gauss 10 -

30 2 point Lobatto 2 @ @
31 3 point Lobatto 3 o @ ®
32 4 point Lobatto 4 o @ *—0
33 5 point Lobatto 5 -

34 6 point Lobatto 6 -

158

AceGen code generator

Quadrilateral

{é’ B é’} € ['111] x ['1!1] X [0,0]

Code Description NO_‘ of Disposition
points
1 1 point integration 1 ®
[[J
2 2x2 Gauss integration 4
(] ®
3 3x3 Gauss integration 9
[] [J
4 5 point special rule 5
(] ®
e | o
5 points in nodes 4
*—————eo

AceGen code generator

159

Triangle

{¢m. 3 €101] x[0,1] x [0,0]

Code Description NO_‘ of Disposition
points
12 1 point integration 1 A
13 3 point integration 3 A
14 3 point integration 3 A
o
16 4 point integration 4 ,
17 7 point integration 7 A

160

AceGen code generator

Tetrahedra

{¢m 3 e[01]x[0,1] x [0,1]

Code Description NO_‘ of Disposition
points
15 1 point integration 1
18 4 point integration 4
19 5 point integration 5

AceGen code generator

161

Hexahedra

{é’ B é’} € ['111] x ['1!1] X ['1’1]

Code Description NO_‘ of Disposition
points
6 1 point integration 1 °®
e |

[] []

7 2x2x2 Gauss integration 8

(([

(] (]

8 3x3x3 Gauss integration 27

9 4x4x4 Gauss integration 64

10 9 point special rule 9

11 points in nodes 8

Example 1

This generates simple loop over all given integration points.

SMSDo [IpIndex, 1, SMSInteger[es$$["id",

SMSEndDo[] ;

"NolntPoints"]]];
(&, n, £, W} - Array [SMSReal [es$$ [IntPoints™, #1, Iplndex]] &, 4];

162 AceGen code generator

Example 2

In the case of the combined integration code, the integration can be also performed separately for each set of points.

{nA, nB, nC} SMSInteger[{es$$["id", "NolntPointsA"],
es$$["id", "NolntPointsB"], es$$["id", "NolntPointsC"]}]
SMSDo[i&, 1, nAl;
&+ SMSReal [es$$ [IntPoints™, 1, i&]];

SMSDo[in, 1, nB];
n ~ SMSReal [es$$["IntPoints", 2, (in-1)nA+1]];

SMSDo[i¢Z, 1, nC];
€ ~ SMSReal [es$$ [IntPoints”

, 3, -1)nAnB+1]];
w - SMSReal [es$$ [IntPoints™, 4,

(i
iIE+ (Iin-1)nA + (i¢-1) nAnB]];

SMSEndDo[] ;
SMSEndDo[];
SMSEndDo[] ;

Elimination of local unknowns

Some elements have additional internal degrees of freedom that do not appear as part of formulation in any other
element. Those degrees of freedom can be eliminated before the assembly of the global matrix, resulting in a reduced
number of equations. The structure of the tangent matrix and the residual before the elimination should be as follows:

Kl Kih) (Au" -RY
(n n)(AR) = (_RR) = Keond AU" = —Reond

where u is a global set of unknowns, 'n' is an iteration number and h is a set of unknowns that has to be eliminated. The
build in mechanism ensures automatic condensation of the local tangent matrix before the assembly of the global
tangent matrix as follows:

Keond = KlTu - Sh Hg

Rcond = RB + Kl.rl]h HS

where H, isa matrix and Hy, a vector defined as
HE = K& KR, -

HE = KRRy

The actual values of the local unknowns are calculated first time when the element tangent and residual subroutine is
called by:

h"! = h" + Hy, — Ha Au" .

Three quantities has to be stored at the element level for the presented scheme: the values of the local unknowns h", the
b matrix and the H] matrix. The default values are available for all constants, however user should be careful that the

default values do not interfere with his own data storage scheme. When default values are used, the system also

increases the constants that specify the allocated memory per element (SMSNoTimeStorage and SMSNoElementData).

The total storage per element required for the elimination of the local unknowns is:
SMSNoDOFCondense+SMSNoDOFCondense+SMSNoDOFCondense*SMSNoDOFGlobal

The template constant SMSCondensationData stores pointers at the beginning of the corresponding data field.

AceGen code generator 163

Data Position Dimension Default for AceFEM
h" SMSCondensationData[[1]] SMSNoDOFCondense ed$$["'ht",1]
o . ed$$["ht",
b SMSCondensationData[[2]] SMSNoDOFCondense SMSNoDOFCondense+1]
. SMSNoDOFCondenses ed$$["'ht"
H? M D !
a | SMSCondensationDatal[3]] SMSNoDOFGIobal 2 SMSNoDOFCondense-+1]

Storage scheme for the elimination of the local unknowns.
All three examples below would yield the same storage scheme. See also: Mixed 3D Solid FE for AceFEM.
SMSTemplate[''SMSTopology" - ""H1", "SMSNoDOFCondense' - 9]

SMSTemplate[*"SMSTopology' - "*H1", ""SMSNoDOFCondense™ - 9,
""SMSCondensationData™ -> ed$$[""ht', 1], ""SMSNoTimeStorage' - 9]

SMSTemplate[""SMSTopology' - ""H1", "SMSNoDOFCondense™ - 9,
"'SMSCondensationData” » {ed$$["'ht", 1], ed$$["'ht", 10], ed$$["ht", 19]},
""SMSNoTimeStorage' - 234

Subroutine: "Sensitivity pseudo-load" and "Dependent sensitivity"

The "Sensitivity pseudo-load" user subroutine returns pseudo-load vector used in direct implicit analysis to get sensitivi-
ties of the global unknowns with respect to arbitrary parameter.

Sse also: Solid, Finite Strain Element for Direct and Sensitivity Analysis , Parame-
ter, Shape and Load Sensitivity Analysis of Multi-Domain Example.

SensType code Description SensTypelndex parameter
1 parameter sensitivity | an index of the selected material parameter
as specified in a description of the Material models
2 shape sensitivity an index of the current shape parameter
3 implicit sensitivity it has no meaning for implicit sensitivity

Codes for the "SensType" and "SensTypelndex" switches.

One of the input data in the case of shape sensitivity analysis is also the derivation of the nodal coordinates with respect
to the shape parameters. The data is by default stored in a data field nd3[i,"Data",j,k] and should be initialized by the
user.

164 AceGen code generator

This sets a proper dimension for the node data "Data" field. This is also the default value of the SMSNoNodeData variable.

Here is a shematic example how the sensitivity pseudo-load vector can be evaluated.

¢ = SMSInteger[idata$$["Sensindex]] ;

(» Index of the current sensitivity parametersx)

¢t r SMSInteger [es$$["'SensType", ¢]];

(» type of the parameter l-material 2-shape 3-implicitx)

¢ti = SMSInteger [es$$[""SensTypelndex", ¢]];

(» Index of the parameter inside the type groupx)

Si = Array [SMSNoNodes SMSNoDimensions &, 4]; (» sensitivity pseudo-load vector «)

(» material parameters »)
SMSIFf[ot =1];

SMSIf[oti == 1]; (« First material parameter «)
Si 4 SMSD[..., ¢ml];

SMSEndI1f[];

SMSIf[¢oti == 2]; (x second material parameter «)
Si 4 SMSD[..., ¢m2];

SMSEndI1f[];

SMSEndIF[Si];

(» shape parameters x)

SMSIF[¢t = 2];
(= sensitivity of the coordinates with respect to ¢ti-th shape parameter «)
6X6¢ £ Array [SMSReal [nd$$ [#1, "'sX', ¢ti, #2]] &, {SMSNoNodes, SMSNoDimensions}];
Si4...;

SMSEndIf[Si];

(» implicit dependencies «)
SMSIf[¢t = 3];

Si+4....;
SMSEndIf[Si];

SMSExport[SMSResidualSign Si, p$$, "AddIn" - True] ;

Let us suppose that the first shape sensitivity parameter is the X coordinate of the second node and the second Y coordinate of the
50-th node. This sets initial sensitivities of the nodal coordinates for 2D problem in all nodes. The data has to be set before the first
sensitivity analysis.
SMTNodeData|''Data",
MapIndexed[{1f[#2[[1]] =2, 1, 0], O, O, IFf[#2[[1]] ==50, 1, O]} &, SMTNodes]];

AceGen code generator 165

Subroutine: "Postprocessing”

The "Postprocessing™ user subroutine returns two arrays with arbitrary number of post-processing quantities as
follows:

= gpost$$ array of the integration point quantities with the dimension "number of integration points'x"number
of integration point quantities”,

> npost$$ array of the nodal point quantities with the dimension "number of nodes"x"number of nodal point
quantities".

Integration point quantities are mapped to nodes accordingly to the type of extrapolation as follows:
Type 0: Least square extrapolation from integration points to nodal points is used.

Type 1: The integration point value is multiplied by the weight factor. Weight factor can be e.g the value of the shape
functions at the integration point and have to be supplied by the user. By default the last NoNodes integration point

quantities are taken for the weight factors (see SMTPost).

The nodal value is additionally multiplied by the user defined nodal wight factor that is stored in element specification
data structure for each node (es$$["PostNodeWeights",nodenumber]). Default value of the nodal weight factor is 1 for
all nodes. It can be changed by setting the SMSPostNodeWeights template constant.

The dimension and the contents of the arrays are defined by the two vectors of strings SMSGPostNames and SMSNPost-
Names. They contain the names of the post-processing quantities. Those names are also used in the analysis to identify

the specific quantity (see SMTPost). It is the responsibility of the user to keep the names of the post-processing
quantities consistent for all used elements.

This outlines the major parts of the "Postprocessing™ user subroutine.

(= template constants related to the postprocessingx)
SMSTemplate|
""'SMSSegments" - .., ""SMSReferenceNodes" - ...,
""SMSPostNodeWeights™ - .., ""SMSAdditionalGraphics' - ..

]

SMSStandardModule[*'Postprocessing”] ;

(» export integration point postprocessing values for all integration pointsx)
SMSGPostNames = {""'Sxx', "Syy", "Sxy", ...};
SMSDo [IpIndex, 1, SMSInteger[es$$['id", "NolntPoints"]]];

SMSExport| {Sxx, Syy, Sxy, ...}, gpost$$[Iplndex, #1] &];
SMSEndDo[] ;

(» export nodal point postprocessing values for all nodes,

excluded nodes can be omittedx)

SMSNPostNames = {"'DeformedMeshX", "DeformedMeshY", ...};
SMSExport[{{ui[[1]], vi[[1]], ...}, {uB[[2]], Vi[[2]], ---}, ---}, npost$$];

166 AceGen code generator

Data Structures

Environment Data

Environment data structure defines the general information common for all nodes and elements of the problem. If the
"default form" of the data is used, then AceGen automatically transforms the input into the form that is correct for the
selected FE environment. The environment data are stored into two vectors, one for the integer type values (Integer
Type Environment Data) and the other for the real type values (Real Type Environment Data). All the environments do
not provide all the data thus automatic translation can sometimes fails.

Integer Type Environment Data

AceGen code generator 167
Default form Description Default/
Read —
Write

idata$$["IDataLength”] actual length of idata vector 200/R

idata$$["RDatalLength"] actual length of rdata vector 200/R

idata$$["IDatalLast"] index of the last value reserved on idata vector ?IR
(we can store additional user defined data after this point)

idata$$["RDatalLast"] index of the last value reserved on rdata vector ?/IR
(we can store additional user defined data after this point)

idata$$["LastIntCode"] last integration code for which numerical ?IR
integration points and weights were calculated

idata$$["Iteration"] index of the current iteration within the iterative loop ?IR

idata3["'Totallteration"] total number of iterations in session ?/IR

idata$$["LinearEstimate™] if 1 then in the first iteration of the NewtonRaphson iterative 0/RW
procedure the prescribed boundary conditions are not updated
and the residual is evaluated by R=R (ap)+K (ap)*Aaprescribed

idata$$["ErrorStatus"] code for the type of the most 0/RW
important error event (see SMTErrorCheck)

idata$$["MaterialState"] number of the "Non—physical material point state™ 0/RW
error events detected form the last error check

idata$$["NoSensParameters"] total number of sensitivity ?IR
parameters (see Subroutine: Sensitivity)

idata$$["ElementShape"] number of the "Non—physical element shape" 0/RW
error events detected form the last error check

idata$$["'Sensindex"] index of the current sensitivity parameter — ?IR
globally to the problem (see Subroutine: Sensitivity)

idata$$["OutputFile"] output file number or output channel number ?/IR

168

AceGen

code generator

idata$$["MissingSubroutine"] number of the "Missing user defined subroutine” 0/RW
error events detected form the last error check
idata$$["SubDivergence"] number of the "Divergence of the local sub—iterative process" 0/RW
error events detected form the last error check
idata$$["ElementState"] number of the "Non—physical element state" 0/RW
error events detected form the last error check
idata$$["NoNodes"] total number of nodes ?IR
idata$$["NoElements"] total number of elements ?IR
idata$$["NoESpec"] total number of domains ?/IR
idata$$["Debug"] 0 = debug mode is off 0/RW
1 = the state of the system is written to
output file after each operation
idata$$["NoDimensions"] number of spatial dimensions of the problem (2 or 3) ?/IR
idata$$["SymmetricTangent"] 1 = global tangent matrix is symmetric ?IR
0 = global tangent matrix is unsymmetrical
idata$$["MinNoTmpData"] minimum number of real type 3
variables per node stored temporarily
(actual number of additional temporary variables per node is
calculated as Max["MinNoTmpData", number of nodal d.o.f])
idata$$["NoEquations"] total number of global equations ?2/IR
idata$$["DiagonalSign"] number of the "Solver: change of the sign of diagonal” 0/RW
error events detected form the last error check
idata$$["Task"] code of the current task performed ?IR
idata$$["'NoSublterations"] maximal number of local sub— 0/R
iterative process iterations performed during the analysis
idata$$["CurrentElement”] index of the current element processed 0/R
idata$$["MaxPhysicalState"] used for the indication of the physical state of the element 0/RW
(e.g. O—elastic, 1—plastic, etc., user controlled option)
idata$$["ExtrapolationType"] type of extrapolation of integration point values to nodes 0/RW
0 > least square extrapolation (Subroutine: Postprocessing)
1= integration point value is multiplied by the user
defined weight factors (see Subroutine: Postprocessing)
idata$$["TmpContents"] the meaning of the temporary real type 0
variables stored during the execution of a single
analysis into nd$$[i,"tmp", j] data structure
0 = not used
1 = residual (reactions)
2 = used for postprocessing
3 = initial sensitivity of the nodal coordinates
idata$$[0 = residual vector is not formed separately 0
"AssemblyNodeResidual”] 1 = during the execution of the SMTNewtonlteration command
the residual vector is formed separately and stored into
nd$$[i,"tmp", j1 (at the end the nd$$[i,"tmp", j1 contains the j—
th component of the nodal reaction in the i—th node)

AceGen code generator

169

idata$$["SkipSolver"]

idata$$["NoNSpec"]
idata$$["'SetSolver"]

idata$$["NoShapeParameters"]

idata$$[
"GeometricTangentMatrix"]

idata$$["'DataMemory"]
idata$$["SolverMemory"]
idata$$["Solver"]
idata$$["ErrorElement”]
idata$$["SkipTangent"]
idata$$["'SkipResidual"]
idata$$["SublterationMode"]

idata$$["Postlteration"]

idata$$["Solverl"]
idata$$["Solver2"]
idata$$["Solver3"]
idata$$["Solver4"]
idata$$["Solvers"]

idata$$["ContactProblem"]

idata$$["Contactl"]
idata$$["Contact2"]
idata$$["Contact3"]
idata$$["Contact4"]
idata$$["Contact5"]

idata$$[""DummyNodes"]
idata$$["Postlteration"]

idata$$["PostlterationCall"]

idata$$["Step"]

idata$$["'DebugElement"]

idata$$["'ZeroPivot"]

0 = full Newton—Raphson iteration
1 = the tangent matrix and the residual vector are
assembled but the resulting sistem of equations is not solved

total number of node specifications
1 = recalculate solver dependent data structures if needed
total number of shape sensitivity parameters

Used for bucklink analysis (Kg+A K,) {¥}={0}):
0 = form full nonlinear matrix

1 = form K

2 > form K,

memory used to store data (bytes)

memory used by solver (bytes)

solver identification number

last element where error event occurred

1 = the global tangent matrix is not assemled

1 = the global residual vector is not assembled

Switch used in the case that alternating solution

has been detected by the SMTConvergence function.
0= i1 bh=bP

=1 = i, by=i b’

is set by the SMTConvergence command
to 1 if the switch "Postlteration” has been used

solver specific parameters

1 = global contact search is enabled
0 = global contact search is disabled

contact problem specific parameters

1 = dummy nodes are supported for the current analysis
1 = current NR—iteration is a "post—iteration”

1 = additional call of the SKR user subroutines
after the convergence of the global solution is enabled

total number of completed solution steps
(set by Newton—Raphson iterative procedure)

-1 = break points (see Interactive Debugging) and control

print outs (see SMSPrint) are active for all elements

0 = break points and control print outs are disabled
>0 = break points and control print outs are active only for
the element with the index SMTIData["DebugElement”]

index of the equation with the zero pivot

2 PN R DYDY Sl I DY S [P SRR SN

?IR

O O O O O o o

1R

170

AceGen code generator

idata$$["GloballterationMode™]

idata$$["NoDiscreteEvents"]

idata$$["'LineSearchUpdate"]

(alter uie uecColrposIiuoll 01 uie giovdl wanygernt mdtrix)

Switch used in the case that alternating solution

has been detected by the SMTConvergence function.

0 = no restrictions on global equations
>1 = freeze all "If" statements
(e.g. nodes in contact, plastic—elastic regime)

number of discrete events recordered during the NR—
iteration by the elements (e.g. new contact node,
transformation from elastic to plastic regime)

activate line search procedure
(see also idata3["LineSearchStepLength™])

False

Integer type environment data.

See also Environment Data.

AceGen code generator 171
Real Type Environment Data
Default form Description Default
rdata$$["Multiplier] current values of the natural and essential 0
boundary conditions are obtained by multiplying
initial values with the rdata$$["Multiplier"]
(the value is also known as load level or load factor)

" M 1} M H 1 H \Il.\ll 55
rdata$$["ResidualError"] Modified Euklid's norm of the residual vector -/ NoEquations 10
rdata$$["'IncrementError] Modified Euklid's norm of the 10%°

. Aa.Aa
last increment of global d.o.f / NoEquations
rdata$$["MFlops"] estimate of the number of floating point operations per second
rdata$$["SubMFlops"] number of equivalent floating point
operations for the last call of the user subroutine
rdata$$["Time"] real time 0
rdata$$["Timelncrement"] value of the last real time increment 0
rdata$$["MultiplierIncrement"] value of the last multiplier increment 0
rdata$$[tolerance for the local sub—iterative process 107°
"SublterationTolerance"]
rdata$$[step size control factor n (,ial=jal+n A ;a) Automatic
"LineSearchStepLength"] (see also idata$$["LineSearchUpdate"])
rdata$$["PostMaxValue"] the value is set by the postprocessing SMTPost 0
function to the true maximum value of the required
guontitie (note that the values returned by the SMTPost
function are smoothed over the patch of elements)
rdata$$["PostMinValue"] the value is set by the postprocessing SMTPost function 0
to the true minimum value of the required quantity
rdata$$["Solverl"] solver specific parameters
rdata$$["Solver2"]
rdata$$["Solver3"]
rdata$$["Solver4")
rdata$$["Solvers"]
rdata$$["Contact1"] contact problem specific parameters
rdata$$["Contact2"]
rdata$$["Contact3"]
rdata$$["'Contact4"]
rdata$$["'Contact5"]

Real type environment data.

See also Environment Data.

172 AceGen code generator

Node Data Structures

Two types of the node specific data structures are defined. The node specification data structure (ns$$)
defines the major characteristics of the nodes sharing the same node identification (NodelD). Nodal data structure
(nd$$) contains all the data that are associated with specific node. Nodal data structure can be set and accessed from the
element code. For example, the command SMSReal[nd3[i,"X",1]] returns x-coordinate of the i-th element node. At
the analysis phase the data can be set and accessed interactively from the Mathematica by the user (see Data Base
Manipulations). The data are always valid for the current element that has been processed by the FE environment.
Index i is the index of the node accordingly to the definition of the particular element.

Node Specification Data

Default form Description Dimension

ns$$[i,"id","Specindex"] | global index of the i—th node specification data structure 1

ns3[i,"id","NoDOF"] number of nodal d.o.f (= nd$$[i,"id","NoDOF"]) 1

ns$$[i,"id", total number of history dependent real 1

"NoNodeStorage"] type values per node that have to be stored

in the memory for transient type of problems

ns$$[i,"id", total number of arbitrary real values per node 1

"NoNodeData"]

ns$$[i,"id","NoData"] total number of arbitrary real values per node specification 1

ns$S[i,"id", number of temporary real type variables stored 1

"NoTmpData"] during the execution of a single analysis directive

ns$$[i,"id","Constrained”] | 1 = node has initially all d.o.f. constrained 1

ns$S[i,"id","Fictive"] 1 = node is ignored for the postprocessing of nodes 1

ns$$[i,"id","Dummy"] 1 = node specification describes a dummy node 1

ns$$[i,"id", index of the dummy node 1

"DummyNode"]

ns$$[i,"Data”, j] arbitrary node specification specific data ns$$i,
"id","NoData"]
real numbers

ns3[i,"NodelD"] node identification string

Node specification data structure.

Se also Node Data Structures.

AceGen code generator 173
Node Data
Default form Description Dimension
nd$$[i,"id","Nodelndex"] | global index of the i—th node 1
nd3[i,"id","NoDOF"] number of nodal d.o.f 1
nd$$[i,"id","Specindex"] | index of the node specification data structure 1
ndS[i,"id", number of elements associated with i—th node 1
"NoElements"]
nd$$[i,"DOF", j] global index of the j—th nodal d.o.f or —1 if there is an NoDOF
essential boundary condition assigned to the j—th d.o.f.
nd$$[i,"Elements"] list of elements associated with i—th node NoElements
nd$$[i,"X", j] initial coordinates of the node 3(1-X,2-Y,3-2)
nd$$[i,"Bt",] nd$$[i,"DOF",jl = -1 = NoDOF
current value of the j—th essential boundary condition
nd$$[i,"DOF",j1= 0>
current value of the j—th natural boundary condition
nd$$[i,"Bp", j] value of the j—th boundary condition NoDOF
(either essential or natural) at the end of previous step
nd$$[i,"dB", j] reference value of the j—th boundary condition in node i NoDOF
(current boundary value is defined as Bt=Bp +4.1 dB,
where A4 is the multiplier increment)
nds[i,"at", j] current value of the j—th nodal d.o.f (&%) NoDOF
nd3[i,"ap", j] value of the j—th nodal d.o.f at the end of previous step (a;) NoDOF
nds[i,"da", j] value of the increment of the j— NoDOF
th nodal d.o.f in last iteration (Aa;)
nd$$[i,"st", j, K] current sensitivities of the k— NoDOF
th nodal d.o.f with respect to the j— NoSensParameters
ey - O ‘i
th sensitivity parameter (ai%)
nd$$i,"sp", j, K] sensitivities of the k—th nodal d.o.f with respect to the j— NoDOF:
th sensitivity parameter in previous step (%”‘%) NoSensParameters
nd$$[i,"Data”, j] arbitrary node specific data (e.g. initial NoNodeData
sensitivity in the case of shape sensitivity analysis) real numbers
nd$$[i,"ht", j] current state of the j— NoNodeStorage
th transient specific variable in the i—th node real numbers
nd$$[i,"hp", j] the state of the j—th transient variable in the i— NoNodeStorage
th node at the end of the previous step real numbers
nd$$[i,"tmp", j] temporary real type variables stored during Max[idata$$[
the execution of a single analysis directive "MinNoTmpData"],
NoDOF])

Nodal data structure.

Se also Node Data Structures.

174 AceGen code generator

For the compatibility with other environments the data stored in the "tmp" field should not be addressed directly, but
through standard environment independent form. This form is then interpreted by the AceGen at the code generation
phase.

Default form Description AceFEM
interpretation
nd$$[i, "sX", j, k] initial sensitivity of the k— = nd$$[i,"Data",
th nodal coordinate of the i— SMSNoDimensions:(j—1)+Kk]

th node with respect to the j—
th shape sensitivity parameter

nd$$[i,"ppd",j] post—processing data where = nd$$[i,"tmp", j]

nd3[i,"ppd",1] is the sum of all weights
and nd$3[i,"ppd",2] is smoothed nodal value

Interpreted nodal data values.

Element Data Structures

Two types of the element specific data structures are defined. The domain specification data structure defines the major
characteristics of the element that is used to discretize particular sub-domain of the problem. It can also contain the data
that are common for all elements of the domain (e.g. material constants). The element data structure holds the data that
are specific for each element in the mesh.

For a transient problems several sets of element dependent transient variables have to be stored. Typically there can be
two sets: the current (ht) and the previous (hp) values of the transient variables. The hp and ht data are switched at the

beginning of a new step (see SMTNextStep).

All element data structures can be set and accessed from the element code. For example, the command
SMSInteger[ed$$["nodes”,1]] returns the index of the first element node. The data is always valid for the current
element that has been processed by the FE environment.

Domain Specification Data

AceGen code generator

175

Default form Description Type
es$$["'Code"] element code according to the general classification string
es$$["user”, i] the i—th user defined element subroutines link
(interpretation depends on the FE environment)
es$$["id","SpecIndex"] global index of the domain specification structure integer
es$$["id","NoDimensions"] number of spatial dimensions (1/2/3) integer
es$$["id","NoDOFGlobal"] number of global d.o.f per element integer
es$$["id","NoDOFCondense”] | number of d.o.f that have to be statically condensed integer
before the element quantities are assembled to
global quantities (see also Template Constants)
es$3["id","NoNodes"] number of nodes per element integer
es$$["id","NoGroupData”] number of input data values that are common integer
for all elements in domain (e.g material constants)
and are provided by the user is input data
es$$["id","NoSegmentPoints"] | the length of the es$$["'Segments"] field integer
es$$["id","IntCode"] integration code according to the general integer

es$$["id","NoTimeStorage"]
es$$["id","NoElementData"]

es$$["id","NolntPoints"]

es$$["id","NoGPostData"]

es3["id","NoNPostData"]

classification (see Numerical Integration)

number of transient variables (variable lenght)

number of arbitrary real
values per element (variable lenght)

total number of integration points for
numerical integration (see Numerical Integration)

number of post—processing quantities
per material point (see SMTElementPostData)

number of post—processing quantities
per node (see SMTElementPostData)

integer expression

integer expression

integer

integer

integer

176

AceGen code generator

Default form Description Type

es$$["id", 1 = element tangent matrix is symmetric integer

"SymmetricTangent"] 0 = element tangent matrix is unsymmetrical

es$$["id","NolntPointsA"] number of integration points for first integer
integration code (see Numerical Integration)

es$$["id","NolntPointsB"] number of integration points for second integer
integration code (see Numerical Integration)

es$$["id","NolntPointsC"] number of integration points for third integer
integration code (see Numerical Integration)

es$$["id","NoSensNames"] number of quantities for which integer
parameter sensitivity pseudo—load code is derived

es$$["id","ShapeSensitivity”] | 1 = shape sensitivity pseudo—load code is present integer
0 = shape sensitivity is not enabled

es$$["id", "NolData"] number of additional integer integer
type environment data variables

es$$["id", "NoRData"] number of additional real type environment data variables integer

es$$["id", default numerical integration code integer

"DefaultintegrationCode"] (see Numerical integration). Value
is initialized by template constant
SMSDefaultintegrationCode (see Template Constants)

es$$["id", number of external function patterns 0

"NoMMAFunctions"] that are included into the source code

es$$["id", number of additional input data values that are common integer expression

"NoAdditionalData"]

es$$["id","NoCharSwitch"]
es$$["id","NolntSwitch"]
es$$["id","NoDoubleSwitch"]

es$$["id",
"CreateDummyNodes"]

es$$["id","PostlterationCall"]

es3["Topology"]

es3["GroupDataNames", i]

for all elements in domain (e.g flow curve points) and
are provided by the user is input data (variable lenght)

number of character type user defined constants
number of integer type user defined constants
number of double type user defined constants
enable use of dummy nodes

force an additional call of the SKR user subroutines
after the convergence of the global solution is achieved

element topology code (see Template Constants)

description of the i—th input data value that is
common for all elements with the same specification

0

0

0
False

False

string

NoGroupData
strings

AceGen code generator

177

es$$["GPostNames", i]

es$P["NPostNames", i]

es$$["'Segments”, i]

es$$["'DOFGlobal”, i]

es$$["SensType", i]

es3["SensTypelndex"”, i]

es$$["'Data”, j]

es$$["IntPoints",i, j]

es$$["'ReferenceNodes",i]

es$$["'PostNodeWeights",i]

es$$["AdditionalData",i]

es$$[""'NoNodeStorage", i]

es$$[""NoNodeData", i]

es3["NodeSpec",i]

es$$["AdditionalNodes"]

description of the i—th post—
processing quantities evaluated at each

material point (see SMTElementPostData)

description of the i—th post—
processing quantities evaluated at each

nodal point (see SMTElementPostData)

sequence of element node indices that
defines the segments on the surface or outline of
the element (e.g. for "Q1" topology {1,2,3,4,0})

number of d.o.f for the i—
th node (each node can have different number of d.o.f)

type of the i—
th sensitivity parameter (see Subroutine: Sensitivity)

index of the i—th parameter defined locally
in a type group (see Subroutine: Sensitivity)

data common for all the elements
within a particular domain (fixed length)

coordinates and weights

of the numerical integration points
&i=es$$["IntPoints",1,i], pi=es$$["IntPoints",2,i],
Zi=es$$["IntPoints”,3,i], w;=es$$["IntPoints",4,i]

coordinates of the nodes in a reference
coordinate system (reference coordinate
system is specified by the integration code)

see SMTPost

additional data common for all the elements
within a particular domain (variable length)

number of history dependent
real type values for the i—th node

number of arbitrary real values for the i—th node

node specification index for the i—th node

pure function that returns coordinates of nodes

additional to the user defined nodes that are nodes
required by the element (if node is a dummy node
than coordinates are replaced by the symbol Null)

NoGPostData
strings

NoNPostData
strings

NoSegmentPoints
integer numbers

NoNodes
integer numbers

NoSensParameters
integer numbers

NoSensParameters
integer numbers

NoGroupData
real numbers

NolntPoints«4
real numbers

NoNodes:3
real numbers

NoNodes
real numbers

NoAdditionalData
real numbers

NoNodes
integer numbers

NoNodes
integer numbers

NoNodes
integer numbers

pure function

178

AceGen code generator

es$$["'NodelD",i]

es$$["AdditionalGraphics"]

es$$["'SensitivityNames",i]

es$$["MainTitle"]
es$$["SubTitle"]
es$$["SubSubTitle"]
es$$["Bibliography"]
es$$["MMAInitialisation™]
es$$["MMANextStep"]
es$$["MMAStepBack"]
es$$["MMAPrelteration™]
es$$["MMAFunctions"]

es$$["MMADescriptions"]

es$$["IDataNames"]
es$$["RDataNames"]
es$$["'IDatalndex”]
es$$["RDatalndex"]
es$$["CharSwitch"]

es$$["'IntSwitch™]

es3["DoubleSwitch™)

integer number that is used for identification of the
nodes in the case of multi—field problems for all nodes

pure function that is called for each element
and returns additional graphics primitives

per element (see SMSAdditionalGraphics)
description of the quantities for which

parameter sensitivity pseudo—load code is derived
description of the element

description of the element

detailed description of the element

reference

Mathematica's code executed
after SMTAnalysis command

Mathematica's code executed
after SMTNextStep command

Mathematica's code executed
after SMTStepBack command

Mathematica's code executed
before SMTNextStep command

list of external function patterns (eg. "adnode[i_,j]")
that are included into the source code

list of descriptions of external functions

additional integer type environment data variables (global)
additional real type environment data variables (global)
index to additional integer type environment data variable
index to additional real type environment data variable
character type user defined constants (local)

integer type user defined constants (local)

double type user defined constants (local)

NoNodes:
integer numbers

string

NoSensNames:
string

string
string
string
string
string

string

string

string

NoMMAFunctions
xstring

NoMMAFunctions
xstring

NolDataxstring

NoRDataxstring
NolDataxinteger
NoRDataxinteger

NoCharSwitchs
word

NolntegerSwitchs
integer

NoDoubleSwitchs
doube

Domain specification data structure.

Se also Element Data Structures.

AceGen code generator 179

Element Data

Default form Description Type
ed$$["id","ElemIndex"] global index of the element integer
ed$$["id","Specindex"] index of the domain specification data structure integer
ed$$["id","Active"] 1 = element is active integer
0 > element is ignored for all actions
ed$$["Nodes", j] index of the j—th element nodes NoNodes
integer numbers
ed$$["Data", j] arbitrary element specific data NoElementData
real numbers
ed$$["ht",j] current state of the j—th transient element specific variable NoTimeStorage
real numbers
ed$$["hp",j] the state of the j— NoTimeStorage
th transient variable at the end of the previous step real numbers

Element data structure.

Se also Element Data Structures.

Problem Solving Environments

AceFEM

About AceFEM

The AceFEM package is a general finite element environment designed for solving multi-physics and multi-field
problems. (see also AceFEM Structure)

FEAP

About FEAP

FEAP is an FE environment developed by R. L. Tylor, Department of Civil Engineering, University of California at
Berkeley, Berkeley, California 94720.

FEAP is the research type FE environment with open architecture, but only basic pre/post-processing capabilities. The
generated user subroutines are connected with the FEAP through its standard user subroutine interface (see SMSStan-
dardModule). By default, the element with the number 10 is generated.

In order to put a new element in FEAP we need:

> FEAP libraries (refer to http://www.ce.berkeley.edu/~rlt/feap/)
> element source file.

> supplementary files (files can be find at Mathematica directory ... /AddOns/Applications/AceGen/Include/-
FEAP/).

180 AceGen code generator

Supplementary files are:

> SMS.h has to be available when we compile element source code

= SMSuUtility.f contains supplementary routines for the evaluation of Gauss points, static condensation etc.
> sensitivity.h, Umacr0.f and uplot.f files contain FEAP extension for the sensitivity analysis,

> Umacr3.f contain FEAP extension for automatic exception and error handling.

Files has to be placed in an appropriate subdirectories of the FEAP project and included into the FEAP project.

The FEAP source codes of the elements presented in the examples section can be obtained by setting environment
option of SMSintialize to "FEAP" (see Mixed 3D Solid FE for FEAP).

How to set paths to FEAP's Visual Studio project is described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

SMSFEAPMake

SMSFEAPMake[source] compiles source. f source file
and builds the FEAP executable program

Create FEAP executable.

The paths to FEAP's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

SMSFEAPRun
SMSFEAPRun[input] runs FEAP with the input as input data file
Run analysis.
option name default value
"Debug" False pause before exiting the FEAP executable
"Splice" False splice file with the given file
name into an FEAP input file input
(it takes text enclosed between <«andx >in the file,
evaluates the text as Mathematica input,
and replaces the text with the resulting Mathematica output)
"Output" Automatic name of the FEAP output data file

Options for SMSFEAPRun.

The paths to FEAP's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

Specific FEAP Interface Data

Additional template constants (see Template Constants) have to be specified in order to process the FEAP's "splice-
file" correctly.

AceGen code generator 181

Abbreviation
FEAP$ElementNumber

| Description | Default

| element user subroutine number (elmt ??) | "10"

Additional FEAP template constants.

Some of the standard interface data are interpreted in a FEAP specific form as follows.

FEAP interpretation

idata$$["SensType"]
idata$$["SensTypelndex"]

Standard form Description

es$$["SensType", j] type of the j—th (current) sensitivity parameter

es$$["SensTypelndex”, jI | index of the j—th (current)
sensitivity parameter within the type group

nds[i, "sX", j, k] initial sensitivity of the k— SXA$$[
tk nodal coordinate of the i— (i—1) SMSNoDimensions+K]
th node with respect to the j—

th shape sensitivity parameter

The FEAP specific interpretation of the standard interface data.

FEAP extensions

FEAP has built-in command language. Additional commands are defined (see FEAP manual) for the tasks that are not
supported directly by the FEAP command languge .

Command Description
sens,set allocate working fields for all sensitivity parameters
sens,solv solve global sensitivity problem for all parameters
sens,solv,n solve global sensitivity problem for the n—th sensitivity parameter
sens,solv,n,m solve global sensitivity problem for parameters n to m
sens,inte solve element dependent sensitivity problem for all parameters
sens,inte,n solve element dependent sensitivity problem for the n—th sensitivity parameter
sens,inte,n,m solve element dependent sensitivity problem for parameters n to m
sens,disp display sensitivities for all parameters and all nodes
sens,disp,n display sensitivities for the n—th parameters and all nodes
sens,disp,n,m display sensitivities for the n—th parameter and the m—th node
sens,disp,n,m,k display sensitivities for the n—th parameter and nodes m to k
plot,uplo,n,m,k plot the m—th component of the n—th sensitivity parameter

where k determines the number of contour lines and the type of contour

Additional FEAP macro commands for sensitivity calculations.

Command Description

chke report error status to the screen and to the output file and clear all the error flags
chke, clea clear all the error flags and write report to the output file

chke, clea, tag tag is an arbitrary number included in a report that can be used to locate the error

Additional FEAP macro commands for exception and error handling.

182 AceGen code generator

ELFEN

About ELFEN

ELFEN® is commercial FE environment developed by Rockfield Software, The Innovation Centre, University of
Wales College Swansea, Singleton Park, Swansea, SA2 8PP, U.K.

ELFEN is a general FE environment with the advanced pre and post-processing capabilities. The generated code is
linked with the ELFEN® through the user defined subroutines. By default the element with the number 2999 is gener-
ated. Interface for ELFEN® does not support elements with the internal degrees of freedom (SMSNo-
DOFCondense=0).

In order to put a new element in ELFEN® we need:

> ELFEN® libraries (refer to Rockfield Software),
= SMS.h and SMSUTility.f files (available in ../AddOns/Applications/AceGen/Include/ELFEN/ directory),
= element source file.

Due to the non-standard way how the Newton-Raphson procedure is implemented in ELFEN, the ELFEN source codes
of the elements presented in the examples section can not be obtained directly. Insted of one "Tangent and residul user
subroutine we have to generate two separate routines for the evaluation of the tangent matrix and the residual (see
Mixed 3D Solid FE for ELFEN).

How to set paths to ELFEN's Visual Studio project is described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

SMSELFENMake

SMSELFENMake[source] compiles source. f source file
and builds the ELFEN executable program

Create ELFEN executable.

The paths to ELFEN's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

SMSELFENRunN
SMSELFENRun[input] runs ELFEN with the input as input data file
Run analysis.
option name default value
"Debug" False pause before exiting the ELFEN executable
"Splice" False splice file with the given file
name into an ELFEN input file input
(it takes text enclosed between < «and =« >in the file,
evaluates the text as Mathematica input,
and replaces the text with the resulting Mathematica output)
"Output” Automatic name of the ELFEN output data file

Options for SMSELFENRun.

AceGen code generator 183

The paths to ELFEN's Visual Studio project have to be set as described in the Install.txt file available at www.fgg.uni-
lj.si/symech/user/install.txt.

Specific ELFEN Interface Data

Additional template constants (see Template Constants) have to be specified in order to process the ELFEN's "splice-
file" correctly. Default values for the constants are choosen accordingly to the element topology.

Abbreviation Description Default value

ELFEN$ElementModel "B2" = two dimensional beam elements "L1""LX"=>"B2"
"B3" = three dimensional beam elements "Cl","CX"=>"B3"
"PS" > "T1 T2 XL,
two dimensional plane stress elements "Q2","QX"=>"PE"
"PE " = two dimensional "P1","P2","PX","S1",
plane strain elements "S2" "SX"="SH"
"D3" = three dimensional solid elements "01","02","OX","H1",
"AX" = axi—symmetric elements "H2","HX"=>"D3"

"PL" = plate elements
"ME" = membrane elements
"SH" = shell elements

ELFEN$NOoStress number of stress components accordingly to

the SMSTopology
ELFEN$NOoStrain number of strain components accordingly to

the SMSTopology
ELFEN$NoState number of state variables 0

Additional ELFEN constants.

Here the additional constants for the 2D, plane strain element are defined.

In[216]:=
ELFEN$ElementModel = ""PE";
ELFEN$NoState = 0;
ELFEN$NoStress = 4;
ELFEN$NoStrain = 4;

Some of the standard interface data are interpreted in a ELFEN specific form as follows.

Standard form Description FEAP interpretation
es$$["SensType", j] type of the j—th (current) sensitivity parameter idata$$["SensType"]
es$$["SensTypelndex”, jl | index of the j—th (current) idata3["SensTypelndex"]
sensitivity parameter within the type group
nd$$li, "sX", j, k] initial sensitivity of the k— sxd$$|
tk nodal coordinate of the i— (i—1) SMSNoDimensions+k]
th node with respect to the j—
th shape sensitivity parameter

The ELFEN specific interpretation of the interface data.

184

AceGen code generator

ELFEN Interface

Parameter Description type
mswitch dimensions of the integer switch data array integer mswitch
switch integer type switches integer switch (mswitch)
meuvbl dimensions of the element variables vlues array integer meuvbl
lesvbl array of the element variables viues integer lesvbl (meuvbl)
nehist number of element dependent history variables integer nehist
jfile output file (FORTRAN unit number) integer jfile
morder dimension of the node ordering array integer m order
order node ordering integer orde (morder)
mgdata dimension of the element group data array integer mgdata
gdata description of the element character«32 gdata (mgdata)
group specific input data values
ngdata number of the element integer ngdata
group specific input data values
mstate dimension of the state data array integer mstate
state description of the element state data values character=32 state (mstate)
nstate number of the element state data values integer nstate
mgpost dimension of the integration integer mgpost
point postprocessing data array
gpost description of the integration character«32 gpost (mgpost)
point postprocessing values
ngpost total number of the integration integer ngpost
point postprocessing values
ngspost number of sensitivity parameter dependent integer ngspost
integration point postprocessing values
mnpost dimension of the integration integer mgpost
point postprocessing data array
npost description of the integration character«32 npost (mnpost)
point postprocessing values
nnpost total number of the integration integer nnpost
point postprocessing values
nnspost number of sensitivity parameter dependent integer nnspost
integration point postprocessing values
Parameter list for the SMSInnn ELFEN nnnn'th user element subroutine.
Switch | Description | type
1 number of gauss points output
2 number of sensitivity parameters input

AceGen code generator 185

Other environments

The AceGen system is a growing daily. Please check the www.fgg.uni-lj.si/symech/extensions/ page to see if your
environment is already supported or www.fgg.uni-lj.si/consulting/ to order creation of the interface for your specific
environment.

186 AceGen code generator

Interactions: Templates-AceGen-AceFEM

Interactions: Glossary

symbol description symbol description

N positive integer number "ab" arbitrary string

eN integer type expression "K" keyword

R real number TF True / False

i, j index € element number

n node number—within the element | "dID" domain identification
m node number—global f& pure function

Interactions: Element Topology

Template Constant

AceGen external variable

AceFEM data

"SMSTopology"—>"K"
"SMSNoDimensions"—>N
"SMSNoNodes"—>N

"SMSDOFGIobal"—>{N,...}

"SMSNoDOFGlobal"->N
"SMSNoAIIDOF"->N
"SMSMaxNoDOFNode"—>N

"SMSNoDOFCondense"->N

"SMSCondensationData"—>
{N,N,N}

es$$["Topology"]
es3["id","NoDimensions"]

es3["id","NoNodes"]
ed$$["Nodes",i]

es$$["id","NoDOFGlobal"]
es$$["DOFGlobal",i]
nd$$[n,"id","NoDOF"]

es3["id","NoDOFGlobal"]
es$$["id","NoAIIDOF"]
es$$["id","MaxNoDOFNode"]

es$$["id","NoDOFCondense"]

SMTDomainData["dID","Topology"]
SMTDomainData["dID","NoDimensions"]

SMTDomainData["dID","NoNodes"]
SMTElementData[e,"Nodes"]

SMTDomainData["dID","NoDOFGIlobal"]
SMTDomainData["dID","DOFGlobal"]
SMTNodeData[m,"NoDOF"]

SMTDomainData["dID","NoDOFGIlobal"]
SMTDomainData["dID","NoAIIDOF"]

SMTDomainData[
"dID","MaxNoDOFNode"]

SMTDomainData[
"dID","NoDOFCondense"]

Template Constant

AceGen external variable

AceFEM data

"SMSAdditionalNodes"— f &
"SMSNodelD"—>{"K" ...}

"SMSCreateDummyNodes"—>
TF

es$$["NodelD",i]

es$$["id",
"CreateDummyNodes"]

SMTDomainData["dID","NodelD"]

SMTDomainData[
"dID","CreateDummyNodes"]

Automatic mesh generation.

AceGen code generator

187

Interactions: Memory Management

Template Constant

AceGen external variables

AceFEM data

"SMSNoTimeStorage"—>eN

"SMSNoElementData"—>eN

"SMSNoNodeStorage"—>eN

"SMSNoNodeData"->eN

"SMSIDataNames"—>{"K" ...}

"SMSRDataNames"—>{"K" ...}

es$$["id","NoTimeStorage"]
ed$$["ht",i]
ed$$["hp".i]

es3["id","NoElementData"]
ed$$["Data",i]

es$$["id","NoNodeStorage"]
nd$$[n,"ht",i]
nd3[n,"hp"i]

es$$["id","NoNodeData"]
nd$$[n,"Data",i]
nd3[n,"Data",i]

es$$["id", "NolData"]
es$$["'IDataNames", i
es$$["IDatalndex",i]
idata$$["'K"]

es$$["id", "NoRData"]
es$$["RDataNames",i]
es$$["RDatalndex",i]
rdata$$["'K"]

SMTDomainData[
"dID","NoTimeStorage"]
SMTElementData[e,"ht",i]
SMTElementData[e,"hp",i]

SMTDomainData[
"dID","NoElementData"]
SMTElementData[e,"Data",i]

SMTDomainData[
"dID","NoElementData"]
SMTNodeData[n,"ht",i]
SMTNodeData[n,"hp",i]

SMTDomainData["dID","NoNodeData"]
SMTNodeData[n,"Data",i]
SMTNodeData[n,"Data",i]

SMTDomainData["dID","NolData"]
SMTDomainData["dID","IDataNames"]
SMTIData["K"]

SMTDomainData["dID","NoRData"]
SMTDomainData["dID","RDataNames"]
SMTRData["K"]

Interactions: Element Description

Template Constant

AceGen external variable

AceFEM data

"SMSMainTitle"—>"ab"
"SMSSubTitle"->"ab"
"SMSSubSubTitle"—>"ab"
"SMSBibliography"—>"ab"

es$$["MainTitle"]
es$$["SubTitle"]
es$$["SubSubTitle"]
es$$["Bibliography"]

SMTDomainData["dID","MainTitle"]
SMTDomainData["dID","SubTitle"]
SMTDomainData["dID","SubSubTitle"]
SMTDomainData["dID","Bibliography"]

AceGen code generator

Interactions: Input Data

Template Constant

AceGen external variables

AceFEM data

"SMSGroupDataNames'"—>
{"ab™ ...}

"SMSNoAdditionalData"—>eN

"SMSCharSwitch"—>{"ab" ...}

"SMSIntSwitch"—>{i...}

"SMSDoubleSwitch"—>{i...}

es$$["id","NoGroupData"]
es$$["GroupDataNames",i]

es3["id","NoAdditionalData"]
es$$["AdditionalData",i]

es$$["id","NoCharSwitch"]
es$$["'CharSwitch",i]

es$$["id","NolntSwitch"]
es$$["IntSwitch",i]

[
[
es$$["id","NoDoubleSwitch"]
es$$["DoubleSwitch™,i]

SMTDomainData["dID","NoGroupData"]
SMTDomainData[
"dID","GroupDataNames"]
SMTDomainData["dID","Data"]

SMTDomainData[
"dID","NoAdditionalData"]
SMTDomainData["dID","AdditionalData"]

SMTDomainData["dID","NoCharSwitch"]
SMTDomainData["dID","CharSwitch"]

SMTDomainData["dID","NolIntSwitch"]
SMTDomainData["dID","IntSwitch"]

SMTDomainData[
"dID","NoDoubleSwitch"]
SMTDomainData["dID","DoubleSwitch"]

Interactions: Mathematica

Template Constant

AceGen external variables

AceFEM data

"SMSMMAFunctions"—>{f...}
"SMSMMADescriptions"—>
{"ab" ...}

"SMSMMAInitialisation"—>
"ab"

"SMSMMANextStep"—>"ab"
"SMSMMAStepBack'—>"ab"
"SMSMMAPrelteration"—>"ab"

"SMSMMAInitialisation"—>
"ab"

es$$["id","NoMMAFunctions"]
es$$["MMAFunctions",i]
es$$["MMADescriptions",i]

es$$["MMAInitialisation™]

es$$["MMANextStep"]
es$$["MMAStepBack"]
es$$["MMAPrelteration™]

es$$["MMAInitialisation™]

SMTDomainData[
"dID","NoMMAFunctions"]
SMTDomainData["dID",
"MMAFunctions"]
SMTDomainData["dID",
"MMADescriptions"]

SMTDomainData[
"dID","MMAlnitialisation"]

SMTDomainData["dID","MMANextStep"]
SMTDomainData["dID","MMAStepBack"]

SMTDomainData[
"dID","MMAPrelteration"]

SMTDomainData[
"dID","MMAInitialisation"]

AceGen code generator

189

Interactions: Presentation of Results

Template Constant

AceGen external variables

AceFEM data

"SMSGPostNames"—>{"ab" ...}

"SMSNPostNames"—>{"ab" ...}

"SMSSegments"—>{N...}

"SMSPostNodeWeights"—>
{N...}

"SMSReferenceNodes"—>{N...}

"SMSAdditionalGraphics"—>f&

es$$["id","NoGPostData"]
es$$["GPostNames",i]

[

[
es$$["id","NoNPostData"]
es$S["NPostNames",i]

[

[

es$$["id","NoSegmentPoints"]
es3["Segments”, i]
es$$["ReferenceNodes",i]

es$$["'PostNodeWeights",i]

es$$["AdditionalGraphics”]

SMTDomainData["dID","NoGPostData"]
SMTDomainData["dID","GPostNames"]

SMTDomainData["dID","NoNPostData"]
SMTDomainData["dID","NPostNames"]

SMTDomainData[
"dID","NoSegmentPoints"]
SMTDomainData["dID","Segments"]

SMTDomainData[
"dID","ReferenceNodes"]

SMTDomainData[
"dID","PostNodeWeights"]

SMTDomainData[
"dID","AdditionalGraphics"]

Interactions: General

Template Constant

AceGen external variable

AceFEM data

"SMSPostlterationCall"'—>TF

"SMSSymmetricTangent'—>TF

"SMSDefaultintegrationCode"
—>N

es$$["'PostlterationCall"]

es$$["id","SymmetricTangent"]

es$$["id",
"DefaultintegrationCode"]
es$$["id","IntCode"]
es$$["id","NolntPoints"]
es$$["id","NolntPointsA"
es$$["id","NolntPointsB"]
es$$["id","NolntPointsC"]
es$$["IntPoints",i, j]

SMTDomainData[
"dID","PostlterationCall"]

SMTDomainData[
"dID","SymmetricTangent"]

SMTDomainData["dID",
"DefaultintegrationCode"]
SMTDomainData["dID","IntCode"]
SMTDomainData["dID","NolntPoints"]
SMTDomainData["dID","NolIntPointsA"]
SMTDomainData["dID","NolntPointsB"]
SMTDomainData["dID","NolntPointsC"]
SMTDomainData["dID","IntPoints"]

Options for numerical procedures.

Template Constant

AceGen external variable

AceFEM data

"SMSSensitivityNames"—>
{"ab" ...}

"SMSShapeSensitivity"—>TF

es$$["id","NoSensNames"]
es$$["'SensitivityNames",i]
es$$["SensType", i]
es$$["SensTypelndex", i

es3["id","ShapeSensitivity"]

SMTDomainData["dID","NoSensNames"]
SMTDomainData[
"dID","SensitivityNames"]
SMTDomainData["dID","SensType"]
SMTDomainData["dID","SensTypelndex"]

SMTDomainData[
"dID","ShapeSensitivity"]

190 AceGen code generator

Sensitivity related data.

Template Constant | AceGen external variables AceFEM data
"SMSResidualSign"->R - -
"SMSNodeOrder"—>{N...} - -
"SMSUserDataRules"—>rules - -

Compatibility related data.

AceGen Examples

About AceGen Examples

The presented examples are meant to illustrate the general symbolic approach to computational problems and the use of
AceGen in the process. They are NOT meant to represent the state of the art solution or formulation of particular
numerical or physical problem.

More examples are available at www.fgg.uni-1j.si/symech/examples/ .

AceGen code generator 191

Solution to the System of Nonlinear Equations

m Description

Generate and verify the MathLink program that returns solution to the system of nonlinear equations:
[a Xy+x3= O)
o=)
a-xy =0

where x and y are unknowns and a is parameter.
m Solution

Here the appropriate MathLink module is created.

In[1]:

<< AceGen™;
SMSInitialize["test", "Environment" -> ""MathLink'];
SMSModule["test’, Real [x$$, y$$, a$$, tol$$], Integer[n$$],
“Input” > {x$$, y$$, as, tols$, n$s$},
"Output” » {x3, y$$11;
{x0, y0, a, €} r SMSReal [{x$$, y$$, a$$, tol$$}];
nmax = SMSInteger [n$$] ;
{X, ¥} 4 {x0, y0};
SMSDo[i, 1, nmax, 1, {X, Y}1:
ge{axy+x’,a-xy?%};
Kt e SMSD[&, {X, Y}]:
{aX, Ay} e SMSLinearSolve[Kt, -&];

{X, y}+ {X, y} + {AX, AYy};
SMSIF[SMSSqQrt[{ax, Ay}.{AX, Ay}] < €];
SMSExport[{X, Yy}, {x$$, y$$}1;

SMSBreak[] ;
SMSEndI1f[];
SMSIF[i == nmax] ;
SMSPrint[""no convergion®"];
SMSReturni[];
SMSEndI1f[];
SMSEndDo[];
SMSWrite[];

In[2]:

Solution of 2 linear equations.

Method : teSt 15 formulae, 147 sub-expressions

1] Fite created : LEST . C size - 2305

Here the MathLink program test.exe is build from the generated source code and installed so that functions defined in the source
code can be called directly from Mathematica. (see also SMSInstal IMathLink)

In[23]:= SMSInstalIMathLink[]

out[23]= {SMSSetLinkOption[test, {i_Integer, j_Integer}], SMSLinkNoEvaluations|test],
test[x_7?NumberQ, y_?NumberQ, a_?NumberQ, tol_?NumberQ, n_?NumberQ]}

192

AceGen code generator

m Verification

For the verification of the generated code the solution calculated by the build in function is compared with the solution calculated
by the generated code.

In[24]:= test[1.9,-1.2,3.,0.0001,10]

out[24]= {1.93318, -1.24573}

In[25]:= X-=.

sy=.;a=3.;

Solve[{axy+X3 =0, a- xy? =0}, {X, Y}]

out[26]= {{y - -1.24573, x> 1.93318}, {y > -0.384952-1.184761, x> -1.56398-1.13631},

(y > -0.384952 +1.184761i, X > -1.56398 + 1.1363 1},
(y >1.00782 +0.732222i, x - 0.597386 - 1.83857 i},
(y »1.00782-0.732222i, X - 0.597386 + 1.83857 i } }

Minimization of Free Energy

In the section Description of Introductory Example the description of the steady-state heat conduction
on a three-dimensional domain was given. The solution of the same physical problem can be obtained also as a mini-
mum of the free energy of the problem. Free energy of the heat conduction problem can be formulated as

M= [((7 kApAG - Q) d O

where a ¢ indicates temperature, a k is the conductivity and a Q is the heat generation per unit volume and Q is the
domain of the problem.

The domain of the example is a cube filled with water ([-.0.5m,0.5m]x[-0.5m,0.5m]x[0,1m]). On all sides, apart from
the upper surface, the constant temperature ¢=0 is maintained. The upper surface is isolated so that there is no heat
flow over the boundary. There exists a constant heat source Q=500 W /m? inside the cube. The thermal conductivity of

water is 0.58 W/m K. The task is to calculate the temperature distribution inside the cube.

The problem is formulated using various approaches:

A Trial polynomial interpolation
M.G Gradient method of optimization + Mathematica directly
M.N Newton method of optimization + Mathematica directly
A.G Gradient method of optimization + AceGen+MathLink
AN Newton method of optimization + AceGen+MathLink

B. Finite difference interpolation
M.G Gradient method of optimization + Mathematica directly
M.N Newton method of optimization + Mathematica directly
A.G Gradient method of optimization + AceGen+MathLink
AN Newton method of optimization + AceGen+MathLink

C.AceFEM Finite element method

The following quantities are compared:

. temperature at the central point of the cube (¢(0.,0.,0.5))

AceGen code generator 193

. time for derivation of the equations

. time for solution of the optimization problem

. number of unknown parameters used to discretize the problem
. peak memory allocated during the analysis

. number of evaluations of function, gradient and hessian.

Method mesh &4 derivat~. solution No. of memory No. of
ion variabl~. (MB) calls
time(s) time(s) es

A.MMA .Gradient 5x5x5 55.9 8.6 56.0 80 136 964
A.MMA .Newton 5x5x5 55.9 8.6 2588.3 80 1050 4
A.AceGen. 5x5x5 55.9 6.8 3.3 80 4 962
Gradient
A.AceGen.Newton 5x5x5 55.9 13.0 0.8 80 4 4
B.MMA .Gradient 11x 57.5 0.3 387.5 810 10 1685
11x11
B.MMA.Newton 11x 57.5 0.3 4.2 810 16 4
11x11
B.AceGen.Gradient 11x 57.5 14 28.16 810 4 1598
11x11
B.AceGen.Newton 11x 57.5 4.0 1.98 810 4 4
11x11
C.AceFEM 10x10x10 56.5 5.0 2.0 810 6 2
C.AceFEM 20x20x20 55.9 5.0 3.2 7220 32
C.AceFEM 30x30x30 55.9 5.0 16.8 25230 139

The case A with the trial polynomial interpolation represents the situation where the merit function is complicated and
the number of parameters is small. The case B with the finite difference interpolation represents the situation where the
merit function is simple and the number of parameters is large.

REMMARK: The presented example is meant to illustrate the general symbolic approach to minimization of compli-
cated merit functions and is not the state of the art solution of thermal conduction problem.

194 AceGen code generator

A. Trial Lagrange polynomial interpolation

Definitions

A trial function for temperature ¢ is constructed as a fifth order Lagrange polynomial in x y and z direction. The chosen trial
function is constructed in a way that satisfies boundary conditions.

In[27]:= << AceGen~;
Clear[x, y, z, al;
kcond = 0.58; Q = 500;
order =5;
nterm = (order - 1) (order - 1) (order)

out[31]= 80

Here the fifth order Lagrange polynomials are constructed in three dimensions.

In[32]:= toc =Table[{X, 0}, {X, -0.5, 0.5, 1/o0rder}]; xp = Maplndexed[

InterpolatingPolynomial [ReplacePart[toc, 1, {#, 2}], X] &, Range[2, order]];

yp = MaplIndexed[InterpolatingPolynomial[ReplacePart[toc, 1, {#, 2}1, V] &,
Range[2, order]];

toc = Table[{Xx, 0}, {X, 0., 1., 1/order}];

zp = MapIndexed[
InterpolatingPolynomial [ReplacePart[toc, 1, {#, 2}], z] &, Range[2, order +1]];

¢i1 = Array[a, nterm];

poly = Flatten[Outer[Times, xp, yp, zpl] // Chop;

¢ = poly.¢i;

In[39]:= poly[[28]]
Plot3D[poly[[28]] /- z-> 0.5, {x, -0.5, 0.5}, {y, -0.5, 0.5}, PlotRange » All];

out[39]= (0.3+x) (0.5+x) (12.5+ (-62.5+ (156.25 - 260.417 (-0.3+X)) (-0.1+X)) (0.1 +X))
(0.3+Yy) (0.5+Yy) (12.5+ (-62.5+ (156.25-260.417 (-0.3+y)) (-0.1+y)) (0.1+y))
(20.8333 + (~104.167 + 260.417 (-0.8+2)) (-0.6+2)) (-0.4+2) (-0.2+2) z

AceGen code generator 195

Here the Gauss points and weights are calculated for ngpxngpxngp Gauss numerical integration of the free energy over the domain
[-.0.5m,0.5m]x[-0.5m,0.5m]x[0,1m].

In[41]:= ngp =6;
<< NumericalMath™ GaussianQuadrature~;
gl = GaussianQuadratureWeights[ngp, -0.5, 0.5];
g2 = GaussianQuadratureWeights[ngp, -0.5, 0.5];
g3 = GaussianQuadratureWeights[ngp, 0, 1];
gp = {91[[#1[[11]1, 111, 92[[#1[[21], 111, 93[[#1[[31], 111,
9L[[#1[[111, 211 *»Q2[[#1[[21]1, 21] »Q3[[#1[[31], 211} & /e
Flatten[Array[{#3, #2, #1} &, {ngp, ngp, ngp}1, 21;

Direct use of Mathematica

The subsection Definitions has to be executed before the current subsection.

In[60]:= start = SessionTime[];
A¢ = {D[¢, X], D[¢, y1, D[, z]1};
n=1/2kconda¢.a¢ -¢Q;
oi = Total [Map[(#[[4]1 0 /. {X->#[[1]1], Y->#[[2]1], z->#[[3]1}) &, 9p]];
derivation = SessionTime[] - start

out[64]= 8.6624560

G. Gradient based optimization
In[271]:=
start = SessionTime[]; ii = 0;
sol = FindMinimum[ni, Array[{a[#] , 0.} &, nterm],
Method - "Gradient", EvaluationMonitor = (ii++;)];
{(ii, ¢ /.sol[[2]] /- {x>0,y->0,z->0.5}}
SessionTime[] - start

out[273]=
{946, 55.8724)

out[274]=
66.8160768

N. Newton method based optimization
In[275]:=
start = SessionTime[]; ii = 0;
sol = FindMinimum[mi, Array[{a[#] , 0.} &, nterm],
Method - ""Newton', EvaluationMonitor: (il++;)];
{ii, ¢ /.sol[[2]] /- {Xx-0,y->0,2z-50.5}}
SessionTime[] - start

out[30]= {3, 55.8724}

out[31]= 2588.3418528

196 AceGen code generator

AceGen code generation

The subsection Definitions has to be executed before the current subsection.

In[47]:= start = SessionTime[]; SMSInitialize["Thermal",
“"Environment" -> "MathLink™, ""Mode™ -» "Prototype', ""ADMethod" -> "Forward"]

of[i_] == (

ai e SMSReal [Array[a$$, nterm]];

ag = SMSArray[ai];

{xa, ya, za, wa} £ Map[SMSArray, Transpose[gp]l]:

{xi, yi, zi} £ SMSFreeze[{SMSPart[xa, 1], SMSPart[ya, 1], SMSPart[za, i]1}];
{Xpr, ypr, zpr} e {Xp /- X->Xi,yp/-y->VYi, zp /. z->zi};
poly = SMSArray[Flatten[Outer[Times, xpr, ypr, zprll]l;

¢t = SMSDot[poly, ag];

A¢ £ SMSD[ot, {Xi, yi, zi}];

wi £ SMSPart[wa, i];

wi (1/2kcond A¢.A¢g - ¢t Q)
)

In[49]:= SMSModule["FThermal', Real [a$$[nterm], f$3], "Input" - a$3$, "Output” -» F$3$] ;
SMSExport[0, f$$] ;
SMSDo[i, 1, gp // Length];
oenf[i];
SMSExport[m, f$$, "AddIn" - True];
SMSEndDo[];

In[55]:= SMSModule["GThermal', Real [a$$[nterm], g$$[nterm]], "Input” - a$$, "Output" - g$$];
SMSExport[Table[0, {nterm}], g$%];
SMSDo[i, 1, gp // Length];
nenf[i];
SMSDo[j, 1, nterm];
8 e SMSD[1, ag, j, ""Method" -> "Forward'];
SMSExport[én, g$$[j], "AddIn™ -» True] ;
SMSEndDo[] ;
SMSEndDo[];

In[64]:= derivation = SessionTime[] - start

out[64]= 5.7182224

AceGen code generator 197

In[65]:= SMSModule['"'HThermal™,
Real [a$$[nterm], h$$[nterm, nterm]], "Input” » a$$, "Output” -» h$$] ;
SMSDo[i, 1, nterm];
SMSDo[j, 1, nterm];
SMSExport[0, h$$[i, j11;
SMSEndDo[];
SMSEndDo[];
SMSDo[i, 1, gp // Length];
nenf[i];
SMSDo[j, 1, nterm];
8l £ SMSD[@, ag, J, ""Method"™ -> ""Forward"] ;
SMSDo[k, 1, nterm];
hij £ SMSD[é1, ag, k, "Method" -> ""Forward"] ;
SMSExport[hij, h$$[j, k], "AddIn” » True] ;
SMSEndDo[] ;
SMSEndDo[];
SMSEndDo[];

In[81]:= SMSWrite[];

Method : FThe rmal 170 formulae, 6007 sub-expressions
Method : GThe rmal 169 formulae, 6115 sub-expressions
Method : HThe rmal 87 formulae, 4588 sub-expressions
[10] File created : Thermal . C size : 134388

SMSInstal IMathLink["'Optimize" -» False]
derivation = SessionTime[] - start

In[82]:

out[82]= {SMSSetLinkOption[Thermal, {i_Integer, j_Integer}], SMSLinkNoEvaluations[Thermal],
FThermal [a_? (ArrayQ[#1, 1, NumberQ] && Dimensions[#1] === {80} &)],
GThermal [a_? (ArrayQ[#1, 1, NumberQ] & Dimensions[#1] === {80} &)],
HThermal [a_? (ArrayQ[#1, 1, NumberQ] && Dimensions[#1] === {80} &)]}

out[83]= 12.2275824

AceGen Solution

G. Gradient based optimization

In[84]:= start = SessionTime[]; ii =0;
sol = FindMinimum[FThermal [¢i1], {¢i, Table[O, {nterm}]},
Method - "Gradient", Gradient -» GThermal [¢i1], EvaluationMonitor = (ii++;)];
{ii, ¢ /. MapThread[Rule, Listeesol[[2, 1]]] /- {Xx->0,y~>0, z-» 0.5},
SessionTime[] - start}

out[86]= {962, 55.8724, 3.1144784}

198 AceGen code generator

N. Newton method based optimization

In[87]:= start = SessionTime[]; 1i =0;
sol = FindMinimum[FThermal [¢i], {¢i, Table[O, {nterm}]},
Method -» {"'Newton', Hessian - HThermal[¢i]},
Gradient -» GThermal [¢i1], EvaluationMonitor: (ii++;)];
{ii, ¢ /. MapThread[Rule, Listeesol[[2, 1]]] /- {Xx>»0,y~>0, z-» 0.5},
SessionTime[] - start}
out[89]= {4, 55.8724, 1.3519440}

B) Finite difference interpolation

Definitions

The central difference approximation of derivatives is used for the points inside the cube and backward or forward difference for
the points on the boundary.

In[90]:= << AceGen;
Clear[a, i, j, K];
nX=ny=nz=11;
dix=1./ (nx-1);
dly=1./(ny-1);
dlz=1./ (nz-1);
bound = {0};
nboun = 1;
kcond = 0.58; Q = 500;

In[99]:= nterm=0; dofs = {};
index = Table[Which[

<2 |0 2nx+1 || J=2]|]J=2ny+1 || ks2,b[1]

,k=nz+2,

If[FreeQ[dofs, a[i, J, k-1]]
, ++nterm; AppendTo[dofs, a[i, j, k-1] » nterm]; nterm
, a[i, j, k-1] /. dofs

1

, True,

IT[FreeQ[dofs, a[i, J, k1]
, ++nterm; AppendTo[dofs, a[i, j, k] - nterm]; nterm
,a[i, j, k] /. dofs

1

1,
{i, 1, nx+2}, (-1, ny+2}, {k,1,nz+2}] /.b[i_]=nterm+1i;

o1 = Array[a, nterm];
nterm

out[102]=
810

AceGen code generator

199

Direct use of Mathematica

The subsection Definitions have to be executed before the current subsection.
In[121]:=

start = SessionTime[];
mi = Sum|

dixt=1Ff[i =2 || 1 ==nx+1, dixt=dlx/2, dIx];
diyt=1Ff[j=2 || J=ny+1,dlyt=dly/2, dly];
dizt = 1f[k=2 || k=nz+1, dlzt=dlz/2, dlz];
vol =dIxtdlytdlzt;
aijk = Map[1f[# > nterm, bound[[# - nterm]], a[#]] &,

Extract[index, {{i, j, k}, {i-1, J, Kk}, {i+1, 3, Kk}, {i,J-1, k},

(i, J+1, K}y, {i,J,k-1}, {i,J, k+1}}]1;

aijk[[3]] -aijk[[2]] aijK[[5]] -aijk[[4]] aijk[[7]]-aiJK[[6]]

d= , ;
gra { 2dIxt 2dlyt 2dlzt }

vol (1/2kcondgrad.grad -Qaijk[[1]])
, (1,2, nx+1}, {J, 2, ny+1}, {k, 2, nz+1}

]-

derivation = SessionTime[] - start

out[123]=

0.1502160

G. Gradient based optimization
In[124]:=

out[19]=

start = SessionTime[]; 1i =0;
sol = FindMinimum[mi, Array[{a[#] , 0.} &, nterm],

Method - ""Gradient', EvaluationMonitor: (ii++;)];

{ii, afindex[[(nx+3) /2, (ny+3) /2, (nz+3) /2111 /-sol[[2]], SessionTime[] - start}

FindMinimum: :cvmit : Failed to converge to the

requested accuracy or precision within 100 iterations. More..

{1685, 57.5034, 387.5973376}

N. Newton method based optimization

In[17]:=

out[19]=

start = SessionTime[]; ii = 0;
sol = FindMinimum[mi, Array[{a[#] , 0.} &, nterm],

Method - ""Newton', EvaluationMonitor:= (ii++;)];

{ii, afindex[[(nx+3) /2, (ny+3) /2, (nz+3) /2111 /-sol[[2]], SessionTime[] - start}

{4, 57.5034, 3.7654144}

200

AceGen code generator

AceGen code generation

The subsection Definitions have to be executed before the current subsection.

In[103]:=
start = SessionTime[]; SMSInitialize["Thermal",

“"Environment™ -> ""MathLink', ""Mode™" - ""Prototype™, "*ADMethod" -> ""Backward™]

Of[i_, j_, k] := (

indexp £ SMSInteger[Map[

index$$[(#[[11] -1) » (nyp+2) (nzp+2) + (#[[2]] -1) » (nzp+2) +#[[3]1]1] &,

{{isj’ k}1 {i—l,j, k]-, {i+11j1 k]-, {i,j—l, k}1

(i, J+1, K}, {0, §,k-1}, (i, J, k+1}}11;
aijk £ SMSReal [Map[a$$[#] &, indexp]];
{dx, dy, dz, kc, Qt} = SMSReal [Array[mc$$, 5]1];
SMSIF[i =2 || T ==nxp+1];
dixtadx/2;
SMSElse[];
dixt 4 dx;
SMSEnd1f[dIxt] ;
SMSIF[j==2 || J=nyp+1];
dlytady/2;
SMSElse[];
dlyt 41 dy;
SMSEnd1f[dlyt];
SMSIf[k=2 || k==nzp+1];
dlztadz/2;
SMSElse[];
dizt 41dz;
SMSEnd1f[dlzt];
vol e dixtdlytdlzt;

grad = {

aijk[[3]] -aijk[[2]] aijk[[5]] -aijk[[4]]

aijk[[7]] -aijk[[6]]

2dIxt
vol (1/2kcgrad.grad -Qtaijk[[1]])

)

In[105]:=
SMSModule[*'FThermal*,

2dlyt

2 dlzt g

Integer [ndofs, nt$$[3], IndexPS["*""]], Real [a$S[""*"'], mcHB[""*""], F$$],
"Input” -» {ndof$$, nt$$, index$$, a$s, mc$$}, "Output” -» F$3];

SMSExport[0, F$$];
{nxp, nyp, nzp} £ SMSInteger[Array[nt$$, 3]11;
SMSDo[i, 2, nxp+1];
SMSDo[j, 2, nyp +17;
SMSDo [k, 2, nzp +1];
nenf[i, j, kl;
SMSExport[m, f$$, "AddIn" -» True] ;
SMSEndDo[];
SMSEndDo[];
SMSEndDo[] ;

AceGen code generator 201

In[116]:=
SMSModule["'GThermal', Integer [ndof$$, nt$$[3], index$S["*"11,
Real [a$$["*""], mCSB["*""], g$S[ndofs$]],
"Input” -» {ndof$$, nt$$, index$$, a$s, mc$$}, "Output” -» g3] ;
ndof £ SMSInteger [ndof$$] ;
{nxp, nyp, nzp} £ SMSInteger[Array[nt$$, 3]11;
SMSDo[i, 1, ndof];
SMSExport[0, g$$[i]];
SMSEndDo[] ;

SMSDo[i, 2, nxp +1];
SMSDo[j, 2, nyp+1];
SMSDo [k, 2, nzp +1];
nenffi, j, k1;
SMSDo[il, 1, indexp // Length];
dof r SMSPart[indexp, il];
SMS1f[dof <= ndof] ;
gi £ SMSD[I, aijk, i1];
SMSExport[gi, g$$[dof], "AddIn" - True] ;
SMSEnd1f[];
SMSEndDo[] ;
SMSEndDo[];
SMSEndDo[];
SMSEndDo[] ;

In[136]:=
derivation = SessionTime[] - start

Out[136]=
1.8827072

202 AceGen code generator

In[137]:=
SMSModule[""HThermal', Integer [ndof$$, nt$$[3], index$S["*"11,
Real [a$$["*""], mc$S["*""], h$$[ndof$$, ndofs]],
"Input” -» {ndof$$, nt$$, index$$, a$s, mc$$}, "Output” -» h$$] ;
ndof £ SMSInteger [ndof$$] ;
{nxp, nyp, nzp} £ SMSInteger[Array[nt$$, 3]11;
SMSDo[i, 1, ndof];
SMSDo[j, 1, ndof];
SMSExport[0, h$$[i, j11;
SMSEndDo[];
SMSEndDo[];

SMSDo[i, 2, nxp+1];
SMSDo[j, 2, nyp +1];
SMSDo [k, 2, nzp +1];
nenfli, j, K];
SMSDo[il, 1, indexp // Length];
dofi £ SMSPart[indexp, 11];
SMSI1f[dofi <= ndof];
gi £ SMSD[II, aijk, i1];
SMSDo[j1, 1, indexp // Length];
dofj r SMSPart[indexp, j1];
SMS1f[dofj <= ndof] ;
hij = SMSD[gi, aijk, j1];
SMSExport[hij, h$$[dofi, dofj], "AddIn" > True] ;
SMSEndI1f[];
SMSEndDo[];
SMSEndI1f[];
SMSEndDo[] ;
SMSEndDo[];
SMSEndDo[];
SMSEndDo[];

In[165]:=
SMSWritel[];

Method : FThe rmal 32 formulae, 471 sub-expressions
Method : GThe rmal 43 formulae, 562 sub-expressions
Method : HThe rmal 38 formulae, 559 sub-expressions
(2] File created : Thermal . C size : 11015

AceGen code generator 203

In[166]:=
SMSInstal IMathLink["Optimize" » True]
derivation = SessionTime[] - start

out[166]=

{SMSSetLinkOption[Thermal, {i_Integer, j_Integer}], SMSLinkNoEvaluations[Thermal],

FThermal [ndof_?NumberQ, nt_? (ArrayQ[#1, 1, NumberQ] & Dimensions[#1] === {3} &),
index_? (ArrayQ[#1, 1, NumberQ] &),
a_7? (ArrayQ[#1, 1, NumberQ] &), mc_? (ArrayQ[#1, 1, NumberQ] &)1,

GThermal [ndof_?NumberQ, nt_? (ArrayQ[#1, 1, NumberQ] && Dimensions[#1] === {3} &),
index_? (ArrayQ[#1, 1, NumberQ] &),
a_7? (ArrayQ[#1, 1, NumberQ] &), mc_? (ArrayQ[#1, 1, NumberQ] &)1,

HThermal [ndof_?NumberQ, nt_? (ArrayQ[#1, 1, NumberQ] & Dimensions[#1] === {3} &),
index_? (ArrayQ[#1, 1, NumberQ] &),
a_7? (ArrayQ[#1, 1, NumberQ] &), mc_? (ArrayQ[#1, 1, NumberQ] &)]}

Out[167]=
5.6681504

AceGen Solution

G. Gradient based optimization

In[168]:=

start = SessionTime[]; ii =0;

indexb = Flatten[index] ;

sol = FindMinimum[
FThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dIx, dly, dlz, kcond, Q}]
, {¢i, Table[0, {nterm}]},
Method - ""Gradient",
Gradient »
GThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dIx, dly, dlz, kcond, Q}]
, EvaluationMonitor: (ii++;)]; {ii, a[index[[(nx+3) /2, (ny+3) /2, (nz+3)/2]11 /-
MapThread[Rule, Listeesol[[2, 1]]], SessionTime[] - start}

FindMinimum: :cvmit : Failed to converge to the
requested accuracy or precision within 100 iterations. More..

Out[170]=
{1601, 57.5034, 28.2906800}

204 AceGen code generator

N. Newton method based optimization
In[171]:=

start = SessionTime[]; ii =0;

indexb = Flatten[index /. b[i_] =» nterm+ i];

sol = FindMinimum|
FThermal [nterm, {nx, ny, nz}, indexb, Join[¢i, bound], {dIx, dly, dlz, kcond, Q}]
, {¢i, Table[0, {nterm}]},
Method -» {""Newton', Hessian - HThermal [nterm,

{nx, ny, nz}, indexb, Join[¢i, bound], {dIx, dly, dlz, kcond, Q}1},
Gradient -» GThermal [nterm, {nXx, ny, nz}, indexb, Join[¢i, bound],
{dIx, dly, dlz, kcond, Q}]

, EvaluationMonitor: (fi++;)]; {ii, a[index[[(nx+3) /2, (ny+3) /2, (nz+3)/2]11 /-
MapThread[Rule, Listeesol[[2, 1]1]], SessionTime[] - start}

Out[173]=
{4, 57.5034, 2.0229088}

The tangent matrix is in the case of finite difference approximation extremely sparse.

In[177]:=
MatrixPlot[
HThermal [nterm, {nx, ny, nz}, indexb, Join[O0 ¢i, bound], {dIx, dly, dlz, kcond, Q}]]

1 200 400 600 810
1f. | | | 71
200 | 1200
400} 1400
600 | 1600
810} | | | 1810
1 200 400 600 810
out[177]=

- Graphics -

AceGen code generator 205

C) Finite element method

First the finite element mesh 30x30x30 is used to obtain convergence solution at the central point of the cube. The
procedure to generate heat-conduction element that is used in this example is explained in AceGen manual section
Description of FE Characteristic Steps.

In[243]:=

<< AceFEM™;

start = SessionTime[];

SMT InputData[];

k =0.58; Q = 500;

nn = 30;

SMTAddDomain[''cube', "heatconduction", {k, 0, 0, Q}7]:

SMTAddEssentialBoundary[
("X == -0.5] "X"=0.5]] "Y"=-0.5]| "Y"=0.5]] "Z"=0.&, 0}1;

SMTMesh["'cube', "H1", {nn, nn, nn}, {
{{{-0.5, -0.5, 0}, {0.5, -0.5, O}}, {{-0.5, 0.5, 0}, {0.5, 0.5, 0}}},
{{{-0.5, -0.5, 1}, {0.5, -0.5, 1}}, {{-0.5, 0.5, 1}, {0.5, 0.5, 1}}}
31

SMTAnalysis["Solver" - 5] ;

In[252]:=
SMTNextStep[O, 1];
SMTNewtonlteration[];

In[254]:=
SMTPointValues[{0, 0, 0.5}, SMTPost[1]]
SessionTime[] - start

Out[254]=
55.8765

out[255]=
19.5180656

206 AceGen code generator

In[256]:=
SMTShowMesh["'"Mesh" -» True, "Elements" -» True, "Field" -» SMTPost[1], "Contour' - True];

I 0.541e2
0.464e2
0.386e2
0.309e2
0.232e2

0.154e2
IO.773e1

Max.
0.6190e2
Min.

0
AceFEM

Mixed 3D Solid FE for AceFEM

m Description

Generate the three-dimensional, eight node finite element for the analysis of hyperelastic solid problems. The element
has the following characteristics:

> hexahedral topology,
> 8 nodes,
= isoparametric mapping from the reference to the actual frame,
A
Z,w,F, Sy 7
(-1,1,1)
I N
Y,v, Fy 3
L1-1)
X, u, Fy
> global unknowns are displacements of the nodes,

u=uNj, v=viNi, w=w;N;

> enhanced strain formulation to improve shear and volumetric locking response,

AceGen code generator 207

Ux Uy Uz
Au=|Vx Vy Vz

Wx Wy Wgz
far|naz | {as
D=Au+ 2ol £ay [nas | ag | [do7?

Detld]
far (nag | {ag

where a = {ay, @y, ..., ag} are internal degrees of freedom eliminated at the element level.
= the classical hyperelastic Neo-Hooke's potential energy,
M= [(5 (detF -1+ p(TE2 — Logidet F]) - u.Q) d

where C = FT F is right Cauchy-Green tensor, F = | + D is enhanced deformation gradient.

m Solution

In[257]:=
<< ""AceGen™"";
SMSInitialize["Hypersolid"”, "Environment'” - ""AceFEM"] ;
SMSTemplate[*'SMSTopology™ - "H1", ""SMSNoDOFCondense™ - 9]

In[260]:=
SMSStandardModule[*Tangent and residual™];
SMSDo[IpIndex, 1, SMSInteger[es$$["id", "NolntPoints"]]];

In[262]:=
b:7.3
{Xi, Yi, Zi} £ Array[SMSReal [nd$$[#2, "X, #1]] &, {3, 8}1;
{ut, vt, wt} £ Array[SMSReal [nd$$[#2, "at", #1]1]1 &, {3, 8}1;
SMSGroupDataNames = {"'Elastic modulus™, ""Poisson ratio'};
{Em, v} £ SMSReal [Array[es$$[''Data’, #1] &, 2]11;
{€, n, &, wGauss} r Array[SMSReal [es$$["IntPoints™, #1, IpIndex]] &, 4]1;
{gi,ni, gi} = {{-1,1,1, -1, -1, 1, 1, -1},
{-1,-1,1,1,-1, -1,1, 1}, {-1, -1, -1, -1, 1,1, 1, 1}};
Ni e MapThread[1/8 (1 + £#1) (L+n#2) (1+C2#3) &, {Ei, ni, Li}];
{X, Y, Z} e SMSFreeze[{Ni.Xi, Ni.Yi, Ni.Zi}];
Jme SMSD[{X, Y, Z}, {§, n, £}]; Jd e Det[Im];
{u, v, w} e {Ni.ut, Ni.vt, Ni.wt};
AU E
SMSD[{u, v, w}, {X, Y, Z}, "Implicit” - {{{&, n, &}, {X, Y, Z}, SMSInverse[JIm]}}];
JmO £ SMSReplaceAll[JIm, {£-50,n->0, £-0}];
o £ SMSReal [Array[ed$$['ht™, #] &, 9]]1;

HO = {{£ al[1], nal2], £al31}, {§al4], nalS], £al6]}, {£al7], nal8], £al9]}};

Det[JmO]
H= 54 HO.SMSInverse[JmO] ;
Dk AU + H;

F e ldentityMatrix[3] +D;
C e Transpose[F] -F; J e Det[F] ;
{A, u} £ SMSHookeToLame[Em, v];

1 5 1
III:EA(JI—l) + U (E (Tr[c] -2) -Log[J]);

a = Flatten[{Transpose[{ut, vt, wt}], a}];

208 AceGen code generator

In[283]:=
SMSDo[i, 1, SMSNoAIIDOF] ;
@i £ JdwGauss SMSD[1I, a, 1];
SMSExport[SMSResidualSign i, p$$[i], "AddIn" -» True] ;
SMSDo[j, i, SMSNoAlIDOF] ;
Kij = SMSD[2i, a, jJ]:;
SMSExport[Kij, s$$[i, J1, "AddIn" - True];
SMSEndDo[];
SMSEndDo[];
SMSEndDo[] ;

In[292]:=
SMSWrite[];

Elimination of local unknowns requires additional

memory. Corresponding constants are set to:
SMSCondensationData={ed$$[ht, 1], ed$$ht, 10], ed$$[ht, 19]}
SMSNoTimeStorage=234

Method : SKR 416 formulae, 8026 sub-expressions

[22] File created : Hype I"SO' id - C Size : 36933

m Test example

You need to install AceFEM package in order to run the example.

In[293]:=
<< AceFEM™;
SMTInputData[];
SMTAddDomain["A", ""Hypersolid"”, {1000., -3}1;
SMTAddEssentialBoundary[{ "X" ==0&, 0, 0, O}, {"X"==10&, , , -1}];
SMTMesh["A™, "H1", {15, 6, 6}, {{{{0, O, O}, {10, O, O}}, {{O, 2, O}, {10, 2, O}}},
{{{0, 0, 3}, {10, O, 2}}, {{0, 2, 3}, {10, 2, 2}}}}1;
SMTAnalysis[];

AceGen code generator

209

In[299]:=

SMTNextStep[1, 1];
While[

While[step = SMTConvergence[10”-8, 10, {"Adaptive™, 8, .001, 1, 5}],
SMTNewtonlteration[];];

SMTStatusReport][];

If[step[4] === ""MinBound", Print["Error: AXx < Aamin"]];
step[[3]]

, IT[step[[1]], SMTStepBack([];];

SMTNextStep[1l, step[[2]]]

1;

In[301]:=

T/aT=1./1. x/ax=1./1. uran/n®i=1.52943x10713
/2.07938x 10! Iter/Total=5/5 Status=0/{Convergence}

T/aT=2./1. A/ax=2./1. wpran/n®i=4.39114x 1012
/5.04687 x1071° Iter/Total=5/10 Status=0/{Convergence}

T/0T=3./1. A/ax=3./1. wpran/n®i=6.5379x 1011
/7.42827x1071° 1ter/Total=5/15 Status=0/{Convergence}

T/aT=4_./1. A/Ax=4./1. uhan/n®i=1.49454x1011
/2.18178x101° I1ter/Total=5/20 Status=0/ {Convergence}

T/8T=5./1. A/Ax=5./1. uran/n®i=4.13173x10712
/6.68365x 10! Iter/Total=5/25 Status=0/{Convergence}

SMTNodeData["X" == 10 && "Y' == 1 && ""Z'" ==1 &, "at"]

out[301]=

{{-1.69498, -3.82896x107'", -5.}}

In[302]:=

Show[SMTShowMesh["'DeformedMesh™ - False, "'Show" - False, "Elements" -> False],

SMTShowMesh["'DeformedMesh' -» True, "Show" -» False]];

210 AceGen code generator

Mixed 3D Solid FE for FEAP

Regenerate the three-dimensional, eight node finite element from chapter Mixed 3D Solid FE for AceFEM for
FEAP environment.

m Generation of element source code for FEAP environment

In[303]:=
<< "AceGen™"';
SMSInitialize["Hypersolid”, "Environment” -» "FEAP"] ;
SMSTemplate["'SMSTopology" - "H1", ""SMSNoDOFCondense™ - 9]

In[306]:=
SMSStandardModule["'Tangent and residual™];
SMSDo [IpIndex, 1, SMSInteger[es$$['id", "NolntPoints™]]];

In[308]:=
b:7.4

{Xi, Yi, Zi} £ Array[SMSReal [nd$$[#2, "X, #1]1] &, {3, 8}1;

{ut, vt, wt} e Array[SMSReal [nd$$[#2, "at", #1]1]1 &, {3, 8}1;

SMSGroupDataNames = {"'Elastic modulus', "Poisson ratio'};

{Em, v} £ SMSReal [Array[es$$[''Data’, #1] &, 2]11;

{§. n., £, wGauss} + Array[SMSReal [es$$["IntPoints™, #1, IplIndex]] &, 4];

{&i, ni, gi} = ({-1,1,1,-1,-1,1,1, -1},

{-1,-1,1,1,-1,-1,1,1}, ¢{-1, -1, -1, -1, 1, 1, 1, 1}};

Ni e MapThread[1/8 (1 + §#1) (L+n#2) (1 +£2#3) &, {&i, ni, Li}];

{X, Y, Z} e SMSFreeze[{Ni.Xi, Ni.Yi, Ni.Zi}];

Jm e SMSD[{X, Y, Z}, {&, n, £}1; Jd e Det[JIm];

{u, v, w} e {Ni.ut, Ni.vt, Ni.wt};

AU E

SMSD[{u, v, w}, {X, Y, Z}, "Implicit” -» ({{&, n, &}, {X, Y, Z}, SMSInverse[Jm]}}];

JmO = SMSReplaceAll[Im, {§-0,n-0, £-0}];

a £ SMSReal [Array[ed$$["'ht™, #] &, 911;

HO = {{£all]l, nal2], £al31}, {£al4l, nal5], £al6l}, {£al7l, nal8], £al9}};

Det[JmO]

H = —3q HO.SMSInverse[JmO] ;

D E AU+ H;

F e ldentityMatrix[3] +D;

C ke Transpose[F] -F; J e Det[F];

{A, u} = SMSHookeToLame[Em, v];

Or —;—}\ (I3-1)2+u (-;_ (Tr[c] - 2) —Log[JI]);

a = Flatten[{Transpose[{ut, vt, wt}], a}];
In[329]:=

SMSDo[i1, 1, SMSNoAIIDOF] ;
¢i £ JdwGauss SMSD[m, a, 1];
SMSExport[SMSResidualSign i, p$$[i], "AddIn" - True];
SMSDo[j, i, SMSNoAIIDOF] ;
Kij = SMSD[21, a, J];
SMSExport[Kij, s$$[i, jJ1, "AddIn" - True] ;
SMSEndDo[];
SMSEndDo[];
SMSEndDo[] ;

AceGen code generator 211

In[338]:=
SMSWrite[];

Elimination of local unknowns requires additional

memory. Corresponding constants are set to:
SMSCondensationData={ed$$[ht, 1], ed$$ht, 10], ed$$[ht, 19]}
SMSNoTimeStorage=234

Method : SKRlO 357 formulae, 7985 sub-expressions

[21] File created : Hype FSO| id - f Size : 45572

m Test example: FEAP

Here is the FEAP input data file for the test example from the chapter Mixed 3D Solid FE for AceFEM. You need to
install FEAP environment in order to run the example.

feap
0,0,0,3,3,8

block
cart,6,15,6,1,1,1,10
1,10.,0.,0.
2,10.,2.,0.
3,0.,2.,0.

,0.,0.

0
2

0.,0.,2.
0.,2.,2

-,2.,3.
-,0.,3.

ebou
1,0,1,1,1
1,10.,,,1

edisp,add
1,10.,,,-1.

mate, 1
user,10
1000,0.3

end

macr
tol, ,1e-9
prop,,1
dt,,1
loop, .5
time
loop, ,10
tang,,1
next
disp,,340
next

end

stop

212 AceGen code generator

Here is the generated element compiled and linked into the FEAP's Visual Studio project. See Install.txt for details. The SMSFEA-
PRun function then starts FEAP with a beam.inp file as a standard FEAP input file and a beam.out file as output file.

In[339]:=
SMSFEAPMake["'Hypersolid"]

In[340]:=
SMSFEAPRun["feap.inp", "feap.out']

Out[340]=
SMSFEAPRun[feap. inp, feap.out]

VWIMNTS system3 2t cmd.exe
JDElastoPlastic

Equation~-Prohbhlen Summanr y:
Space dimenszion <‘ndm)> = 3 Mumbher dof <Cndf

Mumber of equations 2156 Mumher nodes
Average col. height 288 Mumbher elements

Mumber profile terms 619255 Mumbher material
Mumber rigid hodies A Mumbher joints
Ezt. factor time—sec 3. 4927E+88

In[341]:=
ReadList["feap.out', "Record"][[-4]]
out[341]=
340 1.0000000000000E+01 1.000000000000CE+00 1.0000000000000
E+00 -1.6949762249587E+00 -2.9410643151519E-16 -5.0000000000000E+00

3D Solid FE for ELFEN

Regenerate the three-dimensional, eight node finite element from chapter Mixed 3D Solid FE for AceFEM for
ELFEN environment.

AceGen code generator 213

m Generation of element source code for ELFEN environment

The AceGen input presented in previous example can be used again with the "Environment"—"ELFEN" option to produce Elfen's
source code file. However, due to the non-standard approach to the implementation of the Newton-Raphson loop in ELFEN result
would not be the most efficient. More efficient implementation is obtained if the evaluation of the tangent matrix and residual
vector are separated. The procedure is controlled by the values of environment constants "SkipTangent", "SkipResidual" and
"SublterationMode".

When the tangent matrix is required the variables are set to
idata$$[""SkipTangent"]=0,

idata$$["SkipResidual*]=1,
idata$$["'SublterationMode"]=1

and when the residual is required the variables are set to
idata$$["SkipTangent"]=1,

idata$$["SkipResidual"]=0,
idata$$["SublterationMode"]=0.

Additionally, the non-standard evaluation of the Newton-Raphson loop makes implementation of the mixed FE models difficult.
Thus only displacement element is generated.

The generated code is then incorporated into ELFEN as described in About ELFEN section.

In[342]:=
<< "AceGen™"";
SMSInitialize["Hypersolid”, "Environment” -» "ELFEN"] ;
SMSTemplate[''SMSTopology" -» "H1'"]

Default value for ELFEN$ElementModel is set to:
D3 = three dimensional solid elements

214 AceGen code generator

In[345]:=
b:7.5

SMSStandardModule["'Tangent and residual™];
SMSDo[IpIndex, 1, SMSInteger[es$$["id", "NolntPoints"]]];
{Xi, Yi, Zi} £ Array[SMSReal [nd$$[#2, "X, #1]] &, {3, 8}1;
{ut, vt, wt} £ Array[SMSReal [nd$$[#2, "at', #1111 &, {3, 8}1;
SMSGroupDataNames = {"'Elastic modulus"™, "Poisson ratio'};
{Em, v} £ SMSReal [Array[es$$[''Data”, #1] &, 2]11;
{€, n, &, wGauss} r Array[SMSReal [es$$ [IntPoints™, #1, IpIndex]] &, 41;
(€, ni, gi} ={{(-1,1,1,-1,-1,1,1, -1},
{-,-1,1,1,-1, -1,1, 1}, {-1, -1, -1, -1,1,1, 1, 1}};
Ni e MapThread[1/8 (1 + £#1) (L+n#2) (1+) &, {&1, ni, i}];
{X, Y, Z} e SMSFreeze[{Ni.Xi, Ni.Yi, Ni.Zi}];
Jm e SMSD[{X, Y, Z}, {&€, n, &£}]1; Jd ¢ Det[Im];
{u, v, w} e {Ni.ut, Ni.vt, Ni.wt};
AU E
SMSD[{u, v, w}, {X, Y, Z}, "Implicit” - {{{&, n, &}, {X, Y, Z}, SMSInverse[Jm] }}];
JmO £ SMSReplaceAll[JIm, {£-50,n->0, £-0}];
F e ldentityMatrix[3] + Au;
C e Transpose[F] -F; J £ Det[F];
{A, u} £ SMSHookeToLame[Em, v];

nllmlz 1TC2LJI'
- (—)+u(5(r[]—)—og[]),

a = Flatten[Transpose[{ut, vt, wt}]];
SMSIf[idata$$[''SkipTangent”] =1];
SMSDo[i, 1, SMSNoAIIDOF] ;
@i £ JdwGauss SMSD[m, a, i];
SMSExport[SMSResidualSignai, p$$[i], "AddIn" - True];
SMSEndDo[];
SMSElse[];
SMSDo[i, 1, SMSNoAIIDOF] ;
i £ JdwGauss SMSD[m, a, i];
SMSDo[j, i, SMSNoAIIDOF] ;
Kij £ SMSD[Zi, a, J];
SMSExport[Kij, s$$[i, j1, "AddIn" - True] ;
SMSEndDo[] ;
SMSEndDo[];
SMSEndI1f[];
SMSEndDo[] ;

IN[379]:=
SMSWrite[];

Method : SKR2999 258 formulae, 5393 sub-expressions
[17] File created : Hype I"SO' id - f Size : 32207

m Test example: ELFEN

Here is the generated element compiled and linked into the ELFEN's Visual Studio project. See Install.txt for details. The SMSELF-
ENRun function then starts ELFEN with a ELFENExample.dat file as a input file and a tmp.res file as output file. The ELFEN
input data file for the one element test example is available in a ../AddOns/Applications/AceGen/Include/ELFEN/ directory.
In[380]:=
SMSELFENMake["*Hypersolid™]

AceGen code generator 215

In[381]:=

SMSELFENRun["ELFEN.dat"]

out[381]=

1

Troubleshooting and New In
version

AceGen Troubleshooting

General

Rerun the input in debug mode (SMSinitialize[.."Mode"->"Debug)].

Divide the input statements into the separate cells (Shift+Ctrl+D), remove the ; character at the end of the
statement and check the result of each statement separately.

Check the precedence of the special AceGen operators k,+,4,4. They have lower precedence than e.g // operator.
(seealso SMSR)

Check the input parameters of the SMSVerbatim , SMSReal, SMSinteger, SMSLogical commands. They are
passed into the source code verbatim, without checking the syntax, thus the resulting code may not compile
correctly.

Check that all used functions have equivalent function in the chosen compiled language. No additional libraries
are included automatically by AceGen.

Try to minimize the number of calls to automatic differentiation procedure. Remember that in backward mode of
automatic differentiation the expression SMSD[a,c]+SMSD[b,c] can result in code that is twice larger and twice
slover tnan the code produced by the equivalent expression SMSD[a+b,c].

The situation when the new AceGen version gives different results than the old version does not necessary mean
that there is a bug in AceGen. Even when the two versions produce mathematically equivalent expressions, the
results can be different when evaluated within the finite precision arithmetics due to the different structure of the
formulas. It is not only the different AceGen version but also the different Mathematica version can produce
formulas that are equivalent but not the same (e.q. formulas Sin[x]* + Cos[x]? and 1 are equivalent, but not the
same).

The expression optimization procedure can recognize various relations between expressions, however that is no
assurance that relations will be in fact recognized.Thus, the users input must not rely on expression optimization
as such and it must produce the same result with or without expression optimization (see Automatic Differ-
entiation Expression Optimization, Signatures of the Expressions).

Check the information given at www.fgg.uni-1j.si/symech/FAQ/.

216 AceGen code generator

Message: Variables out of scope

See extensive documentation and examples in AuxiliaryVariables ,

SMSIF , SMSDo , SMSFictive andadditional examples below.

Symbol appears outside the "If" or "Do" construct

Erroneous input

In[15]:= << AceGen~;
SMSInitialize["test", "Language" -> "'C'"];
SMSModule["test', Real [x$$, F$$5]];
X £ SMSReal [x$$] ;
SMSIf[x <=0];
fax?;
SMSElse[];
f4SiIn[x];
SMSEndI1f[];
SMSExport[f, f$$];

Some of the auxilirary
variables i1n expression are defined out

of the scope of the current position.

Modulle: test Description: Error in user input parameters for function:
SMSExport

Input parameter: {,T} Current scope: {}

Misplaced variables :

oF = $V[3, 2] Scope: If-False[x < 0]

Events: 0O

See also: AuxiliaryVariables Troubleshooting

SMC: :Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSExport .

out[24]= $Aborted

Corrected input

In[35]:= << AceGen;
SMSInitialize["test”, "Language™ -> ""Fortran’] ;
SMSModule["test', Real [x$$, F$$5]];
X £ SMSReal [x$$] ;
SMSIf[x <= 0] ;
fa1x?;
SMSElse[];
f4Sin[x];
SMSEnd1f[T];
SMSExport[f, f$$];

AceGen code generator 217

Symbol is defined in other branch of "If" construct

Erroneous input

In[45]:= << AceGen;
SMSInitialize["test”, "Language™ -> "'C"];
SMSModule["test", Real [x$$, F$$5]];
X £ SMSReal [x$$] ;
fax;
SMSIf[x <= 0] ;
f4x?;
SMSElse[];
ye2T;

Some of the auxilirary
variables i1n expression are defined out

of the scope of the current position.
Module: test Description: Error in user input parameters for function: SMSR
Input parameter: 2,T Current scope: {If-False[x <0]}
Misplaced variables :
oF = $V[2, 2] Scope: If-True[x < 0]
Events: O

See also: AuxiliaryVariables Troubleshooting

SMC: :Fatal :
System cannot proceed with the evaluation due to the fatal error in SMSR .

out[53]= $Aborted

Corrected input

In[63]:= SMSInitialize['test", "Language" -> ""C"];
SMSModule["test', Real [x$$, F$35]1];
X £ SMSReal [x$%$] ;
fax;
tmp + T;
SMSIFf[x <= 0] ;
f4x2;
SMSElse[];
yEe2tmp;

Generated code does not compile correctly

The actual source code of a single formula is produced directly by Mathematica using CForm or FortranForm com-
mands and not by AceGen. However Mathematica will produce compiled language equivalent code only in the case
that there exist equivalent command in compiled language. The standard form of Mathematica expressions can hide
some special functions. Please use FullForm to see all used functions. Mathematica has several hundred functions and
number of possible combinations that have no equivalent compiled language form is infinite. There are to ways how to
get compiled language code out of symbolic input:

 one can include special libraries or write compiled language code for functions without compiled language
equivalent

« make sure that symbolic input contains only functions with the compiled language equivalent or define addi-
tional transformations as in example below

218 AceGen code generator

Erroneous input
In[72]:= a<b<c

out[72]= a<b<c

In[73]:= FullForm[a<b < c]
Out[73]//FullForm=
Less[a, b, c]
In[74]:= CForm[a< b < C]
Out[74]//CForm=
Less(a,b,c)

There exist no standard C equivalent for Less so it is left in original form and the resulting code would probably failed
to compile correctly.

Corrected input

In[75]:= Unprotect[CForm];
CForm[Less[a_, b_, c_]1] :=a<b & b<c;
Protect[CForm] ;

In[78]:= CForm[a< b < c]

out[78]= a<b&&b<c

MathLink
« if the compilation is to slow restrict compiler optimization with SMSInstallMathLink["Optimize"—False]

« in the case of sudden crash of the MathLink program use SMSinstallMathLink["PauseOnExit"—True] to see the
printouts (SMSPrint)

New in version

First release

Conversion from the versions before the first official release is done automatically. The major change is that Computa-
tional Templates package is now fully incorporated into AceGen package. The Driver package has been renamed to
AceFEM and is now completely separated from AceGen package. More on conversion can be found at www.fgg.uni-
lj.si/symech/PreReleaseVersions.nb.

