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| GETTING STARTED

.1 Welcome

Welcome to Global Optimization. This package provides a suite of tools for solving nonlinear optimization prob-
lems, as well as a variety of other applications such as finding the roots or zeros of a nonanalytic function. The package is
easier, smplier, and more robust than most optimization tools, and you will find yourself working more efficiently and
more easily than before.

[.2 Registering

Before you continue please register by emailing your name and address with a notice that you have purchased
Global Optimization to craigloehl@aol.com. This will enable us to reach you with free updates and other news. The
developer does not receive customer information when the package is purchased from Wolfram Research or from distribu-
tors. Please include the version of Global Optimization that you purchased and the machine you are using it on.

.3 Installation

[.3.A Recommended System Capabilities

This package is designed to work with Mathematica, which must be installed on your computer. The following are
recommended system capabilities for installation:

. Personal computer, 600 MHz or faster
. 200Mb free RAM or more
. Mathematica 4.2 or higher installed

[.3.B Installation on a Hard Drive

To install the package on your hard drive on any machine, copy the contents of the disk to the Mathematica direc-
tory. The file may need to be unzipped. On Mac the file may be a self-extracting archive; double-click it to extract the
contents. The go60v.mx file (where v denotes the version) is an encoded Mathematica package. This encoded file can not
be read and will not work on other platforms. It needs to be placed in the main Mathematica directory or in the AddOns/Ap-
plications directory. An example notebook file .nbisincluded for illustration. The .nb file(s) may be placed anywhere.




[.4 A Quick Start and Example

Version 6.0 contains ten functions: GlobalSearch, IntervalMin, GlobalPenaltyFn, MultiStartMin, GlobalMinima,
NLRegression, MaxLikelihood, InterchangeMethodMin, TabuSearchMin, and MaxAllocation. The package has been
designed for easy use with Mathematica. It usesall valid Mathematica functions and syntax. The user must have Mathemat:
ica installed. This manual assumes basic familiarity with Mathematica. Input files should be in the form of Mathematica
notebooks, with afile designation "filename.nb". This manual is executable. Timing examples in this manual are based on
a 3.4 Ghz Pentium IV machine using Mathematica 6.0.

To begin the execution of a notebook, follow this procedure:

1 Start Mathematica.
2. Use the File pull-down menu to Open one of the example notebook files supplied with the disk.
3. Once this notebook is open, pull down the Kernel menu and select Evaluate Notebook.

In the examples, the package is installed with the Get (Get["go60v.mx"] or <<go60v.mx) command, with definition
for the function and options given as:

Inf2]:= Of [Syntax::"spell"7];
Of [Syntax::"spel |l 1"7];
$Hi st oryLength = 0;

then several variables are defined, the function to be evaluated is defined, and then the problem is solved. This process
should execute with no errors and should produce output that resembles closely what was in the notebook when you opened
it. If not, some error may exist. The basic formats are similar to the Mathematica function ConstrainedMin. The following
definitions define the functions in the package:

In[5]:= ?d obal M ni ma

GlobalMinima finds the minimum of a
constrained or unconstrained nonlinear function of n
variables.GlobalMinima[expression,inequalities,{{varlname,lowbound,
highbound}..},grid,tolerance,contraction,indifference,options]




Inf6]:= ?d obal Search

GlobalSearch finds the minimum of a nonlinear
function of n variables s.t. equality & inequality constraints.
GlobalSearch[expression,inequalities,equalities,{{varlname,lowbound,
highbound}..}, tolerance,options]

Inf7]:= ?d obal Penal t yFn

GlobalPenaltyFn finds the minimum of a nonlinear
function of n variables s.t. equality & inequality constraints.
GlobalPenaltyFn[expression,inequalities,equalities,{{varlname,lowbound,
highbound}..}, tolerance,options]

In[598] : =
? 1 nt erchangeMet hodM n

I nt erchangeMet hodM n finds the mni num of a nonli near
function of binary 0-1 variables using the |Interchange nethod.
I nt er changeMet hodM n[expression,inequalities, {varlist},tol erance, options]

Inf6]:= ?Interval Mn
Interval Mn finds the m nimumof a
constrai ned or unconstrai ned nonlinear function of n
vari abl es. I nterval M n[expression,inequalities,Null, {Interval },varlist,tol erance
, options]
Inf7]:= ?MaxAl |l ocation
MaxAl | ocation finds the maxi num of
a nonlinear function of n variables s.t. an equality
constraint. MaxAl | ocation[f [varlnane,...],rhs, {varlist}..,tol erance, options]
Inf8]:= ?MaxLi kel i hood
MaxLi kel i hood perforns maxi mum | i kel i hood estimation on a
function. It has a library of functions optinized for efficiency.
MaxLi kel i hood [dat a, expr essi on, i ndependent _vari abl es, constraints,
{{var 1name, | owbound, hi ghbound}. . }, tol erance, opti ons]
Inf9]:= ?MultiStartMn

Multi StartMn finds the m ninumof a nonlinear function
of n variables s.t. equality and inequality constraints.
Mul ti Start M n[expression,inequalities,equalities, {{varlnane, | owbound, hi ghbound}
.}, tolerance, options]




Inf10]: = ?NLRegression

NLRegr essi on perforns nonlinear regression with or w thout
constrai nts. NLRegr essi on[dat a, expr essi on, i ndependent _vari abl es, i nequalities,
equal ities, {{varlnamne, | owbound, hi ghbound}. . }, t ol erance, opti ons]

Inf11]:= ?TabuSearchM n

TabuSearchM n finds the mni mrumof a nonlinear function of discrete
vari abl es. TabuSear chM n[expression,inequalities, {varlist},tol erance, options]

The following options are available for one or more functions. ExactEqualities and PenaltyM ethod are used for Global Penal
tyFn.

Inf12]:= ?ConpileOption
I f Fal se, uses unconpiled version of user function.

Inf175]: =
? Eval uat eQbj

Eval uate obj ective function if True.

In[173]: =
?Exact Equal ities

Solve equalities with exact nmethod. |Is slower. Default Fal se.

In[174]: =
? Penal t yMet hod

Solve equalities with penalty nethod. Default Fal se.
Inf14] : = ? Fast St eppi ng
If True, uses fast stepping nethod for Multi StartM n.

Inf599]: =
?Maxlterations

Maxi numiterations allowed. Default 10000. More...

Inf16]:= ?SensitivityPlots
Prints sensitivity plots if True.
Inf17]:= ?ShowProgress
If True, prints internmediate results.
Inf18]:= ?SinplifyQotion
Attenpt to sinplify objective function if True.
Inf19]:= ?Starts

Nurmber of starting points for search. Default mninum of 3.




I n[20] :

In[21]:

In[22]:

In[23]:

I n[24] :

?StartslLi st

User input of starting val ues.

? TabuLi st Length

Length of Tabu list. Default=100.

? User Menory

Nunber of negabytes available to G obal M nima for conputations.

? User Resi dual s

Regression option for passing a user function for residuals.

? Wi ght s

Wi ght assigned to data point i during
regression analysis. Does not affect sum of squares.

Global Sear ch[expression,inequalities,equalities,{{var lname,lowbound,highbound}..} ,tolera (1)
nce,options]

Global PenaltyFn[expression,inequalities,equalities,{{var lname,lowbound,highbound}..},tol (2)
erance,options]

MultiStartMin[expression,inequalities,equalities {{var 1namelowbound,highbound}..} ,toler (3)
ance,options]

I nterchangeM ethodM in[expr ession,inequalities,{varlist},tolerance,options “)
IntervalMin[expression,inequalities,Null {InitialPoint__Interval},varlist,toler ance,options] ®)
(6)

TabuSear chMin[expression,inequalities{varlist},tolerance,options]|

GlobalMinima[expression,inequalities {{var lname,lowbound,highbound}..},grid,tolerance, (7)
contraction,indifference,optiong]

(8)

MaxAllocation[f[var Lname,...],rhs{varlist}..,tolerance,options]

NL Regr ession[data,expression,independent_variables,inequalities,{{var Llname,lowbound,hi (9)
ghbound}..} tolerance,options]

MaxL ikelihood[data,expression,independent_variables,inequalities,{{var lname,lowbound,

highbound}..} ,tolerance,options] (10)
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Where "expression” is the equation or function name for the function to be minimized, "inequalities" is alist of inequality
congtraints, and "equalities’ is a list of equalities. Speed of execution is enhanced with Mathematica versions 5.1 and
higher. The Mathematica kernel and the executable program need not reside on the same machine.

The functions are each designed for a specific type of problem. For linear problems, the user should refer to
ConstrainedMin (see Mathematica documentation), although the functions in this package will solve linear problems. For
smooth, unconstrained nonlinear problems, the user should try FindMinimum, which is faster for such problems. The
functions in this package are designed for nonlinear problems with local minima, multiple minima, and/or linear or nonlin-
ear congtraints.

The function Global Search is a multiple-start generalized hill-climbing algorithm designed to work with or without
constraints. It is robust to noisy functions and local minima. 1t can handle large problems (200+ variables). It can handle
linear and nonlinear equality and inequality constraints, which are assumed to be analytic. Globa Search is the genera
purpose optimizer in the package, and is the engine used for the NL Regression and MaxL ikelihood functions.

The function IntervalMin is a general minimizer using Interval methods. It can handle inequality constraints, which
must be analytic. It isrobust to local minima, but is slower than other methods.

The function GlobalPenaltyFn is a multiple-start generalized hill-climbing algorithm designed to work with or
without constraints. It handles the special case of constraints that are not Solvable for any of the variables, or that are black
box. It is robust to noisy functions and local minima. It can handle large problems (200+ variables). For equality con-
straints, it has three options. The default attempts to work with equality constraints analytically. PenaltyMethod when True
uses a penalty method. This option is useful when equality constraints are extremely complicated or non-analytic. Exact-
Equalities when True forces the search to always stay on the equality lines.

The function MultiStartMin is a restricted case version of Global Search designed to work for problems with integer
or discrete variables or that are highly nonlinear. To solve this subset of problems, it handles constraints differently and is
thus slower than Global Search, particularly as problems get bigger. Thus for problems with more than 15 variables, one
should use GlobalSearch. It is a multiple-start generalized hill-climbing algorithm designed to work with or without
congtraints. It is robust to noisy functions and local minima. It can handle linear and nonlinear inequality constraints.
Equality constraints must be analytic, but inequality constraints need not be and can be black box or logical. Objective
functions may contain any combination of real, integer, and discrete variables.

The function GlobalMinima is designed for problems with many true or local minima or for which a region rather
than a point better describes the optimum solution. It can handle linear and nonlinear inequality constraints. It islimited to
smaller problems (<14 variables) but is very robust to noise and false minima. For smaller problems (<3 variables), it may
be faster than MultiStartMin or GlobalSearch. GlobalMinima can find solution regions, whereas MultiStartMin and
Global Search are not efficient at this task.

The function MaxAllocation is designed for allocation problems, such as arise in finance. 1n an allocation problem,
a fixed quantity, such as an investment sum, is to be distributed to a portfolio. All variables must be nonnegative and the
sum of all investments must equal the total available for investing. This creates a nonlinear problem with a single equality
constraint.

The function InterchangeMethodMin is designed for 0-1 integer problems such as arise in networks, transportation,
and scheduling. The operation of this routine is faster than for problems with continuous variables of the same size. The
function can solve vehicle routing/traveling salesman, minimum spanning tree, and capital allocation problems, among
others.

The function TabuSearchMin is designed for O-1 integer problems such as arise in networks, transportation, and
scheduling. The operation of this routine is faster than for problems with continuous variables of the same size. The func-
tion can solve vehicle routing/traveling salesman,minimum spanning tree, and capital allocation problems, among others.
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The function NLRegression solves nonlinear regression problems. It is particularly designed for noisy problems or
those requiring constraints to achieve a good fit. L1 and L2 norms are allowed. Least-squares and chi-sguare options are
also available. Sensitivity plots and confidence intervals on the parameters are provided as output.

The function MaxLikelihood solves maximum likelihood estimation problems using Log-likelihood estimation. A
library of common distributions is provided and fit statistics are computed. Summary statistics are computed.

Il TIPS FOR PERFORMANCE

A key factor for numerical optimization is the time taken to compute the objective function. This is critical because the
objective function may be called thousands of times to hundreds of thousands of times. This section discusses tricks to
achieve better performance.

[I.L1 Improving Performance

Some genera tips include the removal of the reading of external files from the user function, computing constant expres-
sions once and then using the result, and avoiding logical operations that will prevent Compile from being used. A key isto
generate a function once as an explicit expression, and then pass this in to the package. If many steps are involved in
generating a user function and these must be performed every time the function is called, this can be very expensive. It
often happens that parts of an expression involve constants. If these can be evaluated up front, the savings can be enor-
mous. In the following example, the function "f" evaluates numerically when Evaluate is executed during Function cre-
ation. Infunction"g" functionslike Sin and Tan are evaluated each time the function is called:

Inf8]:= CearAl [f, 0]
Inf9]:= X ={x1, X2, x3, x4, x5, x6, x7, x8, x9, x10};

In[10]:= f = Function[Eval uate[x], Eval uate|
Sum[Sin[Pi /2. 1] #x[[i 11 +Tan[19.4%Pi]/x[[i1]+Cos[.1] +Sqart [99], {i, 1, 10}]]]

Qut[10] = Function[{xl, X2, x3, x4, x5, x6, x7, x8, x9, x10},

3.07768 3.07768 3.07768
109.449 + —— +0.997204x1 + ——— +0.997204 x10 + ———— +0.997204 x2 +
x1 x10 X2

3.07768 3.07768 3.07768 3.07768
— +0.997204 x3 + ————— +0.997204 x4 + ———— +0.997204%x5 + ———— +
x3 x4 x5 X6

3.07768 3.07768 3.07768
0.997204 x6 + 7 +0.997204 X7 + BT +0.997204 x8 + BT +0.997204 XQ}
X X X

Inf11]:= 9[p_1 :=|\/bdu|e[{d}, {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} = p;
r=Sum[Sin[Pi /2.1] »x[[i]]+Tan[19.4%Pi ] /x[[i 1] +Cos[.1] +Sqrt [99], {i, 1, 10}];
Returnfr]]

Inf12]:= dat =Table[i, {i, 1, 10}]

af12]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Inf15]:= Apply[f, dat]
aut[15]= 173.309
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Inf16]:= 9[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}]

aut[16] = 173.309

Inf17]:= Do[Apply[f, dat], {i, 1, 500}] // Tining

aut[17]= {0.031, Null}

Inf18]:= Do[g[{1, 2, 3, 4, 5, 6, 7, 8 9, 10}], {i, 1, 500}] // Timng

Que[18]= {0.297, Null}

Because the constants in f were Evaluated before execution (during Function definition), f was very fast to execute, even
without Compile. In contrast, g, which computes Sin etc. every timeit is called, took 46 times longer to compute.

1.2 The Compile Function

The Mathematica function Compile is used to speed up program execution. The user input function and constraints
are both Compiled. The advantage of the Compile function is greatest with more complex expressions and larger problems.
For small problems, it can be difficult to even detect a benefit, but there is little cost to the Compile. The range of speed
improvement due to Compile can range from 30% to 30x. Compilation does not work for all Mathematica expressions.
For example, if "Apply" or "If" are used in the function definition, the function will not Compile. It is suggested that if a
complex expression involving Mathematica special functions is to be used, the user attempt to Compile the expression to
test it. The CompileOption can be set to False (CompileOption->False) in the function call if the user function is not
compilable. It may also be set to False if the user Compiles the expression before passing it in. It is possible to get errors
during the Compile step. These will be highlighed in blue and will indicate that they are compilation errors. It is aso
possible that execution errors can result if non-machine numbers result from some computation of the compiled function.
Mathematica usually reverts to the uncompiled expression in such cases, but the user may wish to run with CompileOption-
>Falsein this case to obtain the most accuracy and best speed.

We can see the benefit of the Compile in the following example:

Inf19]:= CearAl [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]
Inf20]:= X ={x1, x2, x3, x4, x5, X6, x7, x8, x9, x10},
Inf21):= T =Sum[ (1 +x[[I]11)"2, {i, 1, 10}]

ait[21]= (L+x1)2+ (1+x10)%+ (1 +x2)%+ (L +x3)2 +
(1 +x4)%+ (1+x5)%2+ (L+x6)2+ (1 +x7)%+ (1 +x8)%2+ (1+x9)2

Inf22]:= gl =Function[Eval uate[x], Evaluate[f]];

Inf23]:= 02 = Conpi | e[Eval uate[x], Evaluate[f]];

Inf24]:= Do[Apply[gl, {.1, 2., 3., 4., 3., .3, .3, .3, .5, .5}], {i, 1, 10000}] // Tinming
Qut[24] = {0.296, Null}

Inf25]:= Do[Apply[92, {.1, 2., 3., 4., 3., .3, .3, .3, .5, .5}], {i, 1, 10000}] // Tim ng

aut[25]= {0.079, Null}
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We see that Compile speeded up the execution by a factor of more than 4. On some functions, the speedup can be a factor
of 20 or more. Setting up a function as a Module prevents Compile from working on the objective function, and should be
avoided. Some Mathematica functions, particularly those that are math functions, can be included in a Compiled function.
Examplesinclude Abs, Sgrt, Max, Min, Sin, etc. Others, such as FindRoot, can not.

[1.3 User Functions: Working with Named Functions

The objective (goal) function in al the functions in this package can be defined in several ways. The function must in some
cases be passed in differently, depending on the function format. In the simplest case, the expression is itself passed in.
Here we find the minimum of the given function, which is zero.

Inf9]:= CearAl [x]

In[10]:= G obal Search[x"~2+y”~2, , , {{x, 38, 40}, {y, 38, 40}}, . 00000001, Starts » 1]

autf10]= {{{x~>0., y->0.}, 0.}}
We can also passin afunction by name:
Inf11]:= f :1=x"2+y"2

Inf12]:= G obal Search[f, , , {{x, 38, 40}, {y, 38, 40}}, .00000001, Starts - 1]

auf12]= {{{x-0., y—>4.44089x107"°}, 1.97215x10°"}}

In order to Compile or use the objective function, the programs in this package will attempt to Evaluate the expression. If
there are certain operations involved in the user function, such as obtaining the Inverse or Determinant of a matrix, Mathe-
matica will attempt to Evaluate these symbolically when the function is used in the program. It will then work with the
Evaluated function. If the user expression is complex, however, this may become impossible. For example, a symbolic
inverse of a matrix with 10 variables may take a very long time. The user can test this by trying to Evaluate the objective
function before passing it in to any of the functions of this package. If it fails to Evaluate, then use the parameter Evaluate-
Obj->False to prevent evaluation. Another time when EvaluateObj should be set to False is when any logical operations are
performed in the objective function, as in the following example:

Inf13]:= f =Function[{x, y}, If[x+y <0, tem=0, tem=y +x]; tem];
Inf14]:= ApplyI[f, {-1, -1}]

aif14]= 0

Inf15]:= ApplyI[f, {1, 1}]

aut[15]= 2

Clearly, the function is minimized for any set with x + y negative or for x==-y. Because of the conditional logic in the
expression, it should not be symbolically evaluated. This means that it should not be simplified (SimplifyOption->False) or
Evaluated (EvaluateObj->False):

Inf33]:= 4 obal Search[f, {}, , {{x, 38, 40}, {y, 38, 40}}, .000001,
Starts » 1, Eval uateObj - Fal se, SinplifyOption- False] // Timng

Qut[33]= {0.016, {{{x >-125.745, y -38.013}, 0}}}

If, in contrast, we set up a function as a Module, the function can not be Compiled or Evaluated without giving an incorrect
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answer. However, this problem is checked for internally and does not cause a problem, though it does cause a problem in
Mathematica functions such as NMinimize.

Inf16]:= O[x_, y_1:=Module[{d}, If[x<0&%k)y <0, tem=0, tem=1+Abs[y] +Abs[x]]; Return[tem]];

Inf17]:= G obal Search[g, , , {{x, 38, 40}, {y, 38, 40}}, .000001, Starts 1] // Tim ng

aut[17]= {0.031, {{{x->-2.49755, y > -2.93525}, 0}}}

Il GENERAL NONLINEAR OPTIMIZATION: GlobalSearch,
GlobalPenaltyFn, IntervalMin AND MultiStartMin

1.1 Introduction

Five general nonlinear solvers are included in this package. They each are designed for a particular class of prob-
lems. These functions provide tools for global optimization. Traditional gradient (local) approaches require the user to
know how many optima are being sought for the function to be solved, and roughly where the optima are, so that a good
initial guess can be made. The user, however, rarely can make a good initial guess and usually has no information about the
existence of multiple solutions. In the absence of such information, existing algorithms will generally converge to an
answer, but this may be only alocal solution that may not be globally optimal. Furthermore, even global optima may not be
unique. The functions in this package can solve black-box objective functions, objective functions that are nondifferentia-
ble, differential equation models, and functions with discrete steps in them. The initial bounds on the parameters given on
input do not need to bound the true solution (except for the GlobalMinima function), but only help get the algorithms
started in agood region.

Global Search approaches the difficult problem of finding a global optimum with several techniques. A generalized
hill climbing technique is used that is based on Newton's method but using a generalized gradient rather than a derivative,
and alowing for constraints. Constraints must be analytic, but can be linear or nonlinear. Multiple starts are used to test for
the existence of multiple solutions. The multiple starts are generated randomly from the region defined by the range of
parameter values input by the user. Feasible starting regions are not needed, but it is assumed that objective function values
in this region are Real. When a step can not be made that improves the solution by at least "tolerance”, the program termi-
nates. If a problem uses only discrete 0-1 variables, the functions InterchangeMethodMin and TabuSearchMin should be
used. GlobalSearch isthe solver used by the regression and maximum likelihood functions. The function is defined by

Global Sear ch[expression,inequalities,equalities,{{var lname,lowbound,highbound}..} toler

ance,options] (11)

Global PenaltyFn addresses the problem of constraints that are nonanalytic. Nonanalytic functions can be algorith-
mic, can have conditional logic, or can be too complex for Solve to separate variables. If Global Search fails on the con-
straints, use GlobaPenaltyFn. A generalized hill climbing technique is used that is based on Newton's method but using a
generalized gradient rather than a derivative, and alowing for constraints. An adaptive penalty method is used that adjusts
the penalties for constraint violation depending on the degree of violation of constraints. Multiple starts are used to test for
the existence of multiple solutions. The multiple starts are generated randomly from the region defined by the range of
parameter values input by the user. Feasible starting regions are not needed, but it is assumed that objective function values
in this region are Real. When a step can not be made that improves the solution by at least "tolerance”, the program termi-
nates. If a problem uses only discrete 0-1 variables, the functions InterchangeM ethodMin and TabuSearchMin should be
used. Two methods are available for solving equality constraints. An analytic method is default. To override this method,
used PenaltyMethod->True. For the PenaltyMethod, the default (ExactEqualities->True) uses a numerical method to stay
on equality constraint lines at all times, and the alternate method is a penalty method for both inequalities and equalities. An
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optional 4th parameter in the variable bounds list can be used to define a variable to be Integer (as in
{{var Iname,lowbound,highbound, Integer}..} ). Thefunction is defined by

GlobalPenaltyFn[expr ession,inequalities,equalities,{{var 1name,lowbound,highbound}..} to

lerance,options] (12)

IntervalMin uses Interval methods to find a solution. Intervals are computed in Mathematica based on concepts of
limits. Aninitia Interval isinput by the user. It isbeneficial for this Interval to cover the true solution point, but thisis not
necessary as long as it is not orders of magnitude distant. Both the input objective function and the constraints must be
analytic. IntervalMin is robust to local minima, but is not as fast as Global Search because Compile can not be used with
Interval variables. IntervalMin can not solve problems with equality constraints at thistime. We illustrate Intervals below:

Inf51]:= X2 /. x> Interval [{-1, 2}]

aut[51]= Interval [{0, 4}]

In this case, the true minimum of the function is given by the lower bound of the Interval result. In simple or separable
cases, thiswill pertain. In other casesit will not:

Inf19]:= 1.7 =2.7 x +x2+100." x*-200." x?y +100." y? /.
{X>Interval [{0, 2}], y>Interval [{0O, 2}]}

aut[19]= I nterval [{-1603., 2005. }]

The true minimum of this function is 0 a {1,1}. The true minimum is within the Interval of the result in this case. Note
that when IntervalMin is used, both the estimated parameters and the function value are given in terms of an Interval. The
format for the function is given by:

IntervalMin[expression,inequalities,Null {InitialPoint__Interval},varlist,tolerance,options] (13)

MultiStartMin addresses the problem of inequality constraints that are nonanalytic. MultiStartMin is effective for
highly nonlinear functions with fewer than 15 variables. MultiStartMin may have trouble with multiple constraints if the
solution lies in the corner of two constraints. In such cases, use IntervalMin or GlobalPenatyFn. A generalized hill
climbing technique is used that is based on Newton's method but using a generalized gradient rather than a derivative, and
allowing for constraints. Inequality constraints are treated as hard boundaries. Equality constraints must be analytic.
Integer variables should not be used in Equality constraints unless the equality constraints are linear. All combinations of 2
or more variables at a time (number defined by option SearchDirections) are tested to find the best search direction.
Multiple starts are used to test for the existence of multiple solutions. The multiple starts are generated randomly from the
region defined by the range of parameter values input by the user. Feasible starting regions are not needed, but it is
assumed that objective function values in this region are Real. Mixtures of Real, Integer, and Discrete (defined by a List)
variables are allowed. If a problem uses only discrete 0-1 variables, the functions InterchangeM ethodMin and TabuSearch-
Min should be used. The function is defined by

MultiStartMin[expression,inequalities,equalities,{{var Ilname,lowbound,highbound}..} tole

rance,options] (14)

The GlobalMinima function uses an adaptive grid refinement technique. This technique is robust, and can find
multiple solutionsin asingle run. Becauseit's operation is so different, it is documented in it's own section, later.
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GlobalMinima[expr ession,inequalities,{{var lname,lowbound,highbound}..},grid,tolerance

contraction,indiffer ence,options]

1.2 Example
A simple exampleis to minimize a square function subject to a constraint, as follows. The constraint
X>1&&y >1
must be converted to standard form as alist:
-X<-18&&-y<-1
-X+1<08&&-y+1<0
Inf20]:= C={-x+1, -y +1}
anf20]= {1-x, 1-y}
Inf21]:= G obal Search[x*2+y”~2, ¢, , {{x, -5, 5}, {y, -5, 5}}, .000001, Starts-»1] // Timing

The output shows three solutions from random initial points, the default, with the {x,y} value and the function value in each
list element. Initia feasible points are not needed. In this case, the function is smooth, so al three solutions are the same,
and thereisreally no need to use multiple starts.

[11.3 Program Operation

[11.3.A Parameters and Default Values

The tolerance (T) defines the amount of improvement (absolute, not relative) in the function value required at each
iteration. If at least this much improvement is not found, the program stops. The tolerance can be set to very small values,

such as 107°, to achieve a highly accurate estimate of the minimum. If the user sets tolerance = 0, thisis an error.

The functions have seven options. The defaults are Maxlterations->10000, CompileOption->True, ShowProgress-
>True, StartsList->{}, EvaluateObj->True, SimplifyOption->True, and Starts->3. Maxlterations prevents the program from
running away to infinity when a mistake is made in the function (Min[x] for example). For very computationally expensive
problems (like those with many parameters), it is useful to use Starts->1 to evaluate the time a run takes. For general usage,
Starts->3 (the default) is good. The results of this short run can then be used to define further, more directed runs based on
whether all 3 starts found the same solution. A list of starting values can be input instead of |etting the program find them
with random search (e.g., StartsList->{{1.,2.},{2.,1.}}). The CompileOption determines whether the user function and
constraints will be compiled. While Compile reduces execution time, some functions can not be compiled, in which case
CompileOption->False should be used. If the objective function should not be Evaluated, use EvaluateObj->False. Simpli-
fyOption attempts to simplify the objective function. If this should not be done or will not improve the solution, this should
be set to False. The MultiStartMin function also has a SearchDirections (default 2) option. More search directions help
solve highly nonlinear problems, but increase the execution time exponentialy.
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[11.3.B Bounds

Whereas most algorithms require input of an initial guess or starting point (which must be feasible) to initiate the
search, Global Search requires only bounds on the variables. Bounds are generally easier to define than are feasible starting
points. Physical, logical, or economic considerations often provide guidance on redistic bounds for a variable. If the
optimization problem is wing design and one variable is wing thickness, a certain range of thicknesses is sensible to con-
sider. For afinancia problem, the range of values for an investment mix across a product line is clearly bounded between
zero and the total budget, and the upper limit can generally be bounded below a much smaller value than this. If narrower
bounds are known, then convergence will require fewer function calls, but even quite wide bounds are acceptable. If
erroneously narrow bounds are input, then initial step size will be too small, and the function will act more like a local
solver. It is better to err on the side of wider bounds. Upper and lower bounds must be input by the user, as illustrated
below. These bounds do not restrict the searching of Global Search, MultiStartMin, IntervalMin, or Globa PenatyFn (as
they do for GlobalMinima) but merely provide an initial guide for generating feasible starts. Initial bounds do not need to
produce feasible solutions, the program can find initial feasible points, but the values within these bounds are assumed to be
Redl. If hard bounds on variables are necessary (such as positivity restrictions), they can be entered as constraints.

[11.3.C Constraints

Constraints are entered as Mathematica functions, which may be linear or nonlinear. Equality constraints are
entered in the third position in standard form. For example, positivity restrictions on x and y would be represented by the
list:

{—X, _y}

The following problem is a typical LP problem, with the solution at the intersection of two inequality constraints.
The solution is{2/3,10/3,0}).

Inf22]:= G obal Search[-x1-2x2 +Xx3,
{X1+x2+x3-4, -x1+2x2-2x3-6, 2x1+x2-5, -x1, -x2, -x3}, ,
{{x1, 0, 1}, {x2, 0, 1}, {x3, 0, 1}}, .000000001, Starts »1] // Timi ng

aut[22]= {0.375, {{{x1-0.666667, x2 - 3.33333, x3 >0}, -7.33333}}}

Inf23]:= Interval M n[-x1-2x2 +x3,
{X1L+x2+x3-4, -x1+2x2-2x3-6, 2x1+x2-5, -x1, -x2, -x3}, ,
{Interval [{0., 4.3}], Interval [{0., 4.3}], Interval [{0., 1.}1},
{x1, x2, x3}, .0000001] // Ti ni ng
aut[23]= {4.625, {{x1-Interval [{0.666667, 0.666667}], x2 - |nterval [{3.33333, 3.33333}],
x3 > Interval [{5.55112x 10", 9.15934x10 '} ]}, Interval [{-7.33333, -7.33333}]}}

We see that IntervalMin is much slower, but there are problems where it performs better. We next test Global PenaltyFn.

Inf24]: = G obal Penal tyFn[-x1 -2x2 + X3,
{X1 +x2+x3-4, -x1+2x2-2x3-6, 2x1+x2-5, -x1, -x2, -x3}, ,
{{x1, 0, 3}, {x2, 0, 3}, {x3, 0, 1}}, .000001, Starts-»1] // Timng

aut[24]= {1.734, {{{x1-0.666667, x2 »3.33333, x3 >0}, -7.33333}}}

We see above that Global PenaltyFn is slower than Global Search because it can take nonanalytic constraints. MultiStartMin
is able to solve this problem.
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Inf25]:= MultiStartM n[-x1-2x2 +x3,
{X1 +x2+x3-4, -x1+2x2-2x3-6, 2x1+x2-5, -x1, -x2, -x3}, ,
{{x1, 0, 33}, {x2, 0, 33}, {x3, 0, 131}, .0000001, Starts-»1] // Timng

aut[257= {0.125, {{{x1-0.666666, x2 - 3.33333, x3-1.58683x10 7}, -7.33333}}}

It is useful toillustrate a function in which the constraints are nonanalytic. Any function for which Solve will not work falls
in this category. We take as the example:

Mn[y*"2+x] s.t. x=Sin[y]
The above equality can not be Solved for y uniquely. GlobalSearch and Global PenaltyFn neverthel ess succeed.
Inf26]:= res = d obal Search[y~2+Sin[y], , , {{y, 0, 1}}, .000000001, Starts - 1] // Ti m ng
aut[26] = {0.015, {{{y » -0.450184}, -0.232466}}}

Where x isthen

Inf27]:= X =N[Sin[y]] /. res[[2, 1, 1]]
aut[27]= -0.435131

Inf28]:= CearAl [x]

Inf29]:= res =d obal Search[y"2+x, , {x-Sin[yl},
{{x, 0, 1}, {y, 0, 133}, .00000001, Starts -» 1, ShowProgress - Fal se] // Ti m ng

Qut[29]= {0.015, {{{x >-0.435131, y - -0. 450184}, -0.232466}}}

In this problem, Global PenaltyFn can solveit.

In[30]:= res = obal Penal tyFn[y*2+x, , {x-Sin[y]},
{{x, -1, 13}, {y, 0, 133}, .000000001, Starts -1, ShowProgress - Fal se] // Ti mi ng

aut[30]= {0.031, {{{x - -0.435131, y > -0.450184}, -0.232466}}}

In the next example, we see how a nonlinear constraint can be defined that creates a whole set of solution points, an approxi-
mation to which can be obtained with enough starts. In this example, the solution must lie outside the circle of radius
Sqrt[2], but the unconstrained solution is at the origin. This means that al points on this circle are optimal.

Inf31]:= CearAl [x]

Inf32]:= b =G obal Search[x"2+y”"2, {2- (x"2+y"2)}, ,
{{x, -10, 10}, {y, -10, 10}}, .0001, Starts -» 100, Conpil eOption -> True];

Inf33]:= b[[1]]
Qut[33]= {{x—>-1.24498, y - -0.670847}, 2.}

/I’l[34].': C={}, Do[AppendTO[C, {X, y} /. b[[ll, 1]]]! {II, 11 100}]
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Inf35]:= ListPlot[c]

.o [
. [ ) 10-_
4 [
’ 05L
R i
: -
. -
: P RO S S SR SR R L Lo
i[35]= -10 -0.5 - 05 10 :
3 i .
[ Y -

“ -05F .
0. B .o
AR i .

*e -10F
.\. L .
.‘~~ L o
° - °®

In this case, the program finds only a subset of the solutions because of the order in which multiple roots are
processed. MultiStartMin finds a better sample of points around the circle in this case.

Inf36]:= b=MltiStartMn[x"2+y"2, {2-(XX"2+y"2)}, ,

{{x, -10, 103}, {y, -10, 10}}, .0001, Starts -» 100, Conpil eOpti on -> True];

In[37]:= b[[1]]

aut[37]= {{x->-1.38914, y » -0.265158}, 2.00001}

Inf38]:

In[39]:= ListPlot[c]

c = {}; Do[AppendTo[c, {x, y} /. b[[ii, 1111, {ii, 1, 80}]
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Equality constraints are input as a list of equality statements in the third parameter position. In the following problem, the
solution is{1/3,1/3,1/3}, with f=1/3.

Inf40]:= G obal Search[x"2+y*2+z"2, {}, {X+y+z-1},
{{x, 0, 1}, {y, O, 1}, {z, 0, 13}, .00000001, Starts -»1] // Tim ng

aut[40] = {0.031, {{{x —0.333333, y »0.333333, z »0.333333}, 0.333333}}}

Inf41]:= MultiStartMn[x"2+y"2+z"2, {}, {x+y+z-1},
{{x, 0, 1}, {y, 0, 1}, {z, 0, 133}, .00000001, Starts-»1]1 // Tinm ng

aut[41]= {0.016, {{{x - 0.333326, y -»0.333372, z »0.333302}, 0.333333}}}
Inf42]:= G obal Penal tyFn[x"2 +y"2+2z72, {}, {X+y+z -1},

{{x, 0, 1}, {y, O, 1}, {z, 0, 133}, .00000001, Starts -»1] // Tim ng
aut[42]= {0.016, {{{x - 0.333333, y -»0.333333, z > 0.333333}, 0.333333}}}

The options PenaltyMethod— True,ExactEqualities—»False are useful for complex equality constraints. The following
problem needs these options.

Inf43]:= vars = {x1, x2, x3}; nvars = Length([vars]; varlist = {{x1, 0, 1}, {x2, 0, 1}, {x3, 0, 1}};
sol = Tabl e[Random[], {nvars}];

objf = (x1-sol [[1]]1)"2+2% (x2-sol [[2]])"2+3 % (x3-sol [[3]1])"2;

eqs = {Sin[5x (x1-sol [[1]1]1)] -12% (x3-sol [[3]]) * (x2-sol [[2]1]),
EXp[(x1-sol [[1]1) * (x2-sol [[2]]) » (x3-sol [[3]])] -1};

inegs = {((x1-sol [[1]]) * (x2-sol [[2]]) * (x3-sol [[3]]))"2+
Sin[15% (x1*x2%*x3 -sol [[1]] #sol [[2]] =sol [[3]1]1)] -0.05};

Inf47]:= sol

aut[47] = {0.624533, 0.146612, 0.193704}

Inf48]:= res = d obal Penal tyFn[obj f, ineqgs, egs,

varlist, .0000000001, Starts -» 1, Penal tyMet hod » True] // Ti m ng
cut[48] = {0.469, {{{x1-0.624533, x2-0.146621, x3 - 0.193699}, 2.42804x10'%}}}
Inf49]:= res = d obal Penal tyFn[obj f, ineqgs, egs, varlist, .0000000001,

Starts » 1, Penal tyMethod » True, Exact Equalities -» True] // Tim ng

Qut [49] = {0. 578, {{{Xl - 0. 624533, x2 » 0. 14661, x3 - 0. 193704}, 6. 45615><10’12}}}

In some cases, the solution to a problem occurs at the intersection of constraints. These problems are difficult but
can be solved. In the following problem, the solution is exactly at the intersection of the line and the circle:

Inf50]:= 1 =Solve[{x1+x2-1.2==0, x1"2+x2"2 =1}]

Qut[50]= {{X1-0.225834, x2 -0.974166}, {x1-0.974166, x2 - 0. 225834} }
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Inf51]:= (X1-.1)"2+ (x2-.1)"2+x3"2 /. r[[1]]
ait[51]= 0.78 +x3?
In this problem, some of the solutions are not optimal.

Inf54]:= G obal Search[(x1-.1)"2+ (x2-.1)"2+x3"2,
{Xx1+x2-1.2}, {x1"2+x2"2-1}, {{x1, 0, 1}, {x2, 0, 1}, {x3, 5, 10}},
. 00000001, Starts -» 1, ShowProgress - Fal se] // Tim ng

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 23; proceeding with unconpiled evaluation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 23; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 23; proceeding with unconpil ed eval uation. >

Ceneral ::stop: Further output of
Conpi | edFunction::cfn will be suppressed during this calculation. >

LessEqual : :nord: Invalid conparison with -0.129711 - 0. 381468 i attenpted. >
LessEqual ::nord: Invalid conparison with -0.129711 -0. 381468 i attenpted. >
LessEqual : :nord: Invalid conparison with -0.169711 -0.247981 i attenpted. >

Ceneral ::stop:
Further output of LessEqual::nord will be suppressed during this calculation. >

Qut[54]= {0.312, {{{x1-0.974166, x2 - 0.225834, x3 - -0. 00823202}, 0. 780068} }}

We see that Global Search found one of the solutionswith 1 starts. Global PenaltyFn can aso find a solution but is slower.

Inf53]:= G obal Penal tyFn[(x1-.1)"2+ (x2-.1)"2+x3"2,
{-x1, =-x2, x1+x2-1.2}, {x1"2+x2"2 -1},
{{x1, 0, 1}, {x2, 0, 13}, {x3, 5, 10}}, .0000000001, Starts 1] // Tim ng

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 23; proceeding with unconpiled evaluation. >

Conpi | edFunction::cfn: Nunmerical error encountered
at instruction 8; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Numerical error encountered
at instruction 23; proceeding with unconpil ed eval uation. >

General ::stop: Further output of
Conpi | edFunction::cfn will be suppressed during this calculation. >

aut[53]= {1.328, {{{x1-0.974166, x2 - 0.225834, x3 > -2.52968x10°}, 0.78}}}

MultiStartMin also solvesit correctly.
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In[57]:= MiltiStartMn[(x1-.1)"2+ (x2-.1)"2+x3"2, {x1+x2-1.2}, {x1"2+x2"2-1},
{{x1, 0, .53}, {x2, 0, .5}, {x3, 5, 10}}, .0000001, Starts 1] // Timng

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 12; proceeding with unconpiled evaluation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 12; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Numerical error encountered
at instruction 12; proceeding with unconpiled eval uation. >

General ::stop: Further output of
Conpi | edFunction::cfn will be suppressed during this calculation. >

LessEqual : :nord: Invalid conparison with -0.121512 - 0.403902 i attenpted. >
LessEqual : :nord: Invalid conparison with 0.00489123 -0.672133 1 attenpted. >
LessEqual : :nord: Invalid conparison with -0.18917 - 0. 147571 attenpted. >

Ceneral ::stop:
Further output of LessEqual::nord will be suppressed during this calculation >

Qut[57]= {0.141, {{{x1-0.974166, x2 - 0. 225834, x3 - 0. 0000161832}, 0.78}}}

In the following example, the constraint forces a solution outside the unit circle. The solution is 0.737157 at {.707,.707},
which is found by Global Search and Global PenaltyFn. MultiStartMin only succeeds on this problem with multiple starts.
IntervalMin gets pretty close.

Inf58]:= MultiStartMn[(x-.1)"2+(y-.1)"2, {-(x"2+y"2-1)},
{}, {{x, -4, 5}, {y, -4, 5}}, .0000001, Starts >3] // Timng

aut[58] = {0.156, {{{x > 0.861922, y - 0.507044}, 0.74621}}}
In[59]:= Gobal Search[(x-.1)"2+(y-.1)"2, {-(x"2+y"2-1)},

{}, {{x, -4, 5}, {y, -4, 5}}, .000000001, Starts -»1] // Tim ng
aut[59]= {0.109, {{{x->0.707147, y »0.707066}, 0.737157}}}

Inf60]:= IntervalMn[(x-.1)"2+ (y-.1)"2, {-(x"2+y"2-1)}, ,
{Interval [{0., 1.3}], Interval [{O., 1.3}1}, {X, vy}, .0001] // Tinm ng

aitf60]= {1.219, {{x > Interval [{0.695487, 0.695545}], y »Interval [{0.718552, 0.718576}]},
Interval [{0.737212, 0.73731}]1}}
Inf61]:= G obal Penal tyFn[(x -.1)"2+ (y-.1)"2, {-(x"2+y"2-1)}, ,

{{x, 0, 1}, {y, 0, 133, .000000001, Starts -» 2, ShowProgress -» Fal se] // Ti m ng

Qut[61]= {6.141, {{{x >0.705179, y - 0.70903}, 0.737158}}}

WARNING: Constraints can cause difficulties for Global Search. Constraints can be mistakenly formulated such
that no feasible space exists. In this case, Global Search will stop with an error message:

Inf62]:= ClearAl [x, y, z]
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Inf63]:= G obal Search[x"2+y*2+z"2, {x-1, -x+2}, {},
{{x, 0, 1}, {y, 0, 13}, {z, 0, 133}, .00000001, Starts -»1] // Tim ng

Error: feasible solution not found for starting val ue
cut[63]= {0.062, {{$Failed}}}

WARNING: Equality constraints should not be used with Integer variables. The result of doing so is that the optimal
solution is not found.

Inf64]:= G obal Penal tyFn[(x1-.1)"2+ (x2-.1)"2+x3"2, {x1+x2-1.2},
{x17r2 +x272 -1}, {{x1, O, 1, Integer}, {x2, 0, .5}, {x3, 5, 10}},
. 0000001, Starts -» 1, ShowProgress -» Fal se] // Tim ng

Conpi | edFunction::cfn: Numerical error encountered
at instruction 23; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 9; proceeding with unconpiled eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 9; proceeding w th unconpil ed eval uation. >

Ceneral ::stop: Further output of
Conpi | edFunction::cfn will be suppressed during this calculation. >

aut[64]= {0.344, {{{x1-1, x2-50, x3--8.10327x10°}, 0.82}}}

1.4 Output

Following solution, alist is returned that contains the solution. For example, two points in a 2 parameter problem
would give the list {{{1.1,1.2},-5} {{1.2,1.21} -4.9}}. Intermediate output can be printed out by setting ShowProgress-
>True.

Inf65]:= G obal Search[x"2+y”"2, {-x}, , {{x, -5, 5}, {y, -5, 5}},
. 000000001, Starts -» 1, ShowProgress -» True]

Gd obal Optimzation, Version 5.2

nunber of variables = 2

tolerance = 1. x10°°
nunber of starts =1

Initial point 1 {{x-0, y-0.166722}, 0.0277963}
Vect or of search:

{{x>1.27086x107", y > -7.4504x107°}, 1.62063x10*}

aut[65]= {{{x~>1.27086x10", y - -7.4504x10°}, 1.62063x10**}}

Following solution, a list is returned that contains the solution as a list of replacement rules with corresponding
solutions.
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1.5 Maximization

To find a maximum instead of a minimum, simply call Global Search with the negative of the function, keeping in
mind that a negative function value will be printed out.

[11.6 Limitations

No optimization algorithm can solve all conceivable problems. Consider a response surface in two dimensions that
is flat everywhere except for a very small but very deep pit at one location. Any hill-climbing algorithm will fail com-
pletely to solve this problem, because for amost al starting points thereis no gradient.

Some functions have infinitely many solutions. Consider Sin(1/x) between 0 and 1. As the function approaches
zero, the minima (with z = -1) get closer and closer together, as we can see from the plot following:

In[66]:=
Plot [Sin[1/x], {x, 0, 1}]
1.0
0.5
Q[ 66] = 1 R B S—
0.2
-0.5
-1.0

Although it is fundamentally impossible to list all solutions when there are infinitely many, Global Solve can show that there
are very many solutions. If we run the program with 40 starts on the interval [0, 0.6], we obtain many points with values
close to -1.0 (shown below). This result demonstrates that there are many solutions and that the density of solutions
increases with an approach to zero. This s thus an approximate solution to the true situation. X is bounded away from 0 to
prevent underflow.
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Inf67] := G obal Search[Sin[1/x], {-Xx+.00001, x -.6}, ,

{{x, 0.0000001, .6}}, .0001, ConpileOption-False, Starts - 20]

Qut[67]= {{{x >0.211722}, -0.999942}, {{x -0.212207}, -1.},

({X 50.212207}, -1.}, {{x >0.212759}, -0.999925},

({x - 0.212207}, -1

-1
({x »0.212207}, -1.}, {{x >0.212207}, -1.}, {{x - 0.00347879}, -1.},
-1

({x - 0.212207}, -1
({x »0.0909457}, -1.}, {{x >0.212207}, -1.},

, [{x>0.212207}, -1.}, {{x >0.0909457}, -1.},
({x - 0.212207}, -1.},

({x »0.212207}, -1.}, {{x >0.212207}, -1.}, {{x —>0.0578745}), -1.}}

By restricting the search region, we find more solutions:

Inf68]:= G obal Search[Sin[1/x], {-x+.000000000001, x -.2}, ,

{{x, 0.000001, .2}}, .00001, Starts ->20]

Qut[68] = {{{x+0.0909457}, -1. 3}, {{x—-0.0909457}, -1.},

[{x > 1. x1072}, -0.999988], {{x -0.0424413}, -1.}, {{x -0.0909457}, -1.},
({Xx > 0.0025774}, -0.999999}, {{x > 0.0909457},

({x »0.0909457}, -1.}, {{x >0.0424413}, -1.},
({x »0.0909457}, -1.}, {{x »0.0205361}, -1.},

({x »0.0578745), -1.}, {{x -0.00290693}, -1.},

-1.},
{{Xx > 0.0909457}, 1.},
{{X > 0.0909457}, -1.},

({x - 0.212207}, -1.},
, {{x>0.212207}, -1.}, {{x >0.212207}, -1.},

({x > 0.0424413}, -1.},
{{x »0.0909457}, -1.}, {{x -0.0424413}, -1.}, {{x -0.0909457}, -1.}}

These examples illustrate that not all problems can be solved. Some are not solvable by any algorithm. Some may
be ill-posed. However, for many problems that cause other algorithms to fail, Global Solve either succeeds, has a probabil -
ity of succeeding, or provides a partial or approximate solution. We may thus say that the set of unsolvable problems is

much smaller than it isfor other solution methods. Thisis particularly so with respect to the inclusion of constraints.

The optimization algorithm fundamentally assumes real valued functions. It is possible for some parameter values
that are tested to return values that are complex or otherwise not Real. The program assumes that these are illegal values
and treats them like values that fail a constraint test. This means that it can solve a problem where values can be complex.
The problem below works even if the input range does not include positive numbers.

Inf71]:= G obal Search[x”.5, {}, {}, {{X, -2, -1}}, . 000000000001, Starts - 1]

Conpi | edFunction::cfn: Nunmerical error encountered
at instruction 3; proceeding with unconpiled eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 3; proceeding with unconpiled eval uation. >

Conpi | edFunction::cfn: Numerical error encountered
at instruction 3; proceeding with unconpiled eval uation. >

General ::stop: Further output of

Conpi | edFunction::cfn will be suppressed during this cal cul ation.

aue[71]= {{{x >4.98279x107?°}, 7.05889x10 *}}

>>
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1.7 Error Messages

An effort has been made to trap as many errors as possible. Many user errors will prompt Mathematica error
messages. On input, only the order of parametersis evaluated in the passing function call. If avalid value for tolerance (>
0.0) is not input, the following error message is printed, and the program stops:

Error: tolerance must be > 0

If the upper bound of the variable definitions is smaller than the lower bound, the program will also stop with an error
message.

If a parameter is omitted from the calling sequence, Mathematica cannot continue. To indicate the problem, it
echoes back the names for functions and values for constants in the function call, and then it stops. This type of echoed-
back output means that a format error exists in the calling sequence. Some syntax errors are trapped within the Global
Optimization package.

After input, the program compiles the user input function and the constraints, speeding execution. |If these functions
are improperly formatted, this step may produce a compilation error message, which will terminate the run. If afunction is
defined such that it does not return numeric values, this will cause error messages from Mathematica, followed by termina-
tion of Global Search.

When constraints are used, there may be no feasible region, particularly if the problem has many constraints. If this
occurs, the following error message is printed, and the program terminates:

Error: no valid initial points found

In this case, check the constraints. Constraints can bein conflict if careis not taken.

A common mistake is to maximize when the intention was to minimize. This error can be recognized because the
solution will tend to run into one of the parameter bounds and will have an illogical value. For example, the optimal
airplane wing thickness for a design problem might come back as zero.

An unbounded solution may result from an improperly formulated problem (e.g., min(-1/x) over {-1, 1} which
becomes -inf at x=0). Because the function z continues to get larger the closer one gets to zero at an increasing rate, the
program will never report convergence. ShowProgress->True can be used to check for such problems during arun.

The user function passed in to Global Search is Compiled. This may cause compilation errors. The result is usually
to stop the execution of the program, but it is necessary for the user to realize the source of the error. Compiled functions
can aso generate errors at run time if the user function generates non-machine numbers such as high precision numbers or
infinity. Mathematica will usually revert to the uncompiled function and continue running.

If the user defines variables in his program by mistake that should be parameters of the function, this will cause the
program to stop or malfunction. For example, if pp=5 is defined by mistake, this will cause Global Search to detect an error
which can be understood from looking at the error output which shows an invalid parameter list:

Inf72]:= PP =5;
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Inf73]:= G obal Search[(pp-30)"2 (y-60)"2, , , {{pp, 0., 100.3}, {y, 1, 5}}, 0.001]

Error: Synmbol expected in paraneter list, variable 1
{{5, 0., 100.}, {y, 1, 5}}

cout[73]= $Fail ed

Note how the program echoes back the parameter input, showing the mistake.

If the function to be solved is by mistake unbounded, then the parameter MaxIterations will stop the program from

running forever.

Inf74] := G obal Search[x +y, {}, {}, {{X, -5, 5}, {y, -5, 5}},
. 0000001, Starts -1, Maxlterations -» 4]

Warni ng: Maxlterations exceeded, execution tern nated

Result for this starting value not necessarily opti nal

aut[74]= {{{x > -1.00543x10%, y > -1.00543x10%}, -2.01087x10%}}

Maxlterations can also be used to make a preliminary run to test out execution.

Inf75]:= r =d obal Search[100. » (x"2-y)"2+ (1. -x)"2, {}, {},
{{x, -5, 5}, {y, -10., 10. 3}, .0000001, Starts -1, Maxlterati ons » 1]

Warni ng: Maxlterations exceeded, execution term nated

Result for this starting value not necessarily opti mal
auef7s]= {{{x->1., y->1} 1.2326x10%}}
We now wish to restart the program with the given ending value.

Inf76]:= rr =r[[1]]

ue[76]= {{x->1., y->1.}, 1.2326x10 %}

Inf77]:= S ={X, y}Y /. rr [[1]]

auief77]= (1., 1.}

Inf78]: = G obal Search[100. = (x"2-y)"2+ (1. -x)"2, {}, {}, {{X, -5, 5}, {y, -10.,

. 0000001, StartsList » {s}, ShowProgress - Fal se] // Ti m ng

autf78]= {0.031, {{{x->1., y-1.}, 1.2326x10%}}}

10. }},
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[11.8 Performance/Speed

For larger problems, speed can become a limiting factor. It is suggested that the objective function and constraints
be formulated such that they can be Compiled (see sec. 11) which can speed up operation by 2x to 20x. If afunction isvery
complex, it can be helpful to pull out subexpressions that do not need to be computed each time, and compute them once in
advance. Simplify or FullSimplify may also speed up the function. Some large problems are run next to illustrate perfor-
mance. Either Global Search or Global PenaltyFn can be run for large unconstrained problems, for which they use the same
basic algorithm. MultiStartMin can only be used on large problems if SearchDirections->1 is used, and FastStepping->True
is recommended for such cases. Using MultiStartMin will not be advantageous for problems with highly nonlinear func-
tions, but may be the only option for problems with integer or discrete variables.

Inf79]:= vars = Tabl e[ToExpression[StringJoin["x", ToString[i11], {i, 1, 100}];

Inf80]:= fg=Evaluate[Sum[vars[[i1]1"2, {i, 1, 100}]1;

Inf81]:= vardefs =Table[{vars[[i 1], -10, 11}, {i, 1, 100}];

Inf82]:= G obal Search[fg, , , vardefs, .00000001, Starts - 1, ShowProgress - Fal se] // Tim ng

ait[gz]= {0.391, {{{x1-0., x2-50., x350., x4 0., x5-8.88178x107'%, x6 0., x7 0., x8 - 0.,

X9 0., x10 0., x11 -0., x12 »8.88178x107%, x13 50., x14 - 0., x15-0.,
x16 - 0., x17 > 0., x18 > -8.88178x107%%, x19 0., x20 > 0., x21 - 8.88178x10716,
x22 0., x23 50., x24 - -8.88178x107'6, x25 5 0., x26 > 2.22045x107%, x27 > 0.,
x28 - 0., x29 0., x30 - -8.88178x107 %, x31 50., x32-50., x33-50., x34 0.,
x35-50., x36 0., x37-0., x38-50., x39-50., x40-0., x41-50., x42-0., x43-0.,
x44 5 0., x45 > -8.88178x10716, x46 - 0., x47 0., x48 0., x49 - 0., x50 - 0.,
x51 - 0., x52 50., x53 0., x54 0., x55 > -4. 44089 x107%®, x56 - 0., x57 = 0.,
x58 - 0., x59 0., x60-0., x61 -50., x62-50., x63-50., x64-50., x65-50., x66 0.,
X67 - 0., x68 0., x69 0., Xx70 > -8.88178x1071%, x7150., x72 > 4. 44089 x 10716,
x73-0., x74-50., x75-0., x76 -0., x77 0., x78-0., x79-50., x80-0., x81-0.,
x82 0., x83 0., x84 0., x85-0., x86 0., x87 0., x88 > -5.55112x107%7,

x89 -50., x90-0., x91-50., x92 0., x93 -50., x94-50., x95-50., x96 -0.,
x97 5 0., x98 5 0., x99 0., x100 - -8.88178x10 %}, 7.54656 x10%°}}}

Inf83]:= G obal Penal tyFn[fg, , , vardefs, .0000001, Starts -» 1, ShowProgress - Fal se] // Tining

an[83]= {0.328,

{{{x1-0, x2-0, x3-0, x40, x5-0, x6 -0, x7-0, x8 -0, x9-0, x10-0, x11 -0,
x12 -0, x13 -0, x14 -0, x15-0, x16 -0, x17 -0, x18 -0, x19 -0, x20 -0, x21 -0,
x22 -0, x23 -0, x24 -0, x25 -0, x26 -0, x27 -0, x28 -0, x29 -0, x30-0, x31 -0,
x32 -0, x33-0, x34-0, x35-0, x36 -0, x37 -0, x38-0, x39-0, x40-0, x41 -0,
x42 -0, x43 -0, x44 - 0, x45 -0, x46 -0, x47 -0, x48 -0, x49 -0, x50-0, x51 -0,
x52 -0, x53 -0, x54 -0, x55 -0, x56 -0, x57 -0, x58 -0, x59 -0, x60-0, x61-0,
x62 - 0, x63 -0, x64 -0, x65-0, x66 -0, x67 -0, x68 -0, x69 -0, x70->0, x71 -0,
X72 -0, x73 50, x74 -0, x75-0, x76 -0, x77 -0, x78 -0, x79 -0, x80 -0, x81 -0,
x82 -0, x83 -0, x84 -0, x85 -0, x86 >0, x87 -0, x88 -0, x89 -0, x90-0, x91 -0,
x92 -0, x93 -0, x94 -0, x95 -0, x96 -0, x97 -0, x98 -0, x99 -0, x100-0}, 0.1}}

Inf84]:= vars = Tabl e[ToExpression[StringJoin["x", ToString[i 111, {i, 1, 400}];

Inf85]:= fg=Evaluate[Sum[vars[[i 1172, {i, 1, 400}]1;
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I n[ 86] :
In[87]:

ut[87]

vardefs = Tabl e[{vars[[i]], -10, 11}, {i, 1, 400}1;
G obal Search[fg, , , vardefs, .0000001, Starts - 1] // Ti m ng

{3.875, {{{x150., x250., x350., x4-0., x550., X6 0., X7 -2.22045x107%%, x8 - 0.,

X9 > 4. 44089 x 10716, x10 - 8.88178x107%%, x11 - 0., x12 —» 8. 88178 x 1076,

x13 > -2.22045x107%®, x14 - 0., x15 0., x16 - 4. 33681 x10°%°, x17 > 0.,

x18 0., x1950., x20 0., x21 0., x22 > -8.88178x107%®, x23 > 0.,

x24 - 0., x25 - 8.88178x1071%, x26 0., x27 0., x28 0., x29 0., x30 - 0.,

x31 5 0., x32 0., x3352.22045%x107'%, x34 50., x35-0., x36 0., x37 > 0.,

x38 - -8.88178x107%®, x39 5 0., x40 0., x41 0., x42 > 0., x43 >50., x44 > 0.,
x45 - 0., x46 - 0., x47 -0., x48 0., x49 -0., x50-0., x51 0., x52-0., x53-0.,
x54 - 0., x55 0., x56 - 8.88178x107'8, x57 » -4. 44089 x107%%, x58 - 0., x59 - 0.,

X60 —» -8.88178x107%®, x61 5 0., x62 0., x63 50., x64 >0., x65 - -8.88178x10716,
X66 - 0., x67 0., x68 0., x69-0., x70-0., x71-50., x72-50., x73-0.,

X74 - 0., x75 - -8.88178x1071%, x76 0., x77 0., x78 0., x79 0., x80 - 0.,

x81 - 0., x82 0., x83 0., x84 0., x85-8.88178x107%®, x86 - 0., x87 = 0.,

x88 5 0., x89 0., x90 0., x91 0., x92 > 0., x93 - 8.88178x107'%, x94 > 0.,

Xx95 5 0., x96 - 0., x97 - 4. 44089x107'%, x98 - 0., x99 - 0., x100 - 0., x101 - 0.,

x102 - 0., x103 - 0., x104 - 4. 44089 x107%®, x105 - 0., x106 - 0., x107 - 0.,

x108 - 0., x109 - 0., x110-0., x111-0., x112 0., x113-0., x114 0.,

x115 - 0., x116 — -8.88178x107%, x117 - 0., x118 - 0., x119 - 0., x120 > 0.,

x121 - -8.88178x 10718, x122 » -4. 44089 x 1071, x123 » 4. 44089x 107, x124 > 0.,

x125 - 0., x126 - 0., x127 - 0., x128 - 8.88178x107 %%, x129 - 0., x130 - 0., x131 > 0.,
x132 - 0., x133 > 4.44089x1076, x134 - 0., x135 0., x136 » 2.22045x1071%, x137 = 0.,
x138 0., x139 0., x140 - 0., x141 0., x142 0., x143 > -1.11022x107%®, x144 > 0.,
x145 - 0., x146 - 0., x147 - 0., x148 - 0., x149 - -2. 77556 x 1077, x150 - 0.,

x151 » -2.22045x 1078, x152 - 8.88178x107 ', x153 - 0., x154 - 0., x155 0.,

x156 - 0., x157 - 0., x158 0., x159 - 0., x160 - 0., x161 —» 8.88178x107%®, x162 - 0.,
x163 > 0., x164 - 0., x165 0., x166 - -8.88178x107'®, x167 - 0., x168 > 0.,

X169 - 0., x170 > 0., x171 - 0., x172 - -4. 44089 x1071%, x173 - -4. 44089 x 10718,

x174 - 0., x175 —» 4. 44089 x 1076, x176 > 0., x177 0., x178 - 0., x179 - 0.,

x180 - 0., x181 -0., x182 -0., x183-0., x184 -0., x185-50., x186 -0., x187 - 0.,
x188 - 0., x189 - 0., x190 - 0., x191 - 1.38778x10°'", x192 - 0., x193 = 0.,

x194 - 0., x195 0., x196 > 0., x197 - 0., x198 - 0., x199 - 0., x200 - 0., x201 - 0.,
x202 - 0., X203 - 0., x204 - 0., x205 > -4. 44089 x107'®, x206 - 0., x207 > 0.,

X208 - 0., x209 - 0., x210 0., x211 0., x212 > 0., x213 5 0., x214 0., x215 0.,
X216 - -4. 44089 x 10716, x217 - 0., x218 0., x219 - 0., x220 - 0., x221 - 0.,

X222 5 0., x223 50., x224 0., x225 0., x226 > 0., x227 0., x228 > 0.,

X229 5 0., x230 > 0., x231 >0., x232 5 8.88178x107'%, x233 50., x234 0.,

X235 5 8.88178x107'%, x236 - 0., x237 > 0., x238 5 0., x239 0., x240 - 0., x241 - 0.,
X242 5 0., X243 » -1.11022x10°%®, x244 - 0., x245 5 0., x246 - 0., x247 > 0.,

X248 - 0., x249 - 0., x250 0., x251 0., x252 > 0., x253 0., x254 0., x255 0.,
X256 - 0., x257 - 0., x258 0., X259 - 0., x260 0., x261 0., x262 0., x263 > 0.,
X264 - 0., X265 > 8.88178x107%, x266 - 0., x267 0., x268 - 0., x269 - 0.,

X270 - 8.88178x107'8, x271 0., x272 0., x273 5 0., x274 - 2. 77556 x 10°%7,

X275 5 0., x276 - 0., x277 > 0., x278 5 0., x279 > 0., x280 - 0., x281 0., x282 > 0.,
X283 - 0., x284 - 0., x285 - 4. 44089 x 10716, x286 - 4. 44089 x 1076, x287 > 0.,

X288 - 8.88178x107'8, x289 0., x290 > 0., x291 - -8.88178x107%, x292 - 0.,
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x293 - 0., X294 - 0., x295 0., x296 - 0., x297 > 0., x298 - 0., x299 - 0., x300 - 0.,
x301 - 0., x302 0., x303 0., x304 - 0., x305-0., x306 0., x307 - 0., x308 0.,
x309 - 0., x310 - 0., x311 50., x312 5 0., x313 5 0., x314 > -8.88178x 1071,
x315 - 0., x316 0., x317 - 0., x318 0., x319 0., x320 0., x321 0., x322 0.,
x323 > -4. 44089 x 1071, x324 - -1.11022x107%®, x325 5 0., x326 - 0., x327 - 0.,
x328 5 0., x329 - 0., x330 >0., x331 »8.88178x107*%, x332 50., x333 0.,
x334 5 0., x335 0., x336 50., x337 0., x338 0., x339 0., x340 - 0., x341 0.,
X342 5 0., x343 5 0., x344 5 0., x345 - -4. 44089 x 10716, x346 - 0., x347 > 0.,
X348 > -4, 44089 x 10718, x349 - 0., x350 - 4. 44089 x 10718, x351 - 0., x352 > 0.,
x353 - 0., X354 > -4.44089x10718, x355 - -4. 44089 %1078, x356 - 0., x357 - 0.,

x358 - -8.88178x107*%, x359 - 0., x360 > 0., x361 50., x362 0., x363 50.,
x364 5 0., x365 0., x366 0., x367 - 0., x368 > 1.38778x10°%", x369 - 0.,

x370 - 0., x371 0., x372-0., x373-0., x374-0., x375-50., x376 -0., x377 0.,
x378 » 0., x379 - 8.88178x1071%, x380 0., x381 0., x382 0., x383-0.,

x384 - 0., x385 - 4. 44089 x1071%, x386 - 0., x387 - 0., x388 0., x389 0.,
x390 - 0., x391 - 8.88178x10°%, x392 5 0., x393 0., x394 0., x395 0.,
X396 - 0., X397 0., x398 5 0., x399 - -1.11022x 10716, x400 > 0. }, 2.65274x 10*29}}}

Note that for large problems with constraints or lots of data, execution will be slower.

[11.9 Testing and Examples
In this section, the general nonlinear functions are tested. The test criteria are the ability to obtain accurate answers,
time required to execute, size of problem, ability to handle noisy functions, and ability to find multiple solutions. In the
first example, we test for the ability to solve to arbitrary precision:
In[88]:= G obal Search[(x-30)"2 + (y -60)"2, , ,
{{x, 0., 10.3}, {y, 1, 53}, 0.000000000000000001, Starts -> 1]
aut[88]= {{{x->30., y-»60.}, 0.}}

The following problem is the difficult Rosenbrock function, but it is easily solved.

Inf89]:= G obal Search[100. % (x*2-y)"2+ (1. -x)"2, {}, {}, {{x, -5, 5}, {y, -10., 10.1}},
. 00000000001, Starts - 1, ShowProgress - Fal se] // Ti mi ng
aut[89]= {0.047, {{{x~>1., y~>1.}, 0.}}}

Inf90]:= MultiStartMn[100. » (x*2-y)"2+ (1. -x)"2, {}, {},
{{x, -5, 5}, {y, -10., 10.}}, .00000001, Starts -» 1, ShowProgress - Fal se] // Ti m ng

ait[90]= {0.062, {{{x -0.999992, y -0.999967}, 3.02457x10°}}}

Inf91]:= G obal Penal tyFn[100. * (x*2-y)"2+ (1. -x)"2, {}, {},
{{x, -5, 5}, {y, -10., 10.3}}, .00000001, Starts -» 1, ShowProgress - Fal se] // Tim ng

Qut[917= (0.032, {{{x->1.,y->11, 0. }}}
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Inf92]:= Interval M n[100. * (x"2-y)"*2+ (1. -x)"2, , ,
{Interval [{0., 3.1}], Interval [{0., 3.2}1}, {X, Yy}, .0000001] // Ti m ng

Qut[92]= {18.796, {{x -Interval [{0.992646, 0.992652}], y - |nterval [{0.985332, 0.985338}]},
I nterval [{0.0000540026, 0.0000541503}]}}

Such extremely flat functions can be slow for IntervalMin to solve. In this case, IntervalMin did pretty well, but did not get
the exact answer. |f we restart with narrower Intervals around the above solution, we get a better result:

In[304]: =

Interval M n[100. * (x*"2-y)"2+ (1. -x)"2, , ,
{Interval [{.98, 1.1}], Interval [{.97, 1.1}1}, {X, y}, .00000001] // Ti m ng

aut [ 304] =
{54. 7 Second, {{x - Interval [{1.00203, 1.00203}], y > Interval [{1.00407, 1.00407}]},
Interval [{4.12126x10°, 4.13963x10°}]}}

Of particular interest is how the function performs on highly irregular functions. The following irregular function is
tested:

Inf93]:= Plot [Abs[2x + 3Sin[x]], {x, -40, 40}]

80

60

Qut[93] = 40

20

-40 -20

Inf94]:= G obal Search[Abs[2x + 3Sin[x]], , , {{x, -40, 40}}, .0000001, Starts -> 1] // Ti mi ng

aut[94]= {0.015, {{{x>-1.93805x10"°}, 9.69023x10°}}}

All 10 starting values found the solution to this problem. In the next problem, a function is tested that is step-wise
discontinuous:
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Inf95]:= Plot [Abs[IntegerPart[i]], {i, -10, 10}]

Qut[95] =

-10 -5 5 10

Inf96]: = G obal Sear ch[Abs [I nt eger Part [x]1, , ,
{{x, 0, 100}}, .1, Starts 1, Conpil eOption - Fal se]

aut[96]= {{{x—>0.989767}, 0}}

The solution is 0 between -1 and 1, so avalid solution was found. We can also solve this using an integer solution:
Inf97]:= MultiStartM n[Abs[x], , , {{x, 0, 100, Integer}}, .1, Starts 1]
an[97]= {{{x-0}, 0.3}

Problems can be solved that cause FindMinimum to fail. In the following, any humber below 3 has the minimum
function value of 1.
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Inf98]:= Plot [Max[1, x -2], {x, 0, 4}]

14

13

Qut [ 98] =

12

11

1 2 3 4

Inf99]:= FindM ni num[Max[1, x -2], {x, 5, 6}]
aut[99] = FindM ni mumMax [1, x -2], {X, 5, 6}]

Inf101]: =

d obal Search[Max[1, x -21, , , {{X, 5, 9}}, .1, Starts 1, Conpil eOption - Fal se]
Qut[101] =

{{{X >2.51486}, 1}}

In the next problem, amoreirregular function is tested:
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In[102]: =
Plot [4Sin[x] +Sin[4x] +SIin[8Xx]+Sin[l6x] +Sin[32x] +Sin[64x], {X, 0, 6.28}]

Qut[102] =

|
N
— T T

Inf103]: =
G obal Search[4Sin[x] +Sin[4x] +Sin[8x] +Sin[16x] +Sin[32x] +Sin[64Xx],
{-X, x -6}, , {{x, 0, 6.28}}, .000001, Starts ->10] // Ti m ng

Qut [103] =
{0.359, {{{x >4.48984}, -6.98759)}, {(x »4.48984}, -6.98759), {{x —4.48984}, -6.98759},
({X >4.48984}), -6.98759}, {({x —4.48984}, -6.98759}, {{x -4.48984}, -6.98759},
({X >4.48984}, -6.98759}, {(X -4.48984}, -6.98759}, {{x -»4.48984}, -6.98759}})

Many of the starts found the minimum (-6.98759) and the rest were quite close. We see next that IntervalMin fails
on this problem because the way terms are handled separately does not allow the algorithm to narrow down the range.

In[104]: =
Interval M n[4Sin[x] +Sin[4x] +Sin[8x] +Sin[16x] +Sin[32x] +Sin[64x],
{}, , {Interval [{0., 6.28}]}, {x}, .000001] // Tim ng
Qut [ 104] =
{0.016, {{x - Interval [{-2.22507x10%%, 6.28}]}, Interval [{-9, 9}]}}

In the next problem, the scale of the fluctuations makes solution even more difficult than in the above problem.
Nevertheless, all ten starts find the solution.




35

In[105]: =
Pl ot [Abs[2X +Xx*Sin[x]], {X, -40, 40}]
Qut[105] =
120 -
100 -
80
60
40_
20+
| 1 1 1 | 1 1 1 L 1 1 1 | 1 1 1 |
-40 -20 20 40
In[106] : =
d obal Search[Abs[2Xx +Xx *Sin[x]], , , {{X, -40, 40}}, .00000001, Starts ->10] // Tim ng
Qut [ 106] =

{0.125, {{{x~>-6.70087x107°}, 1.34017x10°}, {{x - -2.93322x10°}, 5.86643x10°},
{{x>-7.45058x107°}, 1.49012x10°}, {{x > -7.45058x10°}, 1.49012x10®},
{{x>-7.45058x107°}, 1.49012x10°}, {{x > -1.84432x10°}, 3.68865x10°}
{{x>-6.54427x107°}, 1.30885x10°}, {{x > -3.12961x10°}, 6.25921x107°}
{{x>-7.45058x107°}, 1.49012x10°}, {{x > -2.81907x10°}, 5.63814x10°}

}

All 10 solutions are correct. With a smaller range for the initial guess, the problem is still solved correctly for most of the
starts.

In[107] : =

G obal Search[Abs[2x +x*Sin[x]], , , {{x, 38., 39}}, .000001, Starts ->10] // Ti m ng
Qut [107] =

{0.125, {{{x~>-7.10874x107°}, 1.42175x10°}, {{x > -1.61639x10°}, 3.23278x10°},
{x>-6.99283x10°}, 1.39857x10°%}, {{x - -5.65239x10°}, 1.13048x10°},
{x > -8.2679x10"}, 1.65358x10'%}, {{x > -7.45058x107°}, 1.49012x107°},
{x > -1.82016x10'%}, 3.64033x10 "}, {{x > -1.22585x10'%}, 2.4517x10 %},
{x > -5.01469x10°}, 1.00294x10°%}, {{x - -7.45058x107°}, 1.49012x10°}}}

{
{
{
{

However, with a small enough range for the initial guess, the problem may not be solved because the solver may be con-
verted to alocal solver. We see next that IntervalMin actually solves this problem quickly and correctly brackets zero.
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In[108]: =

Interval M n[Abs[2X +X *Sin[x]], {}, , {Interval [{-40., 40}1}, {x}, .0000001] // Ti mi ng
Qut [ 108] =

{0.047, {{x > Interval [{-6.66134x10 ', 6.10623x10 '°}]}, Interval [{0, 1.33227x10'°}]}}

In the next test, a problem with multiple minima, the Branin rcos function, is solved.

Inf109]: =
b =d obal Search[(y -x*2%5.1/ (4. *7"2) +5. *X/7n-6.)"2+
10. (1. -1. / (8. »x)) *Cos[x] +10., {-40-x, x-40, -40-y, y -40}, {},
{{x, -40, 403}, {y, -40, 403}}, .000001, Starts -> 30, Conpil eOption ->True];

Inf110]: =
c ={}; Do[AppendTo[c, {x, y} /. b[[ii, 1111, {ii, 1, 30}]

Inf111]: =
Li st Pl ot [c]
Qut[111] =
. i ‘
30}
25}
20F
15F
r [ ]
[ ] L
10F
5
: ° L4
IR B R S S A S S B S S S H S S S S S S S
-10 -5 5 10 15 20

All six solutions to this problem were found with 30 starts.  In the next test, the Csendes function is tested, which
has a highly dissected but flat region around the optimum, shaped like an ashtray (see next section for illustrative figures).

Inf112]: =
G obal Search[x”6 » (2.0 + Sin[1.0/x]) + y*"6 * (2.0 + Sin[1.0/vy]),
{{x, -1., 1.3}, {y, -1., 1.3}3}, 0.0000000000000000001] // Ti m ng

Qut[112] =
{0.156, {{{x - 0.0000575029, y - -0. 0000435469}, 5.67993x10 ¢},
{{x > -0.00036275, y - -0.000500678}, 4.92x10 %},
{{x > -0.000417382, y - 0. 000259364}, 6.12527x10 **}}}
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We can see that the minimum point {0,0} is being approached with arbitrary accuracy. In the test of this function
with the GlobalMinima function below, we see that GlobalMinima can be used to define the flat region around the
minimum.

The following function has many local minima:

Inf113]: =
Plot3D[20Sin[Pi /2 (x-2Pi)]+20Sin[Pi /2 (y-2Pi)]+ (x-2Pi)"2+ (y-2Pi)"2,
{x, 0, 10}, {y, 0, 10}]

Quit[113] =

We can see that this could be difficult to find. It is known that the solution is-38 at {5.322,5.322}.
Inf114]: =
G obal Search[20Sin[Pi /2 (x -2Pi)] +20Sin[Pi /2 (y-2Pi)]+ (x-2Pi)"2+ (y-2Pi)"2,
{}, . {{x, 0, 10}, {y, 0, 10}}, . 000000001, Starts -4] // Tining

Qut[114] =
{0.094, {{{x->5.32216, y »5.32216}, -38.0779}, {{x —>5.32216, y —»5.32216}, -38.0779}}}

Global Search is able to find the true minimum when several starts are used. IntervalMin solves this problem reliably:

Inf115]: =
Interval Mn[20Sin[Pi /2 (x-2Pi)]+20Sin[Pi /2 (y-2Pi)]+ (x-2Pi)"2+(y-2Pi) 2, ,,
{Interval [{0., 10.3}1, Interval [{0., 10.3}1}, {X, vV}, .0001] // Timng
Qut[115] =

{2.687, {{x->Interval [{5.32211, 5.32214}], y - Interval [{5.32211, 5.32214}]},
Interval [{-38.078, -38.0778}]}}
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IV THE GlobalMinima FUNCTION

IV.1 Introduction

This function represents a robust approach to global optimization. Traditional gradient (local) approaches require
the user to know how many optima are being sought for the function to be solved, and roughly where the optima are, so that
agood initial guess can be made. The user, however, rarely can make a good initial guess and has no information about the
existence of multiple minima. In the absence of such information, existing algorithms will generally converge to an answer,
but thisis only alocal solution that may not be globally optimal. Furthermore, even global optima may not be unique. In
addition, if the region around the optimum is very flat, most algorithms will report difficulty with convergence. In reality,
such aflat region, for real-world problems, may indicate the existence of an indifference zone of equally good solutions.

This function is designed to overcome these difficulties. It uses the Adaptive Grid Refinement (AGR) algorithm (an
n-dimensional adaptation of Newton's method related to adaptive mesh generation) which finds multiple optima and defines
optimal regions in asingle run. Because the user does not need to know much about the function, the AGR algorithm saves
considerable time for the user. It is not necessary to know how many optima exist or where they are; the AGR agorithm
will generaly find them all. Feasible starting points do not need to be provided. The AGR algorithm does this at some cost
in computer time by making more function calls, and is thus limited to smaller problems. The AGR algorithm also increases
the user's certainty that all useful solutions have been found. The genetic algorithm method can find multiple optima, but
only stochastically, it does not alow constraints, it is difficult to use, and does not define optimal regions. Other global
methods that are available are either difficult to use, require specia conditions for the user function, or do not alow con-
straints. These global methods also do not generally provide information on solution regions, but rather assume that only
optimal points are being sought. Compared to existing algorithms, the AGR agorithm is the easiest to use, is the most
general, and provides the most information. It is not feasible for larger problems, however, in which case Global Search,
Global PenaltyFn, IntervalMin, or MultiStartMin should be used.

IV.2 The Grid Refinement Approach to Nonlinear Optimization

The AGR algorithm works by a grid refinement process. Consider afunction

(x-2)"2 (16)

where we wish to minimize z. In this case, the answer is obviously z= 0 at x= 2, as can be seen from the plot:
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In[116]: =
Plot [(x-2)"2, {X, -2, 6}]
Qut[116] =
15+
10+
5_
1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1
-2 2 4 6

The Adaptive Grid Refinement (AGR) algorithm works as follows. The interval to be searched for a solution (say,
-100 to 100) is gridded in this case into n initial grid points (with n = 11 being a useful initial grid density) at adistanced =
18.18 units apart. At each x point, z is evaluated. The best points (with the lowest z values) are kept, and the rest are
thrown away. At each x kept, new points (daughters) are evaluated on each side at one-third the distance between the first
set of points, and z is again evaluated. This one-third trisection prevents duplication of points during daughter point
generation. This process of grid refinement continues until a user stopping criterion is met, when all optimal points are
displayed. The same procedure is used for any number of dimensions. In two dimensions, each point generates eight
daughter points. In three dimensions, 26 points are generated as the corners of a hypercube. The grid refinement algorithm
is in essence a generalized-descent approach. At each iteration, the population of points in the working set is moving
downhill, but over multiple regions and directions. Consider

2
min (2) = inz (17)
i=1

for atwo-dimensional (2D) problem. For aninitial grid that is symmetric around O, pointsin all four quadrants will remain
at each iteration and will converge toward O from all four directions, very much like four steepest-descent vectors.

The AGR agorithm is derivative-free and uses no search vectors. It is therefore more numerically stable than other
algorithms. For example, discontinuities (such as step functions) do not cause problems, nor do evaluations in the vicinity
of a constraint boundary. The algorithm uses very little computational time in operations other than function calls. The
size of the problem (the number of dimensions) is limited only by execution time.  The transparency of the algorithm's
operation makes this tool ideal for teaching concepts of optimization to introductory college classes or high school math
students. No advanced mathematical training is required to understand and use it.

The AGR agorithm is similar to a variety of interval methods that have been formally shown to converge (Pinter,
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1996). AGR aso has certain similarities to Taboo Search (Cvijovic and Klinowski, 1995) and Jones agorithm (Jones et
al., 1993).

In the worst case, with the optimum falling exactly halfway between two initial grid points, the error estimate of the
optimum will decrease as

- (Xmax = Xmin) /N 18
2%3 (18)

where i is the number of iterations, the min and max terms reflect the bounds on the search region for the choice parameter
X, and n is the number of initial grid points. Thus, if the initial grid is at 10 unit intervals, after 6 iterations we can estimate
the optimal parameter value to within £0.000686. After 10 iterations, we can achieve £0.00000847. On average, a point
will fall away from this worst case scenario, and convergence will be slightly faster.

We can illustrate the grid refinement procedure with the Rosenbrock function. In the following figure, the contours of the
function are shown. The points represent the values kept after the initial gridding and after each subsequent grid refinement
step. We can see the rapid convergence to the solution at { 1,1} .
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/

Grid refinement algorithms tend to increase their computational costs exponentially and can use too much memory
space. In the AGR agorithm, memory constraints are overcome by judicious memory management and by repeated
pruning of the working solution set during algorithm operation. Execution time presents more of a problem. On afast PC,
small problems run in seconds, problems with up to 7 variables run in minutes, problems from 8 to 11 variables run in up to
hours, and problems of 12 to 15 variables run overnight. This is because millions of function calls may need to be made in
higher dimensions. The AGR algorithm is therefore not suitable for functions whose solution is itself time consuming, such
as optimizing the output of a simulation model. On a fast Unix machine, up to 20 variables might be feasible. Although
the practical upper limit of 20 variables prevents this algorithm from being universal, its ease of use and ability to find all
optima and optimal regions certainly recommend it for the large subset of problems that fall within its domain.

-2 -1 0 1
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IV.3 Program Operation

IV.3.A Parameters and Default Values

The user must input several parameters. The initial grid density defines the initial gridding on each x dimension.
Thus, for a 2D problem, an initial grid density of 11 x 11 will give 112 =121 initial function calls. As the di mensionality
increases, it is advisable to reduce the initial grid density to reduce execution time. On the other hand, the more (true or
false) minima there are likely to be and the more poorly behaved the function, the larger the initial grid density should be
(15 x 15, 20 x 20, or even higher). Otherwise, minima may be missed. A high grid density with a high dimensionality may
not be feasible, since initial grid exploration requires a function call at the number of grid points raised to the power of the
number of dimensions.

n=grid? (19)

The second input parameter, the contraction coefficient (C), defines the degree of contraction of the grid region on
each iteration. For the largest (z; ) and smallest (zs) function values at the current iteration, a point z; will be kept for

further refinement only if

Zi <zZs+ (21 -25) C (20)

That is, for C = 0.1, the only points that will be kept are less than 10% of the range larger than the current minimum. If local
minima are expected to be a problem, values of 0.25 to 0.5+ will help prevent the true minima from being missed. The
parameter C is cut in half twice as the program proceeds.

The tolerance (T) defines the amount of improvement (absolute, not relative) in the smallest z required at each
iteration. If at least this much improvement is not found, the program stops. The tolerance can be set to very small values,
such as 10°%°, to achieve a highly accurate estimate of the minimum. If the user sets tolerance = 0, the program will stop if
the minimum remains the same for two iterations, but if there is a very gradual slope near the minimum and slight improve-
ment is achieved with each iteration, the program will not terminate. Thus, tolerance values of zero are not advisable. To
select a good tolerance value, the user can make an initial run with alarge tolerance to see if multiple optima exist, and then
make a second run with a smaller tolerance and bounds that are closer around the rough estimate of the optimum (or around
each solution region if there are several).

A second solution criterion is provided by the indifference (I). When the tolerance criterion causes the program to
stop, al points from intermediate iterations with values between z4 and z¢ + | are considered part of the optimal region(s).
This is because the user is often indifferent to extremely small differences in z, but may be interested in the existence of
multiple solutions that are (within 1) equally good. Thus, for a steel mill, there may be a range of furnace temperatures
within which the output steel quality is approximately the same. Thereisno point in trying to control the furnace tempera-
ture closer than this target zone; in fact, such control islikely to be costly or impossible. 1n general, for real-world optimiza-
tion problems the existence of zones of indifference is extremely important information, because it is far easier to control a
process within some range than to keep it exactly at some "optimal” point. Only the AGR agorithm provides information
on zones of indifference to guide real-world decision making. Consider the function

z =x*4 (21)

with | = 0.1, which isminimized at x = 0. All values of x between -0.562 and +0.562 produce a z less than |, and the user is
thus indifferent to these differences. The "answer" is therefore the range -0.562 < x < 0.562 and not just the point x = 0.
The AGR algorithm provides an approximation to this range that improves as initial grid density improves If only the
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absolute minimum point is being sought, | can be set to zero. If | is set very large, the solution set may define alarge region
containing many thousands of points.

For higher-dimensional problems, initial grid density may be so coarse that a full picture of the indifference region
is not found. This situation will be evident if there are few points in the indifference region relative to the dimensionality.
The AGR algorithm can be reapplied to a smaller domain around a particular optimum by setting the ranges for x; closer to

this zone than in theinitial run in order to better define the indifference region.

The AGR algorithm is implemented in Mathematica via the GlobalMinima command, which has eight options. The
defaults are MaxIterations->25, CompileOption->True, ShowProgress->True, StartsList->{}, EvaluateObj->True, Simplify-
Option->True, UserMemory->32, and Starts->3. Maxlterations prevents the program from running away to infinity when a
mistake is made in the function (Min[x] for example). For very computationally expensive problems (like those with many
parameters), it is useful to use Starts->1 to evaluate the time arun takes. For general usage, Starts->3 (the default) is good.
The results of this short run can then be used to define further, more directed runs based on whether all 3 starts found the
same solution. A list of starting values can be input instead of letting the program find them with random search (e.g.
StartsList->{{1.,2.} {2.,1.}}). The CompileOption determines whether the user function and constraints will be compiled.
While Compile reduces execution time, some functions can not be compiled, in which case CompileOption->False should
be used. If the objective function should not be Evaluated, use EvaluateObj->False. SimplifyOption attempts to simplify
the objective function. If this should not be done or will not improve the solution, this should be set to False. UserMemory,
in units of Megabytes, is a user input defining the free memory available on their machine. GlobalMinima has several ways
of executing, depending on how much memory is available. 1f more memory isavailable, it runs faster.

IV.3.B Bounds

Whereas local algorithms require input of an initial guess or starting point (which must be feasible) to initiate the
search, GlobalMinima requires only bounds on the variables. Bounds are generaly easier to define than are feasible
starting points. Physical, logical, or economic considerations often provide guidance on realistic bounds for a variable. If
the optimization problem is wing design and one variable is wing thickness, a certain range of thicknesses is sensible to
consider. For a financia problem, the range of values for an investment mix across a product line is clearly bounded
between zero and the total budget, and the upper limit can generally be bounded below a much smaller value than this. If
narrower bounds are known, then convergence will require fewer function calls, but even quite wide bounds are acceptable.
GlobalMinima can not search outside of the bounds, and if the solution found runs right against an input bound, then the
true solution may lie outside the bounds and another run may be required if the bounds do not actually represent a constraint.

IV.3.C Constraints

Constraints are entered as Mathematica functions, which may be linear or nonlinear. Constraints may be any
logical function that defines a region or regions of space. Constraints are entered as a list. The terms of the inequalities
can be any valid Mathematica inequality expression. For example, we can define a 3D, doughnut-shaped search region (a
sphere with a hollow middle) as follows:

Inf66]:= 1. <x"2+y"2+2"2<10.;

In contrast to gradient search algorithms, for which constraints are a real problem, GlobaMinima handles con-
straints easily. In fact, constraints, by limiting the space to be searched, may greatly reduce the number of function calls.
When constraints are involved, it is advisable to increase the initial grid density somewhat. Any number of constraints is
allowed, but equality constraints are not allowed. Equality constraints can be approximated by a bounding constraint such
as.

Inf67]:= 0.9 <x1+x2+x3<1.1;
which becomes in standard form:

Inf67]:= {X1+x2+x3-1.1, -(x1+x2+x3) +0.9};
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but in this case, ahigher initial grid density is needed to obtain points that fall in the narrow feasible zone.

Note that simple bounds on the parameters are handled by the variable definition terms { X, Xmin, Xmax}. Duplicating
these bounds as constraints is valid but is unnecessary and will slow program execution. To be specific, no nonnegativity
constraints are needed, as these are handled by the bounds inputs.

WARNING: Constraints can cause difficulties for GlobalMinima. Problems are caused by the creation of unreach-
able regions of the search space by the constraints. In an unconstrained problem, the gridding is such that the entire search
space can be reached by iterating from the initial grid configuration. This may not be true when constraints are present.
This can happen in several ways. First, the feasible space may be defined such that no initial grid points fall in the feasible
region. For example, for bounds {-100,100} with agridding of 5, a constraint {.1<x<.2} will be such a small space that the
initial grid won't fall into it except with a very high initia gridding. If this happens, GlobalMinima will exit with an error
message. Second, a small unreachable space can be created right against the constraint boundary. For example, for initial
grid points {-5,0,5}, the point O provides access to the region -2.5<x<2.5. If a constraint is entered {x>1}, the region
{1>x>2.5} is no longer reachable, since only the grid point {5} is available for grid refinement. Thus in this case, the
smallest value of x that can be found is 2.5 if the minimization tends to push the solution up against the constraint. The
solution to this difficulty is to rerun the problem with tighter bounds focused around the solution found, with a higher grid
density and/or a shift in the grid. For example a shift from 4 to 5 grid points will alter the intersection between the gridding
and the constraint region, as will azoom in or an alteration in the |eft or right bounds.

IV.3.D Memory Usage

The algorithm used by the program is able to trade memory for speed. This means that if more memory is available
it will run faster. The default for the option UserMemory is 32 (in units of Megabytes). If your machine has more memory
than this, setting UserMemory to the higher value will likely make it run faster. If the kernel runs out of memory, try
quitting al other applications. If the kernel till runs out of memory, it may be necessary to restrict UserMemory to smaller
values to force GlobalMinimato use the computational path that requires less memory but takes longer.

IV.4 Output

During program execution, output showing the size of the current solution set and the current minimum is option-
aly printed at each iteration. ShowProgress->True will print out these intermediate results, which provide information for
evaluating convergence and whether the contraction coefficient is too tight or too loose. Especialy for higher dimensional
problems, this intermediate output should always be printed. Following solution, alist is returned that contains the solution.
For example, two pointsin a2 parameter problem would give the list {{{1.1,1.2} ,-5} {{1.2,1.21} ,-4.9}}. The total humber
of function callsisaso printed. Output isillustrated below.

IV.5 Maximization

The algorithm assumes that z is being minimized. If afunction isto be maximized, simply minimize -z. The results
will then be in terms of the correct parameter values, but the z values will be negatives of their true values.
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IV.6 Limitations

No optimization algorithm can solve al conceivable problems. Consider a response surface in two dimensions that
isflat everywhere except for avery small but very deep pit at one location. Steepest-descent algorithms will fail completely
to solve this problem, because for aimost all starting points there is no gradient. The agorithms will just stop and say that
the gradient is zero. GlobaMinimawill stop after two iterations because no reduction has been made in the minimum, and
it will identify points across the entire region as valid. This result tells the user that the surface is very flat. The next step
that can be taken, if there is reason to believe that an optimum does exist somewhere, is to increase the grid density and run
GlobalMinima again. Initial densities > 1000 are feasible for problems with few dimensions and may by chance find the
narrow optimal zone. Once this zone is identified, convergence israpid. Thereisthus at least a chance that GlobalMinima
can solve such an "impossible" problem.

Some functions have infinitely many solutions. Consider Sin(1/x) between 0 and 1. As the function approaches
zero, the minima (with z = -1) get closer and closer together, as we can see from the plot following:

In[117]: =
Plot [Sin[1/x], {X, 0, 1}]
Qut[117] =
1.0
0.5
f 1 1 1 1 1
0.2
-05
-1.0

Although it is fundamentally impossible to list all solutions when there are infinitely many, GlobaMinima can show that
there are very many solutions. If we try an initial grid density of 20 on the interval [0, 1], with contraction = 0.4, we obtain
many points with values close to -1.0 (see section |V for details). This result demonstrates that there are many solutions
and that the density of solutions increases with an approach to zero. Thisis thus an approximate solution to the true situa-
tion. One can determine that this is an approximate solution by increasing the grid density to find more solutions close to
zero. Making two runs allows us to extrapolate the result that there are very many solutions close to zero, perhaps infinitely
many (asin this case).
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These examples illustrate that not all problems can be solved. Some are not solvable by any algorithm. Some may
be ill-posed. However, for many problems that cause other agorithms to fail, the AGR agorithm either succeeds, has a
probability of succeeding, or provides a partial or approximate solution. We may thus say that the set of unsolvable prob-
lems is much smaller for the AGR agorithm than for other solution methods. This is particularly so with respect to the
inclusion of constraints.

IV.7 Efficiency

Although the number of function callsis atypical criterion for comparing the speed of optimization algorithms, this
measure does not tell the entire story. Many algorithms do considerable computing for things such as derivatives and
gradients and inverting matrices, whereas the AGR agorithm does very little such secondary computing. The AGR ago-
rithm is thus faster than the number of function calls aone would indicate. A second important point is that the literature
comparing agorithms often indicates that an algorithm had only some probability of finding a solution (for a random initial
starting point). For real problems where the “correct” answer is not known, this means that the problem must be solved
many times with different initial conditions to start the algorithm; sometimes hundreds or thousands of runs are necessary.
Genetic agorithms and simulated annealing behave in this way (Ingber and Rosen, 1992). Thus, the actua efficiency is a
function of the total number of runs, not just the single-run function call count or the execution time. This requirement for
making multiple runs creates substantial work for the user. With GlobalMinima, a single run is sufficient to generate
reliable solutions. In addition, it is easier to define feasible bounds on the domain of a problem than to generate hundreds
of feasible starting points for multiple runs, especialy if constraints are involved.

It is obvious that a grid refinement approach like that used here will require function calls as an exponential function
of the number of dimensions. The initial gridding can be slow if too great a grid density isinput. For example, for afive-
dimensional problem with agrid density of 7, theinitial number of grid pointsis 7° = 16, 807. After theinitial grid calcula-
tion, execution time is governed by the generation of daughter points in the process of grid refinement. The formula for the
number of daughters d generated by a point in the current solution set is:

d=3"-1 (22)

Thisgivesd = {2, 8, 26, 80, 242 ...} fori ={1, 2, 3, 4,5 ...}. With this formulation, large problems take too long to run.
One approach to reducing execution time is to make the contraction coefficient smaller. For problems with only one
minimum, this economy can cut execution time by 0.5 to 0.9. However, this strategy will cause multiple optima to be
missed. The grid-based approach used here is thus obviously not suitable for very large problems, but does allow for
congtraints, even nonlinear constraints. Therefore, a contraction coefficient much below 0.05 is not recommended unless
the function is likely to be smooth. For large problems or problems with complex constraints, the MultiStartMin function is
recommended.
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IV.8 Error Messages

An effort has been made to trap as many errors as possible. Much of the setup for running GlobalMinima uses
Mathematica formats. Many user errors will prompt Mathematica error messages. On input, only the order of parameters
is evaluated in the passing function call, not their names. The user is thus free to use any names, though the names used
here and in the example notebooks are the most obvious and will help prevent mistakes. Therefore using “c” for
“contraction” is not an error. |If valid values for input parameters (tolerance >= 0.0, indifference >= 0, 0.0 < contraction <
0.8) are not input, the following error message is printed, and the program stops:

Error found by GlobalMinima

Error: Input parameter outside range

If a parameter is omitted from the calling sequence, Mathematica cannot continue. To indicate the problem, it
echoes back the names for functions and values for constants in the function call, and then it stops. This type of echoed-
back output means that aformat error exists in the calling sequence.

After input, the program compiles the user input function and the constraints, speeding execution by a factor of
about six. If these functions are improperly formatted, this step may produce a compilation error message, which will
terminate the run. 1If a function is defined such that it does not return numeric values, this will cause error messages from
Mathematica, followed by termination of GlobalMinima.

If a completely flat function is mistakenly defined, every point that is tried will be kept, and the solution set will
keep growing. The program traps this type of error and exits with a message that the response surface is completely flat
after the initial gridding. If aflat function is input for a large problem with a high initia grid, all available memory could
be used up before GlobalMinima can detect that the function is flat.

When constraints are used, there may be no feasible region, particularly if the problem has many constraints. If this
occurs, the following error message is printed, and the program terminates:

Error found by GlobalMinima

Error: No valid grid points generated

In this case, check the constraints and their relation to the bounds on the parameters. Constraints and bounds can be in
conflict if care is not taken. In some cases, the constraints are valid, but a higher initial grid density is needed to obtain
feasible points.

A common mistake is to maximize when the intention was to minimize. This error can be recognized because the
solution will tend to run into one of the parameter bounds and will have an illogical z value. For example, the optimal
airplane wing thickness for a design problem might come back as zero.

An unbounded solution may result from an improperly formulated problem (e.g., min(-1/x) over {-1, 1} which
becomes -inf at x=0). Because the function z continues to get larger the closer one gets to zero at an increasing rate, the
program will never report convergence. If this mistake has been made, GlobalMinima will terminate after MaxIterations
and will print out results showing a very large (negative) function value.

The user function passed in to GlobalMinima is Compiled. This may cause compilation errors. The result is
usually to stop the execution of the program, but it is necessary for the user to realize the source of the error. Compiled
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functions can also generate errors at run time if the user function generates non-machine numbers such as high precision
numbers or infinity. Mathematica will usually revert to the uncompiled function and continue running.

If the user defines variables in his program by mistake that should be parameters of the function, this will cause the
program to stop or malfunction. For example, if pp=>5 is defined by mistake, this will cause Mathematica to detect an error

but GlobalMinimato attempt to execute:

Inf118]:
pp

In[119]:

G obal M nima[ (pp-30)~2 (y -60)72, , {{pp, 0., 100.}, {y, 1, 533}, 20, 0.001, 0.3, 0.01]

Error: Synbol expected in parameter |ist, variable 1
Warning: nmenory is restricted for initial grid and performance will be affected.
Pl ease increase UserMenory if possible and cl ose other applications.

fatal error encountered, job stopped

Quit[119] =
$Fai |l ed

In this example, the parameter list { pp,0.,100.} has become {5,0.,100.} which does not match the function input sequence,

causing the

program to stop.

IV.9 A STEP-BY-STEP EXAMPLE

Our example is afunction with multiple optima, the camelback function (Griewank, 19 ):
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In[120] : =
Plot3D[4*x"2-2. 1 %X 4 +x" "6 /3 +xX*xy -4xy"2+4xy™4, {x, -1, 13}, {y, -1, 1}]

Qut[120] =

05

0.5

This function has two minima, which can be seen in the figure. GlobalMinima easily finds the two solutions. Even
with an initial grid = 7 points and contraction = 0.3, GlobaMinima finds min = -1.293439 at the two solution points
{0.4867, -0.74074} and {-0.4867, 0.74074}. We now illustrate how this solution is obtained.

GlobalMinima is a Mathematica package and must be installed by using the Get command. The function to be
minimized must be defined; in this case, it is the camelback function depicted above. This is the first parameter for the
function call. The second parameter is the constraints, input as a list of inequality functions separated by commas. If there
are no constraints, an empty list must be entered as {}. When a set of constraints is entered, Mathematica returns a True or
False value. GolobalMinima tests each potential grid point against the constraint equation set. The third parameter is the
variable names and their bounds, in any order, each defined as a list. Each variable used in the function must be defined.
The fourth parameter, the indifference parameter, defines the range of values larger than the best solution found that we will
consider essentially equivalent and therefore equally good. We must define initial grid density (Integer) and tolerance
(Real), where tolerance specifies the improvement in the solution necessary to continue iterating (i.e., if (old min - min) >
tolerance, keep going). Note that thisis an absolute rather than a relative tolerance.

The contraction coefficient is defined for input where the range is typically 0.5 to 0.1. The contraction coefficient is
cut in half after the first iteration and in half again after the second. This is because the initial grid narrows the solution
space to regions where faster winnowing of pointsis possible.

We can now execute GlobalMinima. Note that parameter names are arbitrary but that order is fixed. The option
ShowProgress causes intermediate output to be printed. In this first example, no constraints are being used, so an empty list
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{} isentered. By setting indifference very small, we only get the best solutions:

Inf121]: =
tol er =0.001;
grid=7,;
contraction =0. 25;
indi f =0.001;




In[125]: =
G obal M nima[4. xal”*"2«xal”4+ (1. /3.) *xal”"6+alxa2-4. xa2”"2+4. xa2"4, ,
{{al, -1., 1.3}, {a2, -1, 1.3}, grid, toler, contraction, indif, ShowProgress -> True]

G obal Optinmzation, Version 5.2
di mensi on= 2

grid density= 7

contraction= 0.25

i ndi fference= 0.001

tol erance= 0.001

no constraints in use

147

full efficiency, nmenory needed:
50000

creating initial grid

max=-0. 53242 min=-1. 1186 nunber of nodes=16
daught ers generated per node = 9
contraction coefficient cut=0.125

iteration 1

max=-1.21774 m n=-1. 28637 nunber of nodes=12
contraction coefficient cut=0.0625
iteration 2

max=-1.29207 m n=-1. 29278 nunber of nodes=4
iteration 3

max=-1.29338 m n=-1. 29344 nunber of nodes=4
iteration 4

max=-1.29369 m n=-1.29369 nunmber of nodes=2
iteration 5

max=-1.29371 m n=-1. 29371 nunber of nodes=2
total function calls=353

final results:

Qut[125] =
{{{al > -0.4903, a2 > 0.736038}, -1.29371}, {{al > -0.4903, a2 - 0. 737213}, -1.29369},
({al > -0.486772, a2 »0.730159}, -1.29338), {{al > -0.486772, a2 - 0.740741}, -1.29344),
({al > -0.47619, a2 »0.730159}, -1.29278)}, {{al -0.47619, a2 - -0. 730159}, -1.29278},
({al - 0.486772, a2 » -0.740741}, -1.29344}, {{al > 0.486772, a2 - -0.730159}, -1.29338)},
({al - 0.4903, a2 » -0.737213)}, -1.29369}, {{al >0.4903, a2 » -0.736038}, -1.29371}}
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GlobaMinima in this example provided stepwise reports on its progress. After echoing back the input parameters,
it reports on the memory needed for computations. If more memory is available, the program will run faster unlessiit is
aready printing out "full efficiency”. At each iteration, it reported the current minimum and maximum and the number of
points in the solution set. For large problems, the execution time can become extremely high if too many points are being
kept. In this case, it can be useful to make the contraction coefficient somewhat smaller. If a problem is known to be
convex and well-behaved (e.g., z= x?), avery small contraction (<0.05) will increase speed dramatically. A helpful type of
printed output isa 2D plot of indifference-region values, for cases with two variables only. These plots help provide insight
into program operation and the process of grid refinement and convergence.

The program can be run with more compact output by omitting the ShowProgress option, which then allows the
default False to take precendence.

The camelback problem has two optimal solutions. A constraint that selects the lower right quadrant as a valid
region finds just one of the two solutions, as shown below.

In[126]: =
tol er =0.00001;
grid=7;
contraction=0. 3;
i ndi f =0.0001;
Inf130]: =

G obal M nima[4. *xal”*"2xal”4+ (1. /3. ) *xal”"6+alxa2-4. xa2”"2+4. xa2"4,
{-al, a2}, {{al, -1., 1.3}, (a2, -1, 1.}}, grid, toler,
contraction, indif, ShowProgress » Fal se] // Ti m ng

Qut [ 130] =
(0.016, {{{al »0.490169, a2 » -0.735907}, -1.29371},
({al > 0.490213, a2 - -0.735951}, -1.29371}, {{al - 0.4903, a2 - -0.737213}, -1.29369},
({al > 0.4903, a2 - -0.736038), -1.29371}, {{al »0.4903, a2 > -0. 733686}, -1.29366}}}

We can see that only the solutions in one quadrant were found, as desired.

IV.10 Testing

No numerical algorithm can be guaranteed not to fail. However, the approach taken here is far more robust than
other approaches. The algorithm has been tested with a number of both simple and complex functions and has been shown
to perform well for a number of test functions that exhibit false minima, multiple minima, and minimal regions. Test
functions have included positive polynomials with multiple roots, poorly behaved functions with large numbers of false
minima, the Rosenbrock function, a number of multiple-minima problems, and many others. The only difficulty encoun-
tered is that for multiple-minima problems, some solutions could be missed if the initial grid density is too low. The
algorithm should be stable for achieving high-precision results, because no derivatives are used, and testing has shown that
high accuracy can be achieved easily. Mathematica uses high precision computations, and stores numbers as exact ratios of
whole numbers whenever possible. Thus very little error is expected from truncation. Nondifferentiable functions, such as
step functions, were tested and caused no numerical difficulties. The algorithm has no trouble with problems having up to
dozens of true optima. For pathological functions with thousands of optima, the program may be able to find only scores of
solutions in a particular run.

This package is not a tool for pure mathematics but rather is designed for applied problems. In the Csendes function
discussed below, a box around the origin contains only solutions less than some value. Near the origin, values within the

box may be 1072 or less. GlobaMinima is designed to define this box and to converge near the best minimum. Conver-
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gence to the absolute minimum (in this case, zero at x = 0) is of less interest, because all locations within the defined box

region are essentially equally good (to 107%3). It is thus difficult to compare the AGR algorithm directly to other algo-
rithms, because other approaches seek out the analytical optimum point whereas the AGR algorithm seeks out the practi-
cally optimal region(s). What we can say is that although the AGR agorithm may not always find the analytical minimum
of a function, it usually gets very close, and it can also find multiple minima and optimal regions, which other agorithms
cannot.

IV.10.A A Simple Polynomial.

The use of the package is best illustrated with examples. We begin with some simple cases. The function 37 ; X is

symmetric and for any number of dimensions has a global minimum at the origin with z = 0. This problem meets the
classic criteria of gradient descent algorithms, which converge to the solution from any starting point for functions with no
saddles, discontinuities, or false minima.  GlobalMinima converges to the correct answer easily. Although the AGR
algorithm is not as fast as a steepest-descent algorithm, it is quite fast for such well-behaved and steep problems.

A ssimple modification to this function creates a problem with multiple solutions:

In[132]: =
Plot [(x - 30)"2 (x - 60)"2, {x, 0, 100}]

Qut[132] =
5.x 108
4,x10°
3.x10°

2.x 108

1.x 108

Here, zz = 0 at x = 30 and at x = 60. When we run GlobalMinima over the interval {0, 100}, we need an initial grid density
of 20 pointsto find both solutions:
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Inf133]: =

d obal M nima[(x -30)72 (x -60)72, , {{x, 0., 100.}}, 20, 0.00001, 0.3, 0.0001] // Ti m ng
Qut[133] =

{0.016, {{{x >29.9999}, 0.0000145192}, {{x -30.}, 1.61324x10°},

{{x>30.}, 1.79248x10"}, {{x>30.}, 1.99165x10°}, {({x -30.}, 2.21294x10°},
{{x>30.}, 2.21294x107°}, {{x>30.}, 1.99165x10°}, {{x >30.}, 1.79248x10"},
{{x>30.}, 1.61323x10°}, {{x >30.0001}, 0.000014519}, {{x -59.9999}, 0.000014519},
{{x>60.}, 1.61323x10°}, {{x ~>60.}, 1.79248x10"}, {{x -60.}, 1.99165x10°},
{{x>60.}, 2.21294x107°}, {{x >60.}, 2.21294x107°}, {{x ->60.}, 1.99165x10°},
{{x>60.}, 1.79248x10"}, {{x>60.}, 1.61324x10°}, {{x -60.0001}, 0.0000145192}}}

Note that for small problems like this, the solution is very fast. While some of the values look like duplicates, note that they
must not be because otherwise the values of the function would be identical. This results from significant digits that
Mathematica does not show on output. Traditional methods would find one or the other of these solutions, depending on
the initial guess given to the algorithm. In this case, the maximum and minimum coordinates of the indifference region
overstate the size of the region, which isreally just two widely separated clusters of points.

IV.10.B The Rosenbrock Function

An interesting problem is the Rosenbrock function (Ingber and Rosen, 1992) a classic test of convergence of
optimization algorithms. The plot of thisfunction is:

In[134] : =
Pl ot 3D[100. » (x"2-y)"2+ (1 -x)"2, {x, -5, 5}, {y, -10, 10}]
Qut[134] =
80000,
60000,
40000,
20000 >

O
-5

70

=10

5

This function becomes quite shallow as the optimal region is approached, and some algorithms experience convergence
difficulties with it. We can see that GlobalMinima does not experience difficulties with it and finds the global minimum z
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=0at {1, 1}, even with an initial grid = 5 and contraction = 0.2, so long as the tolerance is small (< 1077). The execution
time is faster than when using Global Search.

In[135]: =

G obal M ni ma[100. % (x"2-y)"2+ (1. -x)"2, ,
{{x, -5, 5.}, {y, -10., 10.}}, 8, 0.00000001, 0.2, 0.000000000001] // Ti mi ng

Qut[135] =

{0.188, {{{x—>0.999997, y »0.999994}, 0},

{{x - 0.
{{x-0.
{{x-0.
{{x->0.
{{x>0.
{{x > 0.
{{x->0.
{{x > 0.
{{x->0.
{{x->0.
{{x > 1.
{{x->1.
{{x->1.

{{x->1.,

{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x > 1.
{{x->1.
{{x->1.

999997, y 0. 999994}, 0},
999997, y 0. 999994}, 0},
999997, y - 0. 999994}, 0},
999997, y - 0. 999995}, 0},
999997, y - 0. 9999961, 0},
999998, y - 0. 9999961, 0},
999998, y - 0. 999995}, 0},
999998, y 0. 999996}, 0},
999999, y 0. 999999}, 0},
999999, y 0. 9999993, 0},

, ¥y >0.999998}, 0}, {{x->1., y—0.999999}, 0}, {{x->1., y—0.999999}, 03},
, y->121.1, 03, {{x-1., y->1.3}, 03},
,y->121.1, 03, {{x-1., y->1.3, 03},
y-1.1, 0}, {{x-1., y->1.3}, 03,

, y->1.00001}, 03}, {{x->1.
, y—>1.00001}, 0}, {{x-1.
, y>1.00001}, 0}, {{x-1.
, y—>1.00001}, 0}, {{x->1.

{{x >0.999997, y > 0.999994}, 0},
{{X >0.999997, y > 0.999995}, 0},

{{x - 0.999997, y - 0.999994}, 0},
{{x > 0.999997, y - 0.999995}, 0},
{{x > 0.999998, y - 0.999995}, 0},
({x - 0.999998, y - 0.999996}, 0},
({x > 0.999998, y - 0.999996}, 0},
{{x - 0.999999, y - 0.999998}, 0},
{{x »0.999999, y - 0.999998}, 0},
{{x - 0.999999, y - 0.999999}, 0},

y - 1.00001}, 0},
y > 1.00001}, 0},
y > 1.00001}, 0},
y - 1.00001}, 0},

00001, y > 1.00001}, 0}, {{x »1.00001, y - 1.
00001, y > 1.00001}, 0}, {{x »1.00001, y - 1.
00001, y 1. 00001}, 0}, {{x »1.00001, y - 1.
00001, y - 1. 00001}, 0}, {{x - 1.00001, y - 1.
00001, y - 1. 00001}, 0}, {{x - 1.00001, y - 1.
00001, y - 1. 00001}, 0}, {{x —»1.00001, y - 1.
00001, y - 1.00001}, 0}, {{x —»1.00001, y - 1.

I\VV.10.C TheBranin rcos Function

{{x-1., y->1.3, 03},
{{x-1., y->1.3, 03},
{{x-1., y->1.000013;, 03,

{{x->1., y->1.00001}, 0},
{{x->1., y->1.00001}, O},
{{x-1., y->1.00001}, O},
{{x-1., y->1.00001}, O},

00001}, 0},
00001}, 0},
00001}, 0},
00001}, 0},
00001}, 0},
00001}, 0},
000023, 0}}}

A related function, the Branin rcos function (Dixon and Szego, 1978), has a more complex surface:




56

In[136]: =
Pl ot 3D[(y -x"2%5.1/ (4. %3.1415972) +5. %x /3.14159-6.)"2 +
10. % (1. - 1. / (8. #3.14159)) xCos[x] +10., {x, -40, 40}, {y, -40, 40}]

Qut [ 136] =
40000,
20000,
0.
—40

In the region {-40, 40}, there are six equivalent minima. With traditional algorithms, it would be very difficult to know
what initial guesses to use. The number of possible minima is certainly not clear from inspection of the equation or the
plot. Zooming in alittle on the flat region, we can see a horseshoe-shaped valley:
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In[137]: =
Pl ot 3D[(y -x"2%5.1/ (4. #3.1415972) +5. +x /3.14159-6.)"2 +
10. % (1. - 1. / (8. #3.14159)) xCos[x] +10., {x, -20, 40}, {y, -40, 40}]

Qut[137] =

15000 7%
1 — 40
10000, _

5000

0

-20 0

0 ‘
—-20

40 7—40

However, we still do not have much information about the solutions. Global Minima provides a solution:

Inf138]: =
ans =d obal M nima[(y -x"2%5.1/ (4. *3.1415972) +5. *x/3.14159-6. )72 +

10. » (1. -1. / (8. »3.14159)) »Cos [x] +10., ,
{{x, -40, 403}, {y, -40, 403}, 11, 0.001, 0.3, 0.01, ShowProgress -> True]

Here, the semicolon was used to suppress output of the list of points, which are instead stored in "ans'. From this example,
we can see that GlobalMinima finds al six optima with the given parameters and that the indifference parameter defines
regions around these optima.

I\VV.10.D The Csendes Function

A very difficult problem is the Csendes function (Csendes, 1985; Courrieu, 1997):

n 1
Q(S)=in6(2+8in;) -1<xi <1 (23)
i=1 !

This function has a unique global minimum (0) at x = 0, an oscillation frequency that approaches infinity as one approaches
the origin, and a countable infinity of local minima, making local searches impractical. For a 2D version, we can plot the
function:
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In[139]: =
Pl ot 3D[x"6% (2.0+Sin[1.0/x]) +y 6% (2.0+Sin[1.0/y1), {x, -1., 1.}, {y, -1., 1.}]

Qut[139] =

At this scale, the plot appears smooth, but in cross section and closer to the origin it gets increasingly wavy as we approach
zero:
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I'n[140]: =
Plot [x"6 % (2. + Sin[l. /x]), {x, -.1, .1}]

Qut [ 140] =

1.2x10°®

1.x10°8

8.x 1077

6.x1077

4.x1077

2.x1077

Although the waviness increases close to zero, the absolute magnitude of the oscillations goes to zero as we approach the
origin. We can try to solve this problem as follows, with grid = 10 and tolerance = 0.0000001.

d obal M ni ma [
X"6 % (2.0 + Sin[1.0/x]) +y"6 x (2.0 + Sin[1.0/vy]), , (24)
{{x, -1., 1.}, {y, -1., 1.}}, 10, 0.00001, 0.2, 0.0000001]

The solution to this is not shown here because many pages of printout result from the identification of the indifference
region. It was found that the best solution is 107%° at {0.0037, 0.0037}, but that the entire region within the box +0.056 in
both dimensions is less than 0.00001 (based on the indifference zone criterion) and that the region within the box -0.167 to
0.21 in both dimensions is less than 0.0001. Zooming in around the best solution and restarting with a new grid does yield
some improvement (z = 10~ at { 9e-06, 9e-06} ), but we have to consider whether improvement from 10~*° could possibly
have significance.

We can also turn the problem around and ask how bad the local solution can be in the optimal neighborhood. In the
region within +0.056, we find that the worst solution found is around 0.0000001. This enables us to put bounds on the set
of points in the optimal region. If these bounds are wide, then very large Z values might be adjacent to very small ones, in
which case it is not advisable to view the region full of optimal solutions as truly optimal, because the region is also full of
bad solutions. From a purely mathematical viewpoint, thisisirrelevant; however, from a practical viewpoint, we should not
try to implement an optimal policy or design if very bad solutions are very close to it, because our ability to implement a
solution is always imperfect. An obvious example of this difficulty occurs with sin(1/x), whose plot looks like
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In[141]: =
Plot [Sin[1/x], {x, 0, 1}]
Qut[141] =
1.0
0.5
L
0.2
-0.5
-1.0

GlobalMinima with 20 initial grid points yields z = -0.999 at points {0.0033,0.0335,0.0424,0.058,0.09}. This is not a
complete set, but it does show that many equivalent solutions exist. Solving for the maxima on this same interval, we find
that z = -0.999 at {0.022,0.025,0.03,0.037,0.049,0.07}. We can see that maxima alternate with and are very close to
minima over the region. Unless our implementation is perfect, which is quite unlikely, we cannot in the real world imple-
ment the optimal solution for such a problem without great risk of actually implementing a worst possible solution. Thus,
when multiple optima exist, a combined minimization-maximization is useful to define the feasibility of the solutions.

IV.10.E Wavy Functions, the W Function

Another "difficult" function isthe W function (Courrieu,1997):

1n1
W, k = -5 '- kx; -x;%2/2
(x) nZlcos(x)exp(x /2) (25)

i=1

for -n<x<m. W functions have their unique global minimum (0) at x = 0. The number of local minimain the search domain
iskn (for k odd) or (k + 1)n (for k even). Here we used only k = 10, which gave 121 local minimafor n = 2 and more than
2.59 x 10% |ocal minimafor n = 10. The function oscillates between two hulls of constant mean (= 1) whose distance from
each other is maximal in the neighborhood of the solution.

A one-dimensiona dlice across the W function shows why thisis a difficult function for optimization algorithms.
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Inf16]:= Plot [1 - Cos[10. %x] Exp[-x~2/2], {x, -3.14159, 3.14159}];
2,

-3 -2 -1 1 2 3

The solution of this function with the AGR agorithm depends on having sufficient grid density so that an initial point falls
into the inner oscillation that goes to zero. With an initial grid density of 40 points for a 2D problem, GlobalMinima finds
the solution to arbitrary accuracy, depending on Tolerance. Again for such a problem in real-world applications, it is
important to know whether bad solutions are close to good ones. Here we can zoom in on the best solution and, over the
interval {-1, 1} on each dimension, find min(z) = -W. When we do this, GlobalMinima finds the worst solution z = 1.95 at
{-0.311, -0.311} and three other symmetrically located points, al very close to the global minimum (as can also be seen in
the one dimensional figure above). Thisis a potentially unstable situation. We must then evaluate whether we can imple-
ment a solution to this problem in the real world with sufficient accuracy to ensure that neither noise nor error will lead to
the adverse solutions rather than the desired optimal one.

IVV.10.F More Wavy Functions

Some further examples of wavy functions are instructive. First, we consider the function Sin_1:

z= |x+3Sin(x) | (26)
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In[142]: =
Pl ot [Abs[x + 3Sin[x]], {x, -40, 40}]
Qut [142] =
40_
30
20
10
| 1 1 1 | 1 1 1 1 1 1 | 1 1 1 |
-40 -20 20 40

When solved by solvers such as IMSL or the Mathematica FindMinimum function, this function yields local minima unless
theinitial guessis near the origin. GlobalMinima solved this to arbitrary accuracy (on {-40, 40}) with 26 initial grid points.
An accuracy of 1072 was achieved with 150 function calls.

The related waxy function Sin_2:

z=|2x+xSinx | (27)
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In[143]: =
Pl ot [Abs [2X + Xx*Sin [Xx]], {X, -40, 40}]
Qut [143] =
120
100 |
80
60
40_
20
| 1 1 1 | 1 1 1 L 1 1 1 | 1 1 1 |
-40 -20 20 40

with 12 initial grid points Global Minima attained an accuracy of 10~ with 152 function calls.

IV.10.G Wavy Fractals

As an example of avery wavy function, afractal (nondifferentiable) figure on the line was constructed:
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In[144]: =
Plot [4Sin[x] + Sin[4x] + Sin[8x] + Sin[1l6x] + Sin[32x] + Sin[64x], {x, 0, 6.28}]

Qut[144] =

|
i
T T T T T T T T T T

(Here thisfigure was iterated to just six levels and evaluated between 0 and 27.) With just 10 initia grid points, GlobalMin-
ima found the solution z = -6.98759 at x = 4.48989. Even with as few as 5 initial grid points, the optimal solution was
found.

Inf145]: =
G obal Mnima[4Sin[x] + Sin[4x] + Sin[8x] + Sin[1l6Xx] + Sin[32x] + Sin[64x], ,
{{x, 0., 6.283}}, 10, 0.00001, 0.2, 0.0000001] 7/ Ti m ng

Qut[145] =
{0.016, {{{x —>4.48984}, -6.98759}, {{x —4.48984}, -6.98759}}}

Note that this is much faster than using MultiStartMin or Globa Search and also more reliable on this very wavy function.
GlobalMinimawill be faster for small problems (<3 variables without flat regions).

V NONLINEAR REGRESSION: THE NLRegression
FUNCTION

V.1 Introduction

NLRegression is a function that performs nonlinear regression using nonlinear least-squares. It is able to incorpo-
rate constraints which may represent physical limits on the parameters being estimated, such as that a growth rate can not be
negative.
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The optimizer underlying NLRegression is GlobalSearch. All options used by GlobalSearch are accepted by
NLRegression and passed down to it except StartsList. See the Global Search section for its options. The only other option
accepted is Weights, which is the weight to be assigned to each data point. Weighting might be employed when some of
the data have a greater reliability than others. The format for the function call is

NL Regression[data,expression,independent_variables,inequalities,equalities,{{var 1name,l

owbound,highbound}..} ,tolerance,options] (28)

The output of the NLRegression procedure is a table of confidence intervals on the parameters, sensitivity plots, the
fit parameter values, and the fit statistics. The sensitivity plot can be very useful for detecting parameters that are redun-
dant.

The typical regression problem involves fitting data to a nonlinear model. 1f the model is nonanalytic (black box),
the problem can not be solved by NLRegression, but instead must be solved by setting up the least-squares error function
which is then passed in to GlobaSearch. If the function returns values that are below machine accuracy or can return
complex results, CompileOption->False should be used. There are four options: FitStatistic, SensitivityPlots, Weights and
Norm:

Inf146]: =
?FitStatistic

Fit criterion for NLRegression.
LeastSquare default. ChiSquare also available option.

Inf147]: =
? Wi ght's

Weight assigned to data point i during
regression analysis. Does not affect sum of squares.

In[148] : =
?Norm

Norm for fitting in NLRegression. L2 is default. L1 also available. »

In[149]: =
?SensitivityPlots

Prints sensitivity plots if True.

In[150] : =
? User Resi dual s

Regression option for passing a user function for residuals.
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Let's consider a simple regression problem.

In[152] : =
p=Table[i, {i, 0, 20}]

Qut[152] =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

In[153] : =
ClearAll [a, b, x]

In[154]: =

eqn =a+b*x"2
Qut[154] =

a+bx?

Where aand b are parameters, and x is the independent variable.

In[155]: =
data = {}; Do[AppendTo[data, {x, eqn /. {a-»1, b-.1}}1, {x, 0, 20}]

In[156] : =
dat a

Qut [ 156] =
{{0, 13, {1, 1.1y, (2, 1.4}, {3, 1.9}, {4, 2.6}, {5, 3.5}, {6, 4.6}, {7, 5.9},
(8, 7.4}, {9, 9.1}, {10, 11.}, {11, 13.1}, {12, 15.4}, {13, 17.9}, {14, 20.6},
{15, 23.53}, {16, 26.6}, {17, 29.9)}, {18, 33.43}, {19, 37.1}, {20, 41.})

In[157]: =

Li st Pl ot [dat a]
Qut[157] =

40

30 .

10+
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In[158]: =
r = NLRegression[data, eqn, {x}, {}, {}, {{a, 0, 3}, {b, 0, 1}},
. 0000001, SensitivityPlots » False, StartsList -» {{2, .5}}] // Timng
Qut[158] =
{2. 547, {Degreeso‘ Freedom- 19, Total SS- 3304. 33, ParaneterEstimate > {a—>1., b 0.1},
Resi dual SS— 1. 13652 x 104, RSquare - 1., Confi dencel nterval s -
fa-lnterval [{0.997817, 1.00218}], b - Interval [{0.0999882, 0.100012}]}}}

We recover exactly our original parameters. It is possible that the best fit to data violates some constraint such as
physical feasibility. In this case, it is necessary to constrain the optimization problem. We introduce some measurement
error into the data.

In[159]: =
dataf[[l, 2]] =dataf[[l, 2]]1-1
Qut[159] =
0
Inf160]: =
dataf[[2, 2]] =data[[2, 2]] -1
Qut [ 160] =
0.1

Inf161]: =
dat a

Qut[161] =
{{0, 0}, (1, 0.1y, {2, 1.4y, (8, 1.9}, {4, 2.6}, {5, 3.5}, {6, 4.6}, {7, 5.9},
(8, 7.4y}, {9, 9.1y, {10, 11.3, {11, 13.13, {12, 15.4}, {13, 17.9)}, {14, 20.6},
{15, 23.5}, {16, 26.6}, {17, 29.9)}, {18, 33.4}, {19, 37.1}, {20, 41.}}

In[162] : =

Li st Pl ot [dat a]
Qut[162] =

40

30 .

20

10
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In[163]: =
r = NLRegr essi on[data, eqn, {x}, {}, {}, {{a, 0, 3}, {b, 0, 1}3}, .0000001] // Ti m ng

Sensitivity plot variable a

Ss

@

2.0

1.9

18

17

- 0.70

| T T R
075 080
Sensitivity plot variable b

ss
300

250
200
150

100

0.09

Qut[163] =
{0. 703, {DegreesO Freedom- 19,
Total SS - 3360. 6, ParaneterEstimate » {a > 0.792125, b - 0.100824},
Resi dual SS— 1. 58507, RSquar e —» 0. 999528, Confi dencel nterval s -
{a-Interval [{0.505452, 1.0788}], b > Interval [{0.0992788, 0.10237}]1}}}

We see above that the error added to the data causes "a"' to fall down to .792. If we know that parameter a can not fall
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below .9 for some reason, we may add this constraint to the problem. a>.9 is converted to standard form as {-a+.9}. We
add this to the function call.

In[164]: =
r = NLRegr essi on[data, eqn, {x}, {-a+.9}, {}, {{a, 0, 3}, {b, 0, 1}3}, .0000001] // Ti mi ng

Warning: C. 1. and sens. plots not defined with constraints

Qut[164] =
{0. 062, {DegreesO Freedom- 19, Total SS- 3360. 6,
ParameterEstimate - {a > 0.9, b - 0.100396}, Residual SS— 1.69681, RSquare - 0. 999495} }

The addition of the constraint satisfies the restrictions on the problem. Note that with constraints the confidence intervals
and sensitivity plots are not defined and can not be printed. Another way to approach this problem is to use the L1 norm,
which reduces the influence of outliers. Wetry this next, without constraints.
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In[165]: =
r =
NLRegr essi on[dat a, eqn, {x}, {}, {}, {{a, 0, 3}, {b, 0, 1}}, .0000001, Norm- L1] // Tim ng

Sensitivity plot variable a

Sensitivity plot variable b

ss
60

50

40

30

20

10

L L L L | L L L L | L L L L | L L L L | b

0.09 0.10 011 0.12

Qut[165] =
{1. 094, {DegreesO Freedom- 19, Total SS- 3360. 6, ParanmeterEstimte- {a—>1., b- 0.1},
Resi dual SS— 2., RSquare - 0. 999405, Confi dencelnterval s >
{a-Interval [{1.22315, 1.22317}], b Interval [{0.0983608, 0.101636}]}}}
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We note two things immediately. First, the sensitivity plots are now linear rather than quadratic, because of the different
norm. Second, the L1 norm recovers the true parametersin spite of the error in the data and without the use of constraints.

V.2 Utilizing Chi-Square fit Criteria

It is sometimes useful to use a chi-square fit statistic:

In[178]: =
FitStatistic - Chi Square

Qut[178] =
FitStatistic - Chi Square

V.3 Multiple Independent Variables in Regression Problems

In the next example,the fitting of a function to data is illustrated when there are multiple independent variables. A
common example of such a problem is when several experiments are done under different conditions and all data from all
experiments are to be used to estimate certain parameters.

In[179]: =
p=Table[i, {i, 1, 20}]

Qut[179] =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

In[180] : =
ClearAll [x, a, b, ¢, g]

In[181] : =
yl=d (a*x"g+b) +c* (2xb+axx”Qg)

Qut[181] =
d(b+ax%) +c (2b+ax9)

In[182]: =
c=1; d=0;
datl = {}; curvel = {}; curve2 = {}; Dok =yl /. {x->p[[i]], a».1, b-10., g-2};
AppendTo[dat 1, {c, d, p[[i 1], k}]; AppendTo[curvel, {p[[i]1], K}1:, {i, 1, 20}7;
c=0; d=1;
Dok =yl /. {x->p[[i]], a».1, b->10., g=-2};
AppendTo[dat 1, {c, d, p[[i 11, k}1; AppendTo[curve2, {p[[i 11, k}1;, {i, 1, 20}]
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In[186]: =

pl = Li st Pl ot [curvel]

Qut[186] =
60

50

40+

30

In[187]: =
p2
Qut[187] =
50

40

30

20

Li st Pl ot [curve2]
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In[188]: =
Show[pl, p2]

Qut[188] =
60

50

40+ .

30r ° °

Inf189]: =
ClearAll [c, d, x]

Inf190]: =
i ndepvars = {c, d, x}

Qut [ 190] =
{c, d, x}

In[191]: =
r = NLRegr essi on[dat 1, y1, indepvars,
{3, {3}, {{a, 0, 1}, {b, O, 20}, {g, 1, 33}, .0000001] // Ti m ng

Sensitivity plot variable a

20
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B
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20000
15000
10000
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Qut[191] =
{11.781, {DegreesCf Freedom- 37, Total SS- 7216. 42,
ParaneterEstimate > {a 0.1, b>10., g - 2.}, Residual SS- 6. 34686 x10 25,
RSquare -» 1., Confidencelnterval s » {a—-Interval [{0.0999917, 0.100008}],
b-lInterval [{9.999, 10.001}], g Interval [{1.99997, 2.00003}]}}}

Inf192]:

rr=r[[2]]

Qut[192] =
{DegreesOf Freedom- 37, Total SS- 7216. 42,
ParaneterEstimate > {a 0.1, b>10., g- 2.}, Residual SS- 6. 34686 x102°,
RSquare - 1., Confidencelntervals - {a - Interval [{0.0999917, 0.100008}],
b - Interval [{9.999, 10.001}], g - Interval [{1.99997, 2.00003}]}}

Inf193]: =
rer =rr [[3]]
Qut[193] =
ParameterEstimate > {a->0.1, b->10., g~ 2.}
In[194]: =
pars =rrr [[2]]
Qut[194] =
{a-0.1, b->10., g->2.}
In[195]: =
yl

Qut[195] =
d(b+ax9) +c (2b+ax9)
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In[196]: =
pars2 =Join[pars, {c »1, d-0}]

Qut [ 196]
{a-0.1, b-10., g~>2., c~>1, d->0}

Inf197]: =
p3 =Plot [yl /. pars2, {x, 1, 20}]

Qut[197] =
60

50

40

30

e

10 15 20

Inf198]: =
pars3 =Join[pars, {c -0, d-1}]

Qut[198] =
{a-0.1, b-»10., g-»2., ¢c->0, d->1}
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In[199]: =
p4 =Pl ot [yl /. pars3, {x, 1, 20}]

Qut[199] =
50

40
30

20

/Z...............

10 15 20

I nf 200] : =
Show[pl, p2, p3, p4]

Qut [ 200] =
60

50

40

30

5 10 15 20

We see that we have simultaneoudly fit both curves. Problems with multiple independent variables can be fit even if
they can not be graphed in the manner above.

VI MAXIMUM LIKELIHOOD ESTIMATION: THE
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MaxLikelihood FUNCTION

VI.1 Introduction

In this section, the MaxLi kel i hood function is described. This function is an estimation procedure which attempts to
maximize the log-likelihood of a function with respect to a data set. It is a useful alternative to nonlinear regression (the
NLRegression function). The statistics used are based on Crooke et al. (1999). The function uses Global Search as the
minimizing function, which is needed because some functions require constraints to be solved properly. It thus accepts all
Global Search options, except CompileOption and SimplifyOption. Thisis because Compile does not work well with Log[],
and because a sum of Log terms will generally not simplify. It is assumed that the function to be solved is algebraic, and
black box functions are not allowed. Weighting is not yet implemented. Special functions are pre-programmed for effi-
ciency and ease of use. The pre-programmed functions can be ascertained as follows:

Inf419]: =
?Li kel i hoodMvbdel s

Predefi ned nodel s for MaxLi kel i hood
function: Nor nal Model , Poi ssonMbdel , Bet aMbdel , GammaMbdel , LogNor nal Model .

The syntax for the function is as follows:

MaxL ikelihood[data,expr ession,independent_variables,constraints,{{var lname,lowbound,
highbound}..},tolerance,options]

(29)
VI.2 Examples and Built-In Functions

We first illustrate use of the MaxLi kel i hood function for determining the mean ¢ and standard deviation o from a
random sampl e that has been generated by the Normal distribution:

(er)?

e 202

oV2n '

foG u, o) = xeR.

This probability distribution density is defined as Nor mal Di stri buti on.

For demonstration purposes, we draw a set of pseudo random numbers from the Normal distribution with 4 = 10 and o~ = 1.

In[201] : =
T = 100;
exact = {u ->10, o->1};
dat a = Tabl e[Random[Nor mal Di stribution[u, o] /. exact], {T}];

Next, we define the probability density that we would like to fit as a pure function.

In[204]: =
Clear [f];
f = PDF[Normal Di stribution[u, o], #] &
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In[206] : =
g="f[x]
Qut [ 206] =
w2

e 202

N2 o

Inf207]:=
m e = MaxLi kel i hood[data, g, {x}, {},
{{u, 8, 12}, {o, .8, 1.5}}, .000001, Conpil eOption- True] // Tim ng

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 24; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 24; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 24; proceeding with unconpiled eval uation. >

General ::stop: Further output of

Conpi | edFunction::cfn will be suppressed during this cal cul ation.

Nunmber of OCbservations: 100
Log(L): -144.247

|Par aneter Standard Error z-statistic
v [10. 05 0. 1075 93. 49
ol|1l.024 0. 06432 15. 92

Qut[207] =

>>

{0. 687, {ParameterEstimte - {u -~ 10.0456, o> 1.02381}, LogLi kel i hood - -144. 247,

vcov - {{0.0115462, -0.00209818}, {-0.00209818, 0.00413659}}}}

We see that we have recovered the true parameters pretty well. A large sample size would be needed for a better estimate.

We can compare the results using the built-in function NormalModel:
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I'n[208] : =
m e = MaxLi kel i hood[dat a, Nor mal Model, {x}, {},
{{u, 8, 12}, {o, .8, 1.5}}, .000001, Conpil eOption- True] // Tim ng

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 17; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunerical error encountered
at instruction 17; proceeding with unconpil ed eval uation. >

Conpi | edFunction::cfn: Nunmerical error encountered
at instruction 17; proceeding with unconpil ed eval uation. >

CGeneral ::stop: Further output of
Conpi | edFunction::cfn will be suppressed during this calculation. >

Nunmber of Observations: 100
Log (L): -144.247

|Par aneter Standard Error z-statistic
v [10. 05 0. 1075 93. 49
o |1.024 0. 06432 15. 92

Qut [ 208] =
{0.078, {ParaneterEstimte - {u— 10.0456, o 1.02381}, LogLi kel i hood - -144. 247,
vcov - {{0.0115462, -0.00209818}, {-0.00209818, 0.00413659}1}}

We see that the exact same result is obtained, but the run is about 4 times faster. Note that the order of the parameters, but
not their names, is assumed to match the { mean,variance} parameters of the normal model. In this example, since the data
is a sample from the distribution, we do not get back exactly the parameters we used to generate the data unless we draw a
very large sample data set.

I nf209]: =
T = 200;
exact = {u ->10, o->1};
dat a = Tabl e[Random[Nor mal Di stri bution[y, o] /. exact], {T}1;

Inf212]: =
me =
MaxLi kel i hood[dat a, Nor mal Model , {x}, {3}, {{w 8, 12}, {o, .8, 1.5}3}, .000001] // Tim ng

Nunmber of Observations: 200
Log(L): -296.231

|Par aneter Standard Error z-statistic
v [10. 03 0. 0759 132.1
o|1.064 0. 06104 17. 43

aut[212] =
{0.078, {ParaneterEstimte » {u— 10.0277, o 1.06419}, LogLi kel i hood - -296. 231,
vcov - {{0. 00576139, -0.000606893}, {-0.000606893, 0.00372613}}}}

We see above that a larger sample size gave a much better estimate of the parameters. Note also that the execution time is
nearly unaffected by the size of the data set for the built in model, although time required goes up linearly with data set size
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for the standard function.

Next we consider the estimation of the mean A for a sample data drawn from the Poisson distribution:

f(x;A) = e;_‘m x=0,1,2, ...

We use the same approach to illustrate the method, generating a sample with a known mean and then estimating the mean
from the sample. We draw sample data from a distribution with A = 10.

Inf213]: =
Cear [f];
T = 100;
exact = ->10;
dat a = Tabl e[Random[Poi ssonDi stri bution[a] /. exact], {T}1;
f = PDF[Poi ssonDi stribution[a], #] &

Inf218]: =
g ="f[x]

Qut[218] =
et X

X!

Inf220] : =
m e = MaxLi kel i hood[dat a, Poi ssonModel, {x}, {}, {{A, 6, 9}}, .000001] // Tim ng

Nunber of Cbservations: 100
Log(L): -267.396

|Paraneter Standard Error z-statistic
Py |9. 56 0. 2727 35.05

Qut[220] =
{0. 031, {ParaneterEstimte ~ {1~ 9.56}, LogLi kel ihood - -267.396, vcov - {{0.074386}}}}

Once again, the preprogrammed model isfaster. Next we evaluate the Beta function.

Our next example isthe Beta Distribution

. [(a+B) (1-x)% 1 xP-1
f(x «, B =—Ferg —0=x=1

where a, 8> —1 are parameters and I denotes the gamma function. As above, we draw sample data from the specified
distribution.
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In[235]: =
Cd ear [f];
T = 200;
exact = {a ->2, B ->5};
dat a = Tabl e[Random[Bet aDi stri bution[a, B] /. exact], {T}1;
f = PDF[BetaDi stribution[a, B], #] &

I n[ 240] :
g="fI[x]
aut [ 240]
(1-x) 1B x-1w

Betala, A]

In this case, we must add constraints or the function goes to negative infinity during the solution.

Inf241]: =
m e = MaxLi kel i hood[data, g, {x}, {-a+1, -B}, {{a, 1, 5}, {B, 3, 8}}, .000001] // Tim ng

Nurmber of GCbservations: 200

Log(L): 91.717

|Par aneter Standard Error z-statistic
o [2.107 0. 1899 11. 09
B |4.878 0. 4828 10.1

Qut[241] =
{1. 313, {ParaneterEstimte » {a— 2.10727, 3 4.87844},
LogLi kel i hood - 91. 717, vcov - {{0.0360752, 0.0768617}, {0.0768617, 0.233123}}}}

Inf242]: =
m e = MaxLi kel i hood[dat a, Bet aMbdel,
{x}, {~a+1, -B+1}, {{a, 1, 5}, {B, 3, 8}}, .000001] // Tim ng

Nurmber of GCbservations: 200

Log(L): 91.717

|Par aneter Standard Error z-statistic
o [2.107 0. 1899 11. 09
B |4.878 0. 4828 10.1

Qut[242] =
{0.125, {ParaneterEstimte » {a—2.10727, 3 4.87844},
LogLi kel i hood - 91. 717, vcov - {{0.0360752, 0.0768617}, {0.0768617, 0.233123}}}}

Next we illustrate the Gamma distribution. Note that the order of parameters is assumed to match that in the Gamma built
in function.
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In[243]: =
Cd ear [f];
T = 100;
exact = {a-»1, A-»1};
dat a = Tabl e[Random[GammaDi stri buti on[a, A] /. exact], {T}1;
f = PDF[GanmaDi stribution[a, A], #] &

In[248]: =
g="fI[x]
Qut [ 248] =
e s x-lwa y-a
Gamma o]
Note that we must constrain the parameters to be positive to prevent the function running away to -Infinity. In addition,

lambda must be constrained away from 0 to prevent underflow during computations, even though the final answer is not
near zero.

In[249] : =
m e = MaxLi kel i hood[data, g, {x},
{-a+.0001, a-5, -A+.0001, A-8}, {{a, .2, 5}, {A, 3, 8}}, .000001] // Ti mi ng

Nunmber of Observations: 100
Log(L): -103.626

|Par aneter Standard Error z-statistic
o |0.8749 0. 09857 8.876
A[1.192 0. 1975 6. 036

Qut [ 249] =
{0. 672, {ParaneterEstimte > {a—>0.87492, A - 1.19244}, LogLi kel i hood - -103. 626,
vcov - {{0.00971663, -0.014305}, {-0.014305, 0.0390238}11}

I nf250] : =
m e = MaxLi kel i hood[dat a, GammaModel , {x},
{-a+.0001, a-5, -A+.0001, A-8}, {{a, .2, 5}, {A, 3, 8}}, .000001] // Ti mi ng

Nunmber of OCbservations: 100
Log(L): -103.626

|Par aneter Standard Error z-statistic
o |0.8749 0. 09857 8.876
A[1.192 0. 1975 6. 036

aut [ 250] =
{0. 063, {ParaneterEstimte - {a—>0.87492, A - 1.19244}, LoglLi kel i hood - -103. 626,
vcov - {{0.00971663, -0.014305}, {-0.014305, 0.0390238}11}

In this case we get a huge speedup (10 times faster). Next, we test the LogNormal predefined model.
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In[251]: =
Cd ear [f];
T = 100;
exact = {u ->20, o->5};
dat a = Tabl e[Random[LogNor nal Di stri bution[y, o] /. exact], {T}1;
f = PDF[LogNormal Di stribution[y, o], #] &

I n[256] : =
g="fI[x]
Qut [ 256] =

_ (-urLog(x])?
e 202

V2 X o

Inf257]: =
m e = MaxLi kel i hood[data, g, {x}, {}, {{u 8, 12}, {o, .8, 10}}, .000001] // Ti m ng

Nunber of Cbservations: 100
Log(L): -2296. 65

|Par aneter Standard Error z-statistic
v [19.92 0.5117 38.93
o |5.086 0. 371 13.71

Qut[257] =
{0.579, {ParaneterEstimte - {¢—19.9211, o - 5.08585},
LogLi kel i hood - -2296. 65, vcov - {{0. 261864, -0.0210043}, {-0.0210043, 0.137646}}}}

Inf258]: =
m e = MaxLi kel i hood[dat a, LogNor nal Model ,
{x}, {3}, {{w, 8, 12}, {o, .8, 10}}, .000001] // Tim ng

Nunmber of Cbservations: 100
Log(L): -2296. 65

|Par aneter Standard Error z-statistic
v [19.92 0.5117 38.93
o |5.086 0. 371 13.71

Qut[ 258] =
{0.047, {ParaneterEstimte » {¢—19.9211, o - 5.08585},
LoglLi kel i hood — -2296. 65, vcov - {{0.261864, -0.0210043}, {-0.0210043, 0.137646}}}}
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VIl DISCRETE VARIABLE PROBLEMS: THE
InterchangeMethodMin & TabuSearchMin FUNCTIONS

V.1l Introduction

InterchangeM ethodMin and TabuSearchMin are functions which maximize a linear or nonlinear function of integer 0-1
variables either with or without constraints. This type of problem comes up often in operations research (e.g., network,
scheduling, and allocation applications). Integer 0-1 problems are not generally solvable with an analytic approach such as
Linear Programming. The method used here is the Interchange method (Densham and Rushton, 1992; Goldberg and Paz,
1991; Lin and Kernighan, 1973; Teitz and Bart, 1968), which is similar to the author's SWAP agorithm (Loehle, 2000). It
has been shown that the Interchange method is guaranteed to get close to the optimum solution, but for complex problems
may not find the exact solution.  On the other hand, it is much faster than Simulated Annealing (Murray and Church,
1995). The Interchange algorithm begins with a feasible start generated randomly. It then makes changes in the configura-
tion at each iteration until no more progress is possible. Note that while it is possible to input this type of problem into
MultiStartMin because it accepts discrete variables, MultiStartMin assumes that only a few discrete variables are involved,
and may generate a large set of possible moves and run slowly for large problems. TabuSearchMin operates with a basic
Interchange framework, but then adds a tabu list feature. The tabu list is the list of n previous moves that will not be
revisited in looking for the next good move. This feature adds efficiency because bad moves are not checked repeatedly.

The functions are defined by

I nterchangeM ethodM in[expr ,ineqs,{varlist}tolerance,options] (30

TabuSearchMin[expr ,inegs,{varlist},tolerance,options] (3D

where expr is the function to be minimized, which need not be linear, and inegs is the inequalities, which are optional and
are in standard form. There are three options for the program. Starts defines the number of random starting points to test
(default 5). Input starting points can be input with the StartsList option. CompileOption can be set to False if the function
is not compilable. ShowProgress shows intermediate stages of the computation. Program operation is shown next in the
following examples of applications. Note that the range of applicationsis not exhausted by these examples.

VII.2 Applications

VII.2.A Capital Allocation

In many investment problems, the goal is to allocate a fixed amount of money across a series of investments. When the
items to be allocated are discrete, and must be allocated to one or another use in their entirety, then the problem must be
solved with integer programming. In the following example, the variables {x1,x2,x3,x4} are 0-1. There are severa
constraints. The objective function is given by

Max (z) =.2x1+.3x2+.5x3+.1x4 (32)

This problem may be solved as follows. We minimize the negative of z to maximize, and enter all the constraints, which
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are less than inequalities:

Inf259]: =
ClearAll [x1, x2, x3, x4]
I nf 260] : =
I nt erchangeMet hodM n[- (. 2x1 +.3x2+.5x3 +.1x4),

{.5X1+x2+1.5x3+.1x4-3.1, .3x1+.8x2+1.5x3+.4x4-2.5,
L 2X1+.2%X2+.3x3+.1x4-.4}, {x1, x2, x3, x4}, .001, Starts-4] // Tinmng
Qut [ 260] =

{0.187, {{{x1-0, x2-0, x3->1, x4-1}, -0.6}, {{x21-0, x2-0, x3->1, x4->1}, -0.6},
{{x1-0, x2-0, x3->1, x4-1}, -0.6},

{{x1 -0, x2-0, x3-1, x4->1}, -0.6}}}

Seven random starts were used, but only 2 unique starts were used due to duplications. Two starts found the correct answer
{0,0,1,1}. On larger problems, performance might not be quite this good. TabuSearch also can solve this problem cor-
rectly:

In[261]: =

TabuSearchM n[- (. 2x1+.3x2+.5x3+.1x4), {.5x1+x2+1.5x3+.1x4-3.1,
. 3X1+.8x2+1.5x3+.4x4-2.5, .2x1+.2Xx2+.3x3+.1x4-.4},

{x1, x2, x3, x4}, .001, Starts -4, TabulListLength-»1] // Tim ng
Qut[261] =

(0.047, {{{x1 50, x250, x3-1, x4 51}, -0.6},

{{x1-0, x2-0, x3-1, x4->1}, -0.6},
{{x1-0, x2-0, x3-1, x4->1}, -0.6}, {{x1-0, x2-0, x3->1, x4->1}, -0.6}}}

Note that Tabu Search may perform worse than Interchange on small problems. Note also that a small tabu list size is
needed for this problem. If we specify atabu list too long, a warning results:

Inf262]: =

TabuSearchM n[- (. 2x1 +.3X2+.5%x3+.1x4), {.5Xx1+x2+1.5x3+.1x4-3.1,
. 3X1+.8x2+1.5x3+.4x4-2.5, .2x1+.2x2+.3x3+.1x4-.4},
{x1, x2, x3, x4}, .001, Starts -4, TabuLi stLength - 100] // Ti mi ng
War ni ng: Tabuli stLength too | ong, will cause gridlock

TabuLi st Length shortened to 2

Qut[262] =

{0.062, {{{x1-0, x2-0, x3->1, x4-1}, -0.6},

{{x1-0, x2-0, x3->1, x4-1}, -0.6},
{{x1-1, x2-1, x3-0, x4-0}, -0.5},

{{x1-0, x2-0, x3-1, x4->1}, -0.6}}}
VII1.2.B Vehicle Routing/Travelling Salesman

A very common problem in operations research is vehicle routing. This problem arises in delivery service, airline, and
other transportation contexts. To illustrate, define a set of 8 cities with coordinates:

c={{1,1},{2,0.1} {3,0.1} {4,1}.{1,2} {2,2} {3,2} {4,2}} (33)
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Where the objective is to minimize the sum of the links between cities. We define the objective function as the sum of the
distance* existence of the link over al possible links between cities. Self-loops (e.g., x11) are removed from the lists.
Constraints are added that force every city to have at least 2 links (for entry and exit). Finaly, the sum of all edges must be
at least 8. We realy want exactly 8 links, but the algorithm does not accept equality constraints. The minimization of the
sum of link distances will force the solution to exactly 8. Links are defined between cities such that there are no repeated
links (e.g., x13 but no x31) to make it faster.

In[263]: =
lis={x12, x13, x23, x14, x24, x34, x15, x25, x35, x45, x16, x26, x36,
x46, x56, x17, x27, x37, x47, x57, x67, x18, x28, x38, x48, x58, x68, x78}
Qut [ 263] =

{x12, x13, x23, x14, x24, x34, x15, x25, x35, x45, x16, x26, x36,
x46, x56, x17, x27, x37, x47, x57, x67, x18, x28, x38, x48, x58, x68, x78}

Inf264]: =
I nt er changeMet hodM n[

2 (1. 3453624047073711° x12 +2.193171219946131" x13 + 3 x14 +x15+ V2 x16+ V5 x17 +

V10 x18 + 1. x23 +2.193171219946131" x24 +2. 1470910553583886° x25 +1. 9" x26 +
2.1470910553583886° x27 + 2. 758622844826744" x28 + 1. 3453624047073711" x34 +
2.758622844826744° x35 +2.1470910553583886"° x36 +1. 9" x37 + 2. 1470910553583886"

x38 + V10 x45+ V5 x46+V2 X47+x48+X56+2X57+3x58+x67+2x68+X78) +

AbS [X12 + X13 + X14 + X15 + X16 + X17 + X18 - 2] + AbS[X12 + X23 + X24 + X25 + X26 + X27 + Xx28 - 2] +
Abs [X13 + x23 + X34 + X35 + Xx36 + x37 +x38 - 2] +
Abs [X14 + X24 + X34 + X45 + X46 + X47 + x48 - 2] +
Abs [X15 + x25 + X35 + x45 + x56 + x57 + x58 - 2] +
AbsS [X16 + X26 + X36 + X46 + X56 + X67 + X68 - 2] +
AbS [X17 + X27 + X37 + X47 + X57 + X67 +X78 - 2] +
Abs [x18 + x28 + x38 + x48 + x58 + x68 + x78 - 2],
{- (X212 + X13 + X14 + X15 + X16 + X17 + X18 + X23 + X24 + X25 + X26 + X27 + X28 + X34 + X35 +
X36 + X37 + X38 + X45 + X46 + X47 + X48 + X56 + X57 + x58 + X67 + X68 + x78) + 8},

lis, .01, Starts -5, Conpil eOption - True, ShowProgress - Fal se] // Timng

Qut [ 264] =

{5. 016,

{{{x12 51, x13-50, x23 -1, x14 50, x24 -0, x34 -1, x15-1, x25-50, x35-0, x45 -0,
x16 - 0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 -0, x57 >0,
x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 -1}, 17.3814},

{{x12 -1, x13-0, x23>1, x14 -0, x24-0, x34->1, x15-1, x25- 0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 >0, x47 >0,
x57 -0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 1}, 17.3814},

{{x12 -1, x13-50, x23->1, x14 -0, x24 -0, x34->1, x15-1, x25-0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 >0,
x57 -0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 -1}, 17.3814},

{{x12 -1, x13 50, x23 -1, x14 -0, x24 -0, x34 -1, x15-51, x25-0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 =0,
x57 -0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 -1}, 17.3814},

{{x12 -1, x13-50, x23 -1, x14 -0, x24 -0, x34 51, x15-51, x25-0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 - 0,
x57 - 0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 >0, x78 -1}, 17.3814}}}
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We see that the function found the solution in 4 out of 5 starts, which is aloop around the pointsin arough circle. Even the
starts that failed got quite close to the best solution and had the proper number of links defined. The timing is quite good.
The problem of subgraphs that are not linked to form a complete vehicle route can occur in this problem but is unlikely
unless the subgraphs produce exactly the same total travel distance as the linked route.

Inf265]: =
TabuSear chM n [

. X + 2. X + 9o X + X + X + X +
2 [1.3453624047073711" x12 +2.193171219946131" x13 + 3 x14 +x15+ V2 x16 + V5 x17

V10 x18 + 1. x23 +2.193171219946131" x24 + 2. 1470910553583886" x25 + 1. 9" x26 +
2.1470910553583886" x27 + 2. 758622844826744" x28 + 1. 3453624047073711" x34 +
2.758622844826744° x35 +2.1470910553583886" x36 +1. 9™ x37 + 2. 1470910553583886°

x38 + V10 x45+ V5 x46 +V2 X47+X48+X56+2X57+3X58+X67+2X68+X78)+

AbsS [X12 + X13 + x14 + X15 + X16 + X17 + x18 = 2] + AbS [X12 + X23 + X24 + X25 + X26 + X27 + x28 - 2] +
Abs [X13 + x23 + x34 + X35 + x36 + x37 + x38 - 2] +
Abs [X14 + X24 + X34 + X45 + X46 + X47 + x48 - 2] +
Abs [X15 + X25 + X35 + x45 + X56 + x57 + x58 - 2] +
Abs [X16 + X26 + X36 + X46 + X56 + X67 + xX68 - 2] +
Abs [X17 + X27 + X37 + X47 + X57 + X67 +X78 - 2] +
Abs [Xx18 + x28 + x38 + x48 + x58 + x68 + x78 - 2],
{-(X12 + X133 + X14 + X15 + X16 + X17 + X18 + X23 + X24 + X25 + X26 + X27 + x28 + x34 + x35 +
X36 + X37 + X38 + X45 + X46 + X47 + x48 + X56 + X57 + x58 + X67 + X68 + x78) + 8},

lis, .01, Starts -5, TabulLi st Length->60] // Timng

Qut [ 265] =
{0. 859,
{{{x12 -1, x13-50, x23 -1, x14 50, x24 -0, x34 >1, x15-1, x25-0, x35-0, x45 -0,

x16 - 0, x26 -0, x36 -0, x46 -0, x56 -0, x17 -0, x27 -0, x37 -0, x47 -0, x57 -1,
x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 -1}, 21.3814},

{{x12 -0, x13 50, x23 >1, x14-50, x24 -1, x34-0, x15-1, x25-0, x35->0,
x45 - 0, x16 -1, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 > 1,
x57 - 0, x67 -0, x18 -0, x28 -0, x38 -1, x48 -0, x58 -0, x68 -0, x78 -1}, 22.3374},

{{x12 -1, x13 50, x23 51, x14 50, x24 50, x34-50, x15-1, x25-0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 > 1,
x57 - 0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 >0, x78 >1}, 19.5192},

{{x12 -0, x13-0, x23->1, x14 -0, x24-0, x34->1, x15-1, x25-0, x35-0,
x45 - 0, x16 -1, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 >0, x47 >0,
x57 -0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 >1}, 19.5192},

{{x12 -1, x13-50, x23->1, x14 -0, x24 -0, x34->1, x15-1, x25-0, x35-0,
x45 - 0, x16 -0, x26 -0, x36 -0, x46 -0, x56 -1, x17 -0, x27 -0, x37 -0, x47 =0,
x57 - 0, x67 -1, x18 -0, x28 -0, x38 -0, x48 -1, x58 -0, x68 -0, x78 -1}, 17.3814}}}

We see that the TabuSearchMin function found the solution in 1 out of 5 starts, which is aloop around the pointsin a rough
circle, but in 1/3 the time of the InterchangeMethod. Even the starts that failed got quite close to the best solution and had
the proper number of links defined. The timing is quite good. The problem of subgraphs that are not linked to form a
complete vehicle route can occur in this problem but is unlikely unless the subgraphs produce exactly the same total travel
distance as the linked route.




89

VII.2.C Minimum Spanning Tree

The construction of a minimum spanning tree is a problem that comes up in problems of delivery from fixed warehouses,
utility network design, and other applications. We begin with the weighted graph, with nodes (a,b,c,d,ef), and with edges
and weights defined by:

{xab,xac,xae,xbc,xbd,xcd,xce,xcf xdf ,xef} (34

{7, 2, 2, 1, 3, 3, 4, 4, 5, 6} (35)

This can be solved with the interchange method. The objective function is to minimize the sum of the weighted edges.
This produces the minimum tree we desire. We know that we want 5 edges as the final solution (#nodes -1), so we add an
inequality that the sum of the edges must be greater than 5. This allows more than 5 initially, but then edges are trimmed as

the algorithm proceeds. If an equality constraint is put in, the program will fail. Additional constraints force every node to
have at |east one edge touching it.

I nf 266] : =
I nt erchangeMet hodM n[7 xab + 2 xac + 2 xae + 1 xbc + 3 xbd + 3 xcd + 4 xce + 4 xcf +5 xdf +6 xef,
{- (xab + xac + xae + xbc + xbd + xcd + xce + xcf +xdf +xef) +5,
- (xab + xac + xae) +1, - (xab +xbc +xbd) +1, - (xac +xbc +xcd +xce +xcf) +1,
- (Xbd + xcd + xdf ) +1, - (xae +xce +xef) +1, - (xcf +xdf +xef) +1},
{xab, xac, xae, xbc, xbd, xcd, xce, xcf, xdf, xef}, .1,
Starts » 1, ConpileOption-True] // Ti m ng

Qut [ 266] =
{0. 156, {{{xab -0, xac -1, xae -1,
xbc -1, xbd -0, xcd -1, xce -0, xcf -1, xdf -0, xef -0}, 12.1}}

We see that the function returns the correct solution {ac,ae,bc,bd,cf} with a very fast execution time. This reflects the fast
computational time for binary variables. Large problems can thus be solved.

Inf267]: =
TabuSearchM n[7 xab + 2 xac + 2 xae + 1 xbc + 3 xbd + 3 xcd + 4 xce + 4 xcf +5xdf + 6 xef,
{- (xab + xac + xae + xbc + xbd + xcd + xce + xcf +xdf +xef) +5,
- (xab + xac + xae) +1, - (xab +xbc +xbd) +1, - (xac +xbc +xcd +xce +xcf) +1,
- (Xbd + xcd + xdf ) +1, - (xae +xce +xef) +1, - (xcf +xdf +xef) +1},
{xab, xac, xae, xbc, xbd, xcd, xce, xcf, xdf, xef}, .1, Starts »1,
TabulLi st Lengt h -» 10, Conpil eOQpti on - True] // Tim ng

Qut[267] =
{0.031, {{{xab -0, xac -1, xae - 1,
xbc - 1, xbd -0, xcd -1, xce -0, xcf -1, xdf -0, xef -0}, 12.1}}

We see that the function returns the correct solution {ac,ae,bc,bd,cf} with a very fast execution time. For such smaller
problems, the Tabu Search approach does not provide superior speed.
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VIl THE MaxAllocation FUNCTION

VIII.1 Introduction

MaxAllocation is afunction to maximize a nonlinear function subject to alinear constraint.

n
Max (f (xi))s.t .0 <Xx; <rhs, in =rhs (36)
o1

This type of problem comes up often in finance, economics, and investment. Traditional algorithms have a great deal of
trouble with such a problem, though apparently simple. A new algorithm enables a very efficient solution of this type of
problem. The algorithm is based on the idea of path following. If one can stay on the constraint line, then the solution stays
feasible at all times. An approach to path following is based on the SWAP algorithm (Loehle, 2001). We first discretize the
interval of the rhs. This discretization is made proportional to the number of variables, N, for convenience. The initial 2N
pieces are placed onto al the variables equally (each variable is given a value 2*rhg/N). At iteration 1, each variable is
tested to see if swapping a single piece from that variable would improve the solution. This performs a rectangular movein
N space. After no more pieces can be moved from variable 1 (either all have been moved or no improvement is obtained),
testing proceeds to variable 2 to see if any pieces can be moved, and so on. Note that some of the pieces moved from 1 to 2
might be redistributed at this point. After the algorithm has tested all the variables in order for the possibility of making a
swap, the number of pieces on each variable is doubled (with half the length) for the next iteration. This enables a finer
resolution of the function.

The function is defined by

MaxAl | ocation[function, varlist, rhs, tol erance, options] (37)

where rhsis the right hand side value (from egn (1)) and tolerance defines the stopping criterion. There are three options
for the program. Maxlterations will stop the program at the specified number of iterations if desired. CompileOption is
useful if the function is not compilable. ShowProgress shows intermediate stages of the computation.

Operation of the function is shown in the following example. This example is a sum of diminishing return terms.
This is a function with no nonlinear interaction terms. It can be shown that the algorithm converges to the analytic opti-
mum in this case.

I nf268]: =
ClearAl [x2]

Inf269] : =
varlist = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,
x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,
x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60};

In[270]: =
VIx_1:=Sum[i % (1.0-E" (-3. *x[[I1]1)), {i, 1, 60}]

Note the technique used here to take advantage of indexed variables. The function v is defined with a tensor as an argu-
ment. Then function vvv is defined to accept alist and turn it into a tensor by passing it down to v. This function can be
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compiled, and isin the following example.

In[271]: =
vvv = Function[{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,
x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,
Xx46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60},
v[{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16,
x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31,
X32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45, x46,
x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60}]11;

Inf272]:=
t =Table[1, {i, 1, 60}]

Qut[272] =
(2111 1112121212111121212121111311,12,12,111,1,1,1,1,1, 1,
1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 1, 1}

Inf273]: =
VI[t]

Qut[273] =
1738. 89

In[274] : =
Appl y [vvv, t]

Qut[274] =
1738. 89

In[275]: =
MaxAl | ocation[vvv[x1l, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,
x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,
x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x607,
varlist, 1.0, .1, ConpileOption - True, ShowProgress -» Fal se] // Tini ng
Qut[275] =
{1.547, {{x1-0, x2-0, x3-0, x40, x5-0, x6 -0, x7-0, x8-0, xX9-0, x10-0, x11 -0,
x12 -0, x13 -0, x14 -0, x15-+0, x16 -0, x17 -0, x18 -0, x19 -0, x20 -0, x21 -0,
x22 -0, x23 -0, x24 -0, x25 -0, x26 -0, x27 -0, x28 -0, x29 -0, x30-0,
x31 -0, x32-50, x33-50, x34-50, x35-0, x36 -0, x37 -0, x38-0, x39-0,
x40 - 0, x41 -0, x42 -0, x43 -0, x44 - 0. 00416667, x45 - 0. 0125, x46 - 0. 01875,
x47 - 0. 0270833, x48 - 0. 0333333, x49 - 0. 0395833, x50 - 0. 0479167, x51 - 0. 0541667,
x52 - 0. 0604167, x53 - 0. 0666667, x54 — 0. 0729167, x55 - 0. 0791667, x56 — 0. 0854167,
x57 - 0. 0916667, x58 - 0. 0958333, x59 - 0.102083, x60 - 0. 108333}, 146.317}}

Next, we can compare the value of compiling the function in terms of timing.
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In[276] : =
MaxAl | ocation[vvv[x1l, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,
x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,
x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x607,
varlist, 1.0, .1, ConpileOption->False] // Timng

Qut[276] =
{5.109, {{x1-0, x2-0, x3-0, x4-0, x5-0, x6 -0, x7-0, x8 -0, x9-0, x10-0, x11 -0,
x12 -0, x13 -0, x14 -0, x15-0, x16 -0, x17 -0, x18 -0, x19 -0, x20 -0, x21 -0,
x22 -0, x23 -0, x24 -0, x25 -0, x26 -0, x27 -0, x28 -0, x29 -0, x30 -0,
x31 -0, x32 -0, x33-+0, x34-50, x35-0, x36 >0, x37 -0, x38 -0, x39-0,
x40 - 0, x41 -0, x42 -0, x43 -0, x44 - 0.00416667, x45 - 0. 0125, x46 - 0. 01875,
x47 - 0. 0270833, x48 —» 0. 0333333, x49 - 0. 0395833, x50 - 0. 0479167, x51 - 0. 0541667,
x52 - 0. 0604167, x53 - 0. 0666667, x54 - 0.0729167, x55 - 0. 0791667, x56 — 0. 0854167,
x57 - 0. 0916667, x58 — 0. 0958333, x59 —» 0. 102083, x60 — 0. 108333}, 146.317}}

We can see that the compiled version runs 5 times faster.

It would be useful to have a proof that this algorithm works. At this time, no proof is available. The algorithm has been
tested on a suite of problems with known solutions, and gives good results. The algorithm has been designed to guard
against infinite loops. It is possible that a problem could be devised with local minima that would prevent a global opti-
mum from being reached, but no such problem has yet been encountered. The initial equitable distribution of pieces across
the variables guards against interaction (e.g., x1*x2) type terms which can not be improved by rectangular movesiif they are
initialized to zero.

The above problem with 250 variables took 10 minutes to run on a Pentium 111 600 MHz machine. Because the

execution time goes up nonlinearly with the number of variables, it is likely that the upper limit for an overnight run is
350-1000 variables, depending on the machine used.

VIIl.2 Applications

VIII.2.A Investment Allocation Problems

In many investment problems, the goal is to allocate a fixed amount of money across a series of investments. We
need not invest in all the options available. A typical problem to solve is the following, (from A.K. Dixit, Optimization in
Economic Theory): A capital sum C is available for allocation among n investment projects. The expected return from a
portfolio of x; projectsis

Yo [ej x; - 058 x| (39)

subject to:

Z:c (39)

i1

This problem may be solved as follows:
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Inf277]: =
a = {1000, 2000, 3000};

Inf278]: =
rhs = 10. 0;

In[279]: =
b = {100, 500, 1000. };

In[280] : =
hix 1:=Sumfa[[i ]]1*X[[ 11 -.5*b[[i1]1*x[[i11"2, {i, 1, 3}1;

Inf281]:=
fff =Function[{al, a2, a3}, h[{al, a2, a3}1];

Inf282]: =
MaxAl | ocation[fff [al, a2, a3], {al, a2, a3}, rhs, .1, ShowProgress -» True]

G obal Optimzation, Version 5.2

nunber of vari abl es 3

constraint rhs = 10.
tolerance = 0.1

{{al > 4.66667, a2 »2.83333, a3 > 2.5}, 11612.5}
{{al - 4.58333, a2 - 2.91667, a3 >2.5}, 11614.6}
{{al > 4.625, a2 »2.91667, a3 - 2. 45833}, 11615. 4}

{{al > 4.625, a2 - 2.91667, a3 -» 2. 45833}, 11615. 4}

Qut[282] =
{{al > 4.625, a2 - 2.91667, a3 - 2.45833}, 11615. 4}

Here we find the solution which is an interesting mix of investments. This problem can be extended to 350 to 1000 variable
cases for overnight runs, depending on machine speed.

VIII.2.B Derivative Hedging with Quadratic Programming

A common problem in finance is derivative construction to hedge an investment. One technique for derivative
construction is to construct a target payoff value (T) for the instrument, and then to allocate investment to a series of
instruments with return R to get as close to the payoff value as possible using a quadratic objective function (for 3 instru-
ments here):

2T -2 Ry T (40)

3
DixpsC (41)
j=1
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This can be solved with MaxAllocation. First, for a problem with 3 possible investments, we make a dummy variable
(index 4 here) to take up the slack in the investment (to represent the part of C NOT invested). Also, the equation is
rearranged so that x represents the dollar amount invested in each instrument, so x is divided by the price p in egn. (3).
Then C represents our rhs and the problem is given by:

Inf283]: =
p={1, 1, 1};

Inf284] : =
target payof f = {1000, 2000, 3000};

In[285]: =
payoff = {{1000, O, 0}, {0, 2000, 0}, {0, O, 3000}};

Inf286]: =
fy[x_1:=-Sum[(targetpayoff [[i 1] -Sum[(x[[j11/p[li11)=payoff([li, |11,
{, 1, 3}])"2, ¢, 1, 3}];

Inf287]: =
fff =Function[{al, a2, a3, a4}, fyl[{al, a2, a3}1l;

In[288]: =
MaxAl | ocation[fff[al, a2, a3, a4], {al, a2, a3, a4}, 6., .1]

Qut [ 288] =
{{al - 0.999976, a2 - 0. 999976, a3 —» 0. 999976, a4 - 3. 00007}, -0.00834465}

In this example, we know the exact answer, and the algorithm converged to the exact answer quickly. Such derivative
construction problems can be solved with hundreds of variables.

IX APPLICATIONS

IX.1 Zeros of a Function/Roots of a Polynomial

Although the Mathematica function FindRoot can find the zeros of a function, it can occur that a function is not
analytic, in which case FindRoot will not work. For example, a function might need to be calculated recursively, algorithmi-
caly, or by ssimulation. FindRoot also will only find asingle root at atime from a given starting point. In addition, we may
invoke the need for identifying the indifference zone: we may want al the solutions that are within some indifference

region of the zero or root. It is a simple matter to use either GlobalMinima or MultiStartMin to find roots of a function.
Consider the function

x2 - 25 (42)
where the roots or zeros are obviously +5 and -5. Asformulated, the function looks like




95

Inf289]: =
Plot [xA2-25, {x, -10, 10}]
out [ 289] =
60
40_
20+
_20_

and the minimum is at -25. |f, however, we evaluate the absolute val ue of the function

In[290] : =
Pl ot [Abs[x~2-25], {x, -10, 10}]

Qut [ 290] =

-10 -5 5 10

then we can simply minimize the function as in al the above examples and we will find the roots or zeros of the function,
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which are now the minima. In cases where there is aregion of solutions with values near zero, this procedure will likewise
allow usto define these regions.

In[291]: =
d obal M ni ma[Abs [x*2 -25], , {{x, -10, 10}}, 10, 0.00001, 0.1, 0.0000001] // Tim ng

Qut[291] =
{2.94209x10*°, {{{x > -5}, 0}, {{x->5}, 0}}}

Inf292] : =
Mul ti StartM n[Abs[x”*2-251, {3}, {}, {{x, -10, 10}3}, .0000001, Starts -»4] // Tining

Qut[292] =
{0. 047, {{{X - 5.}, 0.0000489897}, {{x 5.}, 0.0000171186},

[{x >5.}, 0.0000425679}, {{x 5.}, 5.81469x10°}}}

In[293]: =
G obal Search[Abs [x”*2 -25]7, {}, {}, {{x, -10, 10}}, .0000001, Starts -»4] // Tim ng

Qut [ 293] =
{0.063, {{{x—>-5.}, 1.5376x10"}, {{x>5.}, 3.72529x10"},
{{x>5.}, 3.06218x10"}, {{x>5.}, 7.96277x10®}}}

We can see that all three functions find the two solutions but on this small problem GlobalMinima is faster. The other 2
functions also need multiple starts to find both solutions.

IX.2 Integer Programming: the Knapsack Problem

As discussed above, MultiStartMin alows integer variables. Thisimplies that it can solve integer programming problems.
Optimization problems with integer variables are difficult because they violate the assumptions of continuous methods such
as LP or gradient descent. Various methods have been applied to integer programming problems, including heuristic
search. The method used here for integer variables is a generalized descent with discrete step sizes, combined with limited
interchange. This method isillustrated for the knapsack problem. In the knapsack problem, the optimum return on packing
of discrete variables is desired. This could occur when packing a truck, where different packages have different shipping
values. On the other hand, the size of each package may differ, and the total space available is constrained. We next test
such a problem. Because we wish to maximize, we put a negative sign in front of the objective function. To use Global Pen-
atyFn on this problem, it is necessary to multiply 100 times the positivity constraints to prevent it from going negative.
Only the best solutions are shown in the output. The Global PenaltyFn solution can be quite close.
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Inf294] : =
d obal Penal tyFn[- (x1 +2x2 + 4 x3 +15 x4 + 80 x5 + 100 x6), {-100x1, -100x2, -100 x3,
-100 x4, -100x5, -100x6, 1x1+3x2+15x3+29x4+70x5+59x6-300}, ,
{{x1, 0, 5, Integer}, {x2, 0, 5 Integer}, {x3, 0, 5, Integer},
{x4, 0, 5, Integer}, {x5, 0, 5, Integer}, {x6, 0, 5, Integer}},
. 00001, ShowProgress - Fal se, Starts »20] // Ti mi ng

Qut [294] =
{9.766, {{{x1-4, x2-50, x3-0, x40, x5-0, x6 -5}, -504. 1,
{{x1-2, x2-1, x3-0, x4-0, x50, x6 -5}, -504.
{{x1-4, x2-0, x3-0, x4-0, x50, x6 55}, -504.
{{x1-2, x2-1, x3-0, x4-0, x5-0, x6 -5}, -504.
{{x1-2, x2-1, x3-0, x4-0, x50, x6 55}, -504.
{{x1-2, x2-1, x3-0, x4-0, x5-0, x6 -5}, -504.
{{x1-2, x2-1, x3-0, x4-0, x5-0, x6 -5}, -504.

{{x1 -2, x2-1, x3-0, x4-0, x50, x6 -5}, -504.

{{x1 -2, x2-1, x3-0, x4-0, x50, x6 55}, -504.

F S U U U U )

1}

Inf295]: =
MultiStartM n[-(x1+2x2+4x3+15x4 +80x5+100x6),
{-x1, -x2, -x3, -x4, -x5, -x6, 1x1+3x2+15x3+29x4+70x5+59x6-300}, ,
{{x1, 0, 2, Integer}, {x2, 0, 2, Integer}, {x3, 0, 2, Integer},
{x4, 0, 2, Integer}, {x5, 0, 2, Integer}, {x6, 0, 4, Integer}},
. 00001, ShowProgress - Fal se, Starts -»10] // Ti m ng

Qut [ 295] =
{0.766, {{{x1-20, x2->5, x3-0, x4->1, x50, x6 >4}, -445. }}}

We see that the correct solution {{5,0,0,0,0,5},-505.} was not found out of 10 or 20 starts with either method.

approach isto first solve the continuous problem, and then pass the result back to the discrete problem:

I'n[296] : =
res = @ obal Search[- (X1 +2x2 +4 x3 + 15 x4 + 80 x5 + 100 x6),
{-x1, -x2, -x3, -x4, -x5, -x6, 1x1+3x2+15x3+29x4+70x5+59x6-300}, ,
{{x1, 0, 2}, {x2, 0, 2}, {x3, 0, 2}, {x4, 0, 2}, {x5, 0, 2}, {x6, 0, 4}},
. 00001, ShowProgress -» Fal se, Starts - 1] // Tim ng

Qut [ 296] =
{0.547, {{{x1 0., X250, x350, x40, x50, X6 >5.08475}, -508. 475}}}

A better

We next pass this result, after we make it Integer, back to MultiStartMin or Global PenaltyFn, obtaining the correct solution:

Inf297]: =
s = {x1, x2, x3, x4, x5, x6} /. res[[2, 1, 1]]

Qut[297] =
{0., 0, 0, 0, 0, 5.08475}
In[298] : =
s = Round[s]

Qut [ 298] =
{0, 0, 0, 0, 0, 5}
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In[299]: =
MultiStart M n[-(x1+2x2+4x3+15x4 +80x5+100x6),
{-x1, -x2, -x3, -x4, -x5, -x6, 1x1+3x2+15x3+29x4 +70x5+59x6-300}, ,
{{x1, 0, 2, Integer}, {x2, 0, 2, Integer}, {x3, 0, 2, Integer},
{x4, 0, 2, Integer}, {x5, 0, 2, Integer}, {x6, 0, 4, Integer}},
. 00001, ShowProgress - Fal se, StartsList » {s}] // Timng

Qut[299] =
{0.078, {{{x1->5, x2-0, x3-0, x4-0, x50, x6 -5}, -505.}}}

I'n[300] : =
G obal Penal tyFn[- (x1 +2x2 +4 x3 +15 x4 + 80 x5 + 100 x6),
{-x1, -x2, -x3, -x4, -x5, -x6, 1x1+3x2+15x3+29x4 +70x5+59x6-300}, ,
{{x1, 0, 2, Integer}, {x2, 0, 2, Integer}, {x3, 0, 2, Integer},
{x4, 0, 2, Integer}, {x5, 0, 2, Integer}, {x6, 0, 4, Integer}},
. 00001, ShowProgress - Fal se, StartsList » {s}] // Timng

Qut [ 300] =
(0.469, {{{x153, x250, x350, x40, X550, X6 55}, -503.1})}

IX.3 Differential Equation Models

The following example shows how to fit parametersin adifferential equation model.
In[301]: =
sol = NDSol ve[{y' [X] =y [x], Y[0] =1}, vy, {x, 0, 2}]
Qut [ 301] =
{{y = Interpol atingFunction[{{0., 2.1}, <>]}}
In[302] : =
y[1.5] /. sol

Qut[302] =
(4.48169}
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I'n[303]: =
Plot [y[t] /. sol, {t, 0, 2}]

Qut [ 303] =

7

In[304] : =
fn=Function[{a},
so =NDSol ve[{y' [x]=YI[x], y[0]l=2a}, y, {x, O, 2}1; | =y[1.5] /. so; | [[11]]

Qut [ 304] =
Function[{a}, so=NDSolve[{y'[x] =y [X], y[0] =a}, y, {X, 0, 2}]; ] =y[1.5] /. so; j [1]]

I nf 305] : =
fn[l]

Qut [ 305] =
4.48169

I n[ 306] : =
gg[x_1:=Abs[fn[x] -fn[1]]

In[307]: =
d obal Search[gg, {}, . {{x, 0, 2}}, .00001,
Conpi | eQption - Fal se, SinplifyOption- False, Starts-»1] // Tining

Qut[307] =
{1.563, {{{x>1.), 5.47942x10°}}}

In this example we see that we recovered the original parameter a=1. Note that CompileOption->False was necessary
because a Mathematica function was passed in, which prohibits compilation. SimplifyOption->False was also needed to
prevent error messages (although the correct answer is still obtained without it). It is also possible to fit models in cases
where we want to fit the entire time tragjectory to the data, in which case the function is evaluated at many points and some
measure of fit computed.
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IX.4 Constraint Equations

One of the hurdles to solving nonlinear optimization problems is finding a feasible starting point. This is particularly true
when there are a large number of constraints. In the following example, it is clear that the feasible region is the positive
quarter of a sphere.

I nf308] : =
ClearAl [z]

In[309]: =
constraints = {-x, -y, -z, X "2+y"2+272-2}

Qut [ 309] =
[-x, -y, -z, -2+x%+y? + 2%}

It is possible to use optimization to find the feasible region. We set up the problem to solve for a constant objective func-
tion, so that the program stops when it finds feasible initial points.

I'n[310]: =
Mul tiStartM n[2, constraints, , {{x, -5, 5}, {y, -5, 5}, {z, -5, 5}},
.001, Starts - 10, ShowProgress » Fal se] // Tim ng

Qut[310] =
(0.281, {{{x -0.0483366, y -0.53029, z »1.13155}, 2},
{{X - 0.09089, y - 0.52393, z »0.421732}, 2},
({x >1.10698, y »0.0178877, z > 0. 36338}, 2},
({X >0.545995, y - 1.02937, z 0. 0676439}, 2},
({Xx >0.47304, y > 0.109673, z > 0. 254154}, 2},
({x > 0.251385, y - 0.464905, z »0.297733}, 2},
({x >0.199679, y - 0.72498, z »0.116262}, 2},
({x >0.172754, y - 0. 45899, z > 0. 258331}, 2},
({x >0.206245, y - 0.773349, z > 0. 158459}, 2},
({x »0.00838564, y > 1.14862, z - 0.119339}, 2}}}

Inf311]:=
d obal Penal t yFn[2, constraints, , {{x, -5, 5}, {y, -5, 5}, {z, -5, 5}},
. 001, Starts - 10, ShowProgress - Fal se] // Ti mi ng

Qut[311] =
(1.032, {{{x >1.1668, y >0.174565, z »0.186763}, 2},
({x >0.490512, y - 0.275311, z > 0. 040621}, 2},
({x - 0.036959, y »0.65716, z »0.162351}, 2},
({x > 0.869512, y - 0.237804, z > 0.103923}, 2},
({x >0.579303, y > 1. 08266, z 0. 17406}, 2},
({x >0.294281, y > 0.611031, z > 0. 0758022}, 2},
({x > 0.150908, y - 0.0202404, z - 0.275322}, 2},
({x > 0.986036, y > 0.493321, z 0. 11452}, 2},
({x >1.38911, y - 0. 155131, z - 0. 154396}, 2},
{{X - 0.000117562, y > 0. 0162639, z - 0. 469868}, 2}}}
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In[312]: =

d obal Search[2, constraints, ,

{{X1 _51 5}1

.001, Starts - 10, ShowProgress - Fal se] // Tim ng

Conpi | edFunction::cfn:
at instruction 11;

Conpi | edFunction::cfn:
at instruction 11;

Conpi | edFunction::cfn:
at instruction 11;

CGeneral ::stop: Further output of
Conpi | edFunction::cfn wll

Qut[312] =

{0.328, {{{(x->0,y->0, z->0}, 2},
{{x-0, y-0, z->0}, 2},
{{x-0, y-0, z-0}, 2},
{{x-0, y-0, z-0}, 2},

The above result gives a set of feasible points, which gives abasis for defining the feasible region.

proceedi ng

proceedi ng

proceedi ng

error encountered
with unconpil ed eval uation. >

error encountered
with unconpil ed eval uation. >

error encountered
wi th unconpil ed eval uation. >

be suppressed during this cal cul ation.

{{x-0, y-0, z-0}, 2},
{{x-0, y-0, z-0}, 2},
{{x-0, y-0, z-0}, 2},
{{x-0, y-0, z->0}, 2}1}}

{yl _51 5}1 {Zr _51 5}}1

{{x-0, y-0, z-0}, 2},
{{x-0, y-0, z-0}, 2},
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