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I  GETTING STARTED

I.1  Welcome

Welcome to Global Optimization.  This package provides a suite of tools for solving nonlinear optimization prob-
lems, as well as a variety of other applications such as finding the roots or zeros of a nonanalytic function.  The package is
easier,  simplier,  and  more  robust  than  most  optimization  tools,  and  you  will  find  yourself  working  more  efficiently  and
more easily than before.

I.2  Registering

Before  you  continue  please  register  by  emailing  your  name  and  address  with  a  notice  that  you  have  purchased
Global  Optimization  to  craigloehl@aol.com.   This  will  enable  us  to  reach  you  with  free  updates  and  other  news.   The
developer does not receive customer information when the package is purchased from Wolfram Research or from distribu-
tors.  Please include the version of Global Optimization that you purchased and the machine you are using it on.

I.3  Installation

I.3.A  Recommended System Capabilities

This package is designed to work with Mathematica, which must be installed on your computer.  The following are
recommended system capabilities for installation:

• Personal computer, 600 MHz or faster

• 200Mb free RAM or more

• Mathematica 4.2 or higher installed 

I.3.B  Installation on a Hard Drive

To install the package on your hard drive on any machine, copy the contents of the disk to the Mathematica direc-
tory.   The file  may need to be unzipped.   On Mac the file  may be a  self-extracting archive;  double-click it  to  extract  the
contents.  The go60v.mx file (where v denotes the version) is an encoded Mathematica package.  This encoded file can not
be read and will not work on other platforms.  It needs to be placed in the main Mathematica directory or in the AddOns/Ap-
plications directory.  An example notebook file .nb is included for illustration.  The .nb file(s) may be placed anywhere.
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I.4  A Quick Start and Example

Version  6.0  contains  ten  functions:  GlobalSearch,  IntervalMin,  GlobalPenaltyFn,  MultiStartMin,  GlobalMinima,
NLRegression,  MaxLikelihood,  InterchangeMethodMin,  TabuSearchMin,  and  MaxAllocation.   The  package  has  been
designed for easy use with Mathematica.  It uses all valid Mathematica functions and syntax.  The user must have Mathemat-
ica installed.  This manual assumes basic familiarity with Mathematica.  Input files should be in the form of Mathematica
notebooks, with a file designation "filename.nb". This manual is executable.  Timing examples in this manual are based on
a 3.4 Ghz Pentium IV machine using Mathematica 6.0.

To begin the execution of a notebook, follow this procedure:

1. Start Mathematica.

2. Use the File pull-down menu to Open one of the example notebook files supplied with the disk.  

3. Once this notebook is open, pull down the Kernel menu and select Evaluate Notebook.

In the examples, the package is installed with the Get (Get["go60v.mx"] or <<go60v.mx) command, with definition
for the function and options given as:

In[2]:= Off@Syntax::"spell"D;

Off@Syntax::"spell1"D;

$HistoryLength = 0;

then  several  variables  are  defined,  the  function  to  be  evaluated  is  defined,  and  then  the  problem is  solved.   This  process
should execute with no errors and should produce output that resembles closely what was in the notebook when you opened
it.  If not, some error may exist.  The basic formats are similar to the Mathematica function ConstrainedMin.  The following
definitions define the functions in the package:

In[5]:= ? GlobalMinima

GlobalMinima finds the minimum of a

constrained or unconstrained nonlinear function of n

variables.GlobalMinima@expression,inequalities,88var1name,lowbound,

highbound<..<,grid,tolerance,contraction,indifference,optionsD
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In[6]:= ? GlobalSearch

GlobalSearch finds the minimum of a nonlinear

function of n variables s.t. equality & inequality constraints.

GlobalSearch@expression,inequalities,equalities,88var1name,lowbound,

highbound<..<, tolerance,optionsD

In[7]:= ? GlobalPenaltyFn

GlobalPenaltyFn finds the minimum of a nonlinear

function of n variables s.t. equality & inequality constraints.

GlobalPenaltyFn@expression,inequalities,equalities,88var1name,lowbound,

highbound<..<, tolerance,optionsD

In[598]:=

? InterchangeMethodMin

InterchangeMethodMin finds the minimum of a nonlinear

function of binary 0-1 variables using the Interchange method.

InterchangeMethodMin@expression,inequalities,8varlist<,tolerance,optionsD

In[6]:= ? IntervalMin

IntervalMin finds the minimum of a

constrained or unconstrained nonlinear function of n

variables.IntervalMin@expression,inequalities,Null,8Interval<,varlist,tolerance

,optionsD

In[7]:= ? MaxAllocation

MaxAllocation finds the maximum of

a nonlinear function of n variables s.t. an equality

constraint.MaxAllocation@f@var1name,...D,rhs,8varlist<..,tolerance,optionsD

In[8]:= ? MaxLikelihood

MaxLikelihood performs maximum likelihood estimation on a

function. It has a library of functions optimized for efficiency.

MaxLikelihood@data,expression,independent_variables,constraints,

88var1name,lowbound,highbound<..<,tolerance,optionsD

In[9]:= ? MultiStartMin

MultiStartMin finds the minimum of a nonlinear function

of n variables s.t. equality and inequality constraints.

MultiStartMin@expression,inequalities,equalities,88var1name,lowbound,highbound<
..<, tolerance,optionsD
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In[10]:= ? NLRegression

NLRegression performs nonlinear regression with or without

constraints.NLRegression@data,expression,independent_variables,inequalities,

equalities,88var1name,lowbound,highbound<..<,tolerance,optionsD

In[11]:= ? TabuSearchMin

TabuSearchMin finds the minimum of a nonlinear function of discrete

variables.TabuSearchMin@expression,inequalities,8varlist<,tolerance,optionsD

The following options are available for one or more functions.  ExactEqualities and PenaltyMethod are used for GlobalPenal-
tyFn.

In[12]:= ? CompileOption

If False, uses uncompiled version of user function.

In[175]:=

? EvaluateObj

Evaluate objective function if True.

In[173]:=

? ExactEqualities

Solve equalities with exact method. Is slower. Default False.

In[174]:=

? PenaltyMethod

Solve equalities with penalty method. Default False.

In[14]:= ? FastStepping

If True, uses fast stepping method for MultiStartMin.

In[599]:=

? MaxIterations

Maximum iterations allowed. Default 10000. More…

In[16]:= ? SensitivityPlots

Prints sensitivity plots if True.

In[17]:= ? ShowProgress

If True, prints intermediate results.

In[18]:= ? SimplifyOption

Attempt to simplify objective function if True.

In[19]:= ? Starts

Number of starting points for search. Default minimum of 3.
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In[20]:= ? StartsList

User input of starting values.

In[21]:= ? TabuListLength

Length of Tabu list. Default=100.

In[22]:= ? UserMemory

Number of megabytes available to GlobalMinima for computations.

In[23]:= ? UserResiduals

Regression option for passing a user function for residuals.

In[24]:= ? Weights

Weight assigned to data point i during

regression analysis. Does not affect sum of squares.

(1)GlobalSearch[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},tolera
nce,options]

(2)GlobalPenaltyFn[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},tol
erance,options]

(3)MultiStartMin[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},toler
ance,options]

(4)
InterchangeMethodMin[expression,inequalities,{varlist},tolerance,options]

(5)
IntervalMin[expression,inequalities,Null,{InitialPoint__Interval},varlist,tolerance,options]

(6)
TabuSearchMin[expression,inequalities,{varlist},tolerance,options]

(7)GlobalMinima[expression,inequalities,{{var1name,lowbound,highbound}..},grid,tolerance,
contraction,indifference,options]

(8)
MaxAllocation[f[var1name,...],rhs,{varlist}..,tolerance,options]

(9)NLRegression[data,expression,independent_variables,inequalities,{{var1name,lowbound,hi
ghbound}..},tolerance,options]

(10)
MaxLikelihood[data,expression,independent_variables,inequalities,{{var1name,lowbound,
highbound}..},tolerance,options]
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Where "expression" is the equation or function name for the function to be minimized, "inequalities" is a list of inequality
constraints,  and  "equalities"  is  a  list  of  equalities.   Speed  of  execution  is  enhanced  with  Mathematica  versions  5.1  and
higher.  The Mathematica kernel and the executable program need not reside on the same machine.

The  functions  are  each  designed  for  a  specific  type  of  problem.   For  linear  problems,  the  user  should  refer  to
ConstrainedMin (see Mathematica  documentation), although the functions in this package will solve linear problems.  For
smooth,  unconstrained  nonlinear  problems,  the  user  should  try  FindMinimum,  which  is  faster  for  such  problems.   The
functions in this package are designed for nonlinear problems with local minima, multiple minima, and/or linear or nonlin-
ear constraints. 

The function GlobalSearch is a multiple-start generalized hill-climbing algorithm designed to work with or without
constraints.  It is robust to noisy functions and local minima.  It can handle large problems (200+ variables).  It can handle
linear  and  nonlinear  equality  and  inequality  constraints,  which  are  assumed  to  be  analytic.    GlobalSearch  is  the  general
purpose optimizer in the package, and is the engine used for the NLRegression and MaxLikelihood functions.  

The function IntervalMin is a general minimizer using Interval methods.  It can handle inequality constraints, which
must be analytic.  It is robust to local minima, but is slower than other methods.

The  function  GlobalPenaltyFn  is  a  multiple-start  generalized  hill-climbing  algorithm  designed  to  work  with  or
without constraints.  It handles the special case of constraints that are not Solvable for any of the variables, or that are black
box.   It  is  robust  to  noisy functions  and local  minima.  It  can handle large problems (200+ variables).   For  equality con-
straints, it has three options.  The default attempts to work with equality constraints analytically.  PenaltyMethod when True
uses a penalty method.  This option is useful when equality constraints are extremely complicated or non-analytic.  Exact-
Equalities when True forces the search to always stay on the equality lines.

The function MultiStartMin is a restricted case version of GlobalSearch designed to work for problems with integer
or discrete variables or that are highly nonlinear.  To solve this subset of problems, it handles constraints differently and is
thus  slower  than GlobalSearch,  particularly as  problems get  bigger.   Thus for  problems with more than 15 variables,  one
should  use  GlobalSearch.   It  is  a  multiple-start  generalized  hill-climbing  algorithm  designed  to  work  with  or  without
constraints.   It  is  robust  to  noisy  functions  and  local  minima.   It  can  handle  linear  and  nonlinear  inequality  constraints.
Equality  constraints  must  be  analytic,  but  inequality  constraints  need  not  be  and  can  be  black  box  or  logical.   Objective
functions may contain any combination of real, integer, and discrete variables.  

 The function GlobalMinima is designed for problems with many true or local minima or for which a region rather
than a point better describes the optimum solution.  It can handle linear and nonlinear inequality constraints.  It is limited to
smaller problems (<14 variables) but is very robust to noise and false minima.  For smaller problems (<3 variables), it may
be  faster  than  MultiStartMin  or  GlobalSearch.   GlobalMinima  can  find  solution  regions,  whereas  MultiStartMin  and
GlobalSearch are not efficient at this task.

The function MaxAllocation is designed for allocation problems, such as arise in finance.  In an allocation problem,
a fixed quantity, such as an investment sum, is to be distributed to a portfolio.  All variables must be nonnegative and the
sum of all investments must equal the total available for investing.  This creates a nonlinear problem with a single equality
constraint.

The function InterchangeMethodMin is designed for 0-1 integer problems such as arise in networks, transportation,
and scheduling.  The operation of this routine is faster than for problems with continuous variables of the same size.  The
function  can  solve  vehicle  routing/traveling  salesman,  minimum  spanning  tree,  and  capital  allocation  problems,  among
others.

The  function  TabuSearchMin  is  designed  for  0-1  integer  problems  such  as  arise  in  networks,  transportation,  and
scheduling. The operation of this routine is faster than for problems with continuous variables of the same size. The func-
tion can solve vehicle routing/traveling salesman,minimum spanning tree, and capital allocation problems, among others.
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The function NLRegression solves nonlinear regression problems.  It is particularly designed for noisy problems or
those requiring constraints to achieve a good fit.  L1 and L2 norms are allowed.  Least-squares and chi-square options are
also available.  Sensitivity plots and confidence intervals on the parameters are provided as output.

The function MaxLikelihood solves maximum likelihood estimation problems using Log-likelihood estimation.  A
library of common distributions is provided and fit statistics are computed.  Summary statistics are computed.

II  TIPS FOR PERFORMANCE
A key  factor  for  numerical  optimization is  the  time taken to  compute the  objective  function.   This  is  critical  because  the
objective  function  may  be  called  thousands  of  times  to  hundreds  of  thousands  of  times.   This  section  discusses  tricks  to
achieve better performance. 

II.1  Improving Performance

Some general tips include the removal of the reading of external files from the user function, computing constant expres-
sions once and then using the result, and avoiding logical operations that will prevent Compile from being used.  A key is to
generate  a  function  once  as  an  explicit  expression,  and  then  pass  this  in  to  the  package.   If  many  steps  are  involved  in
generating  a  user  function  and  these  must  be  performed every time the  function is  called,  this  can  be  very  expensive.   It
often happens  that  parts  of  an  expression involve constants.   If  these  can be  evaluated up front,  the  savings can be enor-
mous.   In  the  following  example,  the  function  "f"  evaluates  numerically  when Evaluate  is  executed  during  Function  cre-
ation.  In function "g" functions like Sin and Tan are evaluated each time the function is called:

In[8]:= ClearAll@f, gD

In[9]:= x = 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10<;

In[10]:= f = FunctionAEvaluate@xD, EvaluateA
SumASinAPi ë 2.1E*x@@iDD + Tan@19.4*PiD ë x@@iDD + Cos@.1D + Sqrt@99D, 8i, 1, 10<EEE

Out[10]= FunctionB8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10<,

109.449 +
3.07768

x1
+ 0.997204 x1 +

3.07768

x10
+ 0.997204 x10 +

3.07768

x2
+ 0.997204 x2 +

3.07768

x3
+ 0.997204 x3 +

3.07768

x4
+ 0.997204 x4 +

3.07768

x5
+ 0.997204 x5 +

3.07768

x6
+

0.997204 x6 +
3.07768

x7
+ 0.997204 x7 +

3.07768

x8
+ 0.997204 x8 +

3.07768

x9
+ 0.997204 x9F

In[11]:= g@p_D := ModuleA8d<, 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10< = p;

r = SumASinAPi ë 2.1E*x@@iDD + Tan@19.4*PiD ë x@@iDD + Cos@.1D + Sqrt@99D, 8i, 1, 10<E;

Return@rDE

In[12]:= dat = Table@i, 8i, 1, 10<D

Out[12]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

In[15]:= Apply@f, datD

Out[15]= 173.309
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In[16]:= g@81, 2, 3, 4, 5, 6, 7, 8, 9, 10<D

Out[16]= 173.309

In[17]:= Do@Apply@f, datD, 8i, 1, 500<D êê Timing

Out[17]= 80.031, Null<

In[18]:= Do@g@81, 2, 3, 4, 5, 6, 7, 8, 9, 10<D, 8i, 1, 500<D êê Timing

Out[18]= 80.297, Null<

Because the constants in f  were Evaluated before execution (during Function definition),  f  was very fast  to execute,  even
without Compile.  In contrast, g, which computes Sin etc. every time it is called, took 46 times longer to compute.

II.2  The Compile Function

The Mathematica function Compile is used to speed up program execution.  The user input function and constraints
are both Compiled.  The advantage of the Compile function is greatest with more complex expressions and larger problems.
For small problems, it can be difficult to even detect a benefit, but there is little cost to the Compile.  The range of speed
improvement  due  to  Compile  can  range  from 30% to  30x.   Compilation  does  not  work  for  all  Mathematica  expressions.
For example, if "Apply" or "If" are used in the function definition, the function will not Compile.  It is suggested that if a
complex expression involving Mathematica  special  functions is to be used,  the user attempt to Compile the expression to
test  it.   The  CompileOption  can  be  set  to  False  (CompileOption->False)  in  the  function  call  if  the  user  function  is  not
compilable.  It may also be set to False if the user Compiles the expression before passing it in.  It is possible to get errors
during  the  Compile  step.   These  will  be  highlighed  in  blue  and  will  indicate  that  they  are  compilation  errors.   It  is  also
possible that execution errors can result  if  non-machine numbers result  from some computation of the compiled function.
Mathematica usually reverts to the uncompiled expression in such cases, but the user may wish to run with CompileOption-
>False in this case to obtain the most accuracy and best speed.  

We can see the benefit of the Compile in the following example:

In[19]:= ClearAll@x1, x2, x3, x4, x5, x6, x7, x8, x9, x10D

In[20]:= x = 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10<;

In[21]:= f = Sum@H1 + x@@iDDL^2, 8i, 1, 10<D

Out[21]= H1 + x1L2 + H1 + x10L2 + H1 + x2L2 + H1 + x3L2 +

H1 + x4L2 + H1 + x5L2 + H1 + x6L2 + H1 + x7L2 + H1 + x8L2 + H1 + x9L2

In[22]:= g1 = Function@Evaluate@xD, Evaluate@fDD;

In[23]:= g2 = Compile@Evaluate@xD, Evaluate@fDD;

In[24]:= Do@Apply@g1, 8.1, 2., 3., 4., 3., .3, .3, .3, .5, .5<D, 8i, 1, 10 000<D êê Timing

Out[24]= 80.296, Null<

In[25]:= Do@Apply@g2, 8.1, 2., 3., 4., 3., .3, .3, .3, .5, .5<D, 8i, 1, 10 000<D êê Timing

Out[25]= 80.079, Null<
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We see that Compile speeded up the execution by a factor of more than 4.  On some functions, the speedup can be a factor
of 20 or more.  Setting up a function as a Module prevents Compile from working on the objective function, and should be
avoided.  Some Mathematica functions, particularly those that are math functions, can be included in a Compiled function.
Examples include Abs, Sqrt, Max, Min, Sin, etc.  Others, such as FindRoot, can not.

II.3  User Functions: Working with Named Functions

The objective (goal) function in all the functions in this package can be defined in several ways.  The function must in some
cases  be  passed  in  differently,  depending  on  the  function  format.   In  the  simplest  case,  the  expression is  itself  passed in.
Here we find the minimum of the given function, which is zero.

In[9]:= ClearAll@xD

In[10]:= GlobalSearch@x^2 + y^2, , , 88x, 38, 40<, 8y, 38, 40<<, .00000001, Starts Ø 1D

Out[10]= 888x Ø 0., y Ø 0.<, 0.<<

We can also pass in a function by name:

In[11]:= f := x^2 + y^2

In[12]:= GlobalSearch@f, , , 88x, 38, 40<, 8y, 38, 40<<, .00000001, Starts Ø 1D

Out[12]= 999x Ø 0., y Ø 4.44089μ10-16=, 1.97215μ10-31==

In order to Compile or use the objective function, the programs in this package will attempt to Evaluate the expression.  If
there are certain operations involved in the user function, such as obtaining the Inverse or Determinant of a matrix, Mathe-
matica  will  attempt  to  Evaluate  these  symbolically  when the  function is  used in  the program.  It  will  then work with the
Evaluated  function.   If  the  user  expression  is  complex,  however,  this  may become impossible.   For  example,  a  symbolic
inverse of a matrix with 10 variables may take a very long time.  The user can test this by trying to Evaluate the objective
function before passing it in to any of the functions of this package.  If it fails to Evaluate, then use the parameter Evaluate-
Obj->False to prevent evaluation.  Another time when EvaluateObj should be set to False is when any logical operations are
performed in the objective function, as in the following example:

In[13]:= f = Function@8x, y<, If@x + y < 0, tem = 0, tem = y + xD; temD;

In[14]:= Apply@f, 8-1, -1<D

Out[14]= 0

In[15]:= Apply@f, 81, 1<D

Out[15]= 2

Clearly,  the  function  is  minimized  for  any  set  with  x  +  y  negative or  for  x==-y.   Because  of  the  conditional  logic  in  the
expression, it should not be symbolically evaluated.  This means that it should not be simplified (SimplifyOption->False) or
Evaluated (EvaluateObj->False):

In[33]:= GlobalSearch@f, 8<, , 88x, 38, 40<, 8y, 38, 40<<, .000001,

Starts Ø 1, EvaluateObj Ø False, SimplifyOption Ø FalseD êê Timing

Out[33]= 80.016, 888x Ø -125.745, y Ø 38.013<, 0<<<

If, in contrast, we set up a function as a Module, the function can not be Compiled or Evaluated without giving an incorrect
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p p g g
answer.  However, this problem is checked for internally and does not cause a problem, though it does cause a problem in
Mathematica functions such as NMinimize.

In[16]:= g@x_, y_D := Module@8d<, If@x < 0 && y < 0, tem = 0, tem = 1 + Abs@yD + Abs@xDD; Return@temDD;

In[17]:= GlobalSearch@g, , , 88x, 38, 40<, 8y, 38, 40<<, .000001, Starts Ø 1D êê Timing

Out[17]= 80.031, 888x Ø -2.49755, y Ø -2.93525<, 0<<<

III   GENERAL NONLINEAR OPTIMIZATION:  GlobalSearch,
GlobalPenaltyFn, IntervalMin AND MultiStartMin

III.1  Introduction

Five general nonlinear solvers are included in this package.  They each are designed for a particular class of prob-
lems.   These  functions  provide  tools  for  global  optimization.   Traditional  gradient  (local)  approaches  require  the  user  to
know how many optima are being sought for the function to be solved, and roughly where the optima are, so that a good
initial guess can be made.  The user, however, rarely can make a good initial guess and usually has no information about the
existence  of  multiple  solutions.   In  the  absence  of  such  information,  existing  algorithms  will  generally  converge  to  an
answer, but this may be only a local solution that may not be globally optimal.  Furthermore, even global optima may not be
unique.  The functions in this package can solve black-box objective functions, objective functions that are nondifferentia-
ble, differential equation models, and functions with discrete steps in them.  The initial bounds on the parameters given on
input  do  not  need  to  bound  the  true  solution  (except  for  the  GlobalMinima  function),  but  only  help  get  the  algorithms
started in a good region.   

GlobalSearch approaches the difficult problem of finding a global optimum with several techniques.  A generalized
hill climbing technique is used that is based on Newton's method but using a generalized gradient rather than a derivative,
and allowing for constraints.  Constraints must be analytic, but can be linear or nonlinear.  Multiple starts are used to test for
the  existence  of  multiple  solutions.   The  multiple  starts  are  generated  randomly  from the  region  defined  by  the  range  of
parameter values input by the user.  Feasible starting regions are not needed, but it is assumed that objective function values
in this region are Real.  When a step can not be made that improves the solution by at least "tolerance", the program termi-
nates.   If  a  problem uses only discrete 0-1 variables,  the functions InterchangeMethodMin and TabuSearchMin should be
used.  GlobalSearch is the solver used by the regression and maximum likelihood functions.  The function is defined by

(11)
GlobalSearch[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},toler
ance,options]

GlobalPenaltyFn addresses the problem of constraints that are nonanalytic.  Nonanalytic functions can be algorith-
mic, can have conditional logic,  or can be too complex for Solve to separate variables.  If GlobalSearch fails on the con-
straints, use GlobalPenaltyFn.  A generalized hill climbing technique is used that is based on Newton's method but using a
generalized gradient rather than a derivative, and allowing for constraints.  An adaptive penalty method is used that adjusts
the penalties for constraint violation depending on the degree of violation of constraints.  Multiple starts are used to test for
the  existence  of  multiple  solutions.   The  multiple  starts  are  generated  randomly  from the  region  defined  by  the  range  of
parameter values input by the user.  Feasible starting regions are not needed, but it is assumed that objective function values
in this region are Real.  When a step can not be made that improves the solution by at least "tolerance", the program termi-
nates.   If  a  problem uses only discrete 0-1 variables,  the functions InterchangeMethodMin and TabuSearchMin should be
used.  Two methods are available for solving equality constraints.  An analytic method is default.  To override this method,
used PenaltyMethod->True.   For the PenaltyMethod, the default  (ExactEqualities->True) uses a numerical method to stay
on equality constraint lines at all times, and the alternate method is a penalty method for both inequalities and equalities. An
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optional  4th  parameter  in  the  variable  bounds  list  can  be  used  to  define  a  variable  to  be  Integer  (as  in
{{var1name,lowbound,highbound, Integer}..}  ).  The function is defined by

(12)
GlobalPenaltyFn[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},to
lerance,options]

IntervalMin uses Interval methods to find a solution.  Intervals are computed in Mathematica based on concepts of
limits.  An initial Interval is input by the user.  It is beneficial for this Interval to cover the true solution point, but this is not
necessary  as  long  as  it  is  not  orders  of  magnitude  distant.   Both  the  input  objective  function  and  the  constraints  must  be
analytic.  IntervalMin is robust to local minima, but is not as fast as GlobalSearch because Compile can not be used with
Interval variables.  IntervalMin can not solve problems with equality constraints at this time.  We illustrate Intervals below:

In[51]:= x^2 ê. x Ø Interval@8-1, 2<D

Out[51]= Interval@80, 4<D

In  this  case,  the true minimum of the function is  given by the lower bound of  the Interval  result.   In  simple or  separable
cases, this will pertain.  In other cases it will not:

In[19]:= 1.` - 2.` x + x2 + 100.` x4 - 200.` x2 y + 100.` y2 ê.

8x Ø Interval@80, 2<D, y Ø Interval@80, 2<D<

Out[19]= Interval@8-1603., 2005.<D

The true minimum of this function is 0 at {1,1}.  The true minimum is within the Interval of the result in this case.  Note
that when IntervalMin is used, both the estimated parameters and the function value are given in terms of an Interval.  The
format for the function is given by:

(13)IntervalMin[expression,inequalities,Null,{InitialPoint__Interval},varlist,tolerance,options]

MultiStartMin  addresses  the  problem of  inequality  constraints  that  are  nonanalytic.  MultiStartMin  is  effective  for
highly  nonlinear  functions  with  fewer  than  15  variables.  MultiStartMin  may have  trouble  with  multiple  constraints  if  the
solution  lies  in  the  corner  of  two  constraints.   In  such  cases,  use  IntervalMin  or  GlobalPenaltyFn.   A  generalized  hill
climbing technique is used that is based on Newton's method but using a generalized gradient rather than a derivative, and
allowing  for  constraints.   Inequality  constraints  are  treated  as  hard  boundaries.   Equality  constraints  must  be  analytic.
Integer variables should not be used in Equality constraints unless the equality constraints are linear.  All combinations of 2
or  more  variables  at  a  time  (number  defined  by  option  SearchDirections)  are  tested  to  find  the  best  search  direction.
Multiple starts are used to test for the existence of multiple solutions.  The multiple starts are generated randomly from the
region  defined  by  the  range  of  parameter  values  input  by  the  user.   Feasible  starting  regions  are  not  needed,  but  it  is
assumed that objective function values in this region are Real.  Mixtures of Real, Integer, and Discrete (defined by a List)
variables are allowed.  If a problem uses only discrete 0-1 variables, the functions InterchangeMethodMin and TabuSearch-
Min should be used.  The function is defined by

(14)
MultiStartMin[expression,inequalities,equalities,{{var1name,lowbound,highbound}..},tole
rance,options]

The  GlobalMinima  function  uses  an  adaptive  grid  refinement  technique.   This  technique  is  robust,  and  can  find
multiple solutions in a single run.  Because it's operation is so different, it is documented in it's own section, later.
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GlobalMinima[expression,inequalities,{{var1name,lowbound,highbound}..},grid,tolerance
,
contraction,indifference,options]

III.2  Example

A simple example is to minimize a square function subject to a constraint, as follows.  The constraint

x > 1 && y > 1

must be converted to standard form as a list:

-x < -1 && -y < -1

-x + 1 < 0 && -y + 1 < 0

In[20]:= c = 8-x + 1, -y + 1<

Out[20]= 81 - x, 1 - y<

In[21]:= GlobalSearch@x^2 + y^2, c, , 88x, -5, 5<, 8y, -5, 5<<, .000001, Starts Ø 1D êê Timing

Out[21]= 80.031, 888x Ø 1, y Ø 1<, 2.<<<

The output shows three solutions from random initial points, the default, with the {x,y} value and the function value in each
list element.  Initial feasible points are not needed.  In this case, the function is smooth, so all three solutions are the same,
and there is really no need to use multiple starts.   

III.3  Program Operation

III.3.A  Parameters and Default Values

The tolerance (T) defines the amount of improvement (absolute, not relative) in the function value required at each
iteration.  If at least this much improvement is not found, the program stops.  The tolerance can be set to very small values,
such as 10-15, to achieve a highly accurate estimate of the minimum.  If the user sets tolerance = 0, this is an error.

The functions have seven options.   The defaults are MaxIterations->10000, CompileOption->True, ShowProgress-
>True, StartsList->{}, EvaluateObj->True, SimplifyOption->True, and Starts->3.  MaxIterations prevents the program from
running away to infinity when a mistake is made in the function (Min[x] for example).  For very computationally expensive
problems (like those with many parameters), it is useful to use Starts->1 to evaluate the time a run takes.  For general usage,
Starts->3 (the default) is good. The results of this short run can then be used to define further, more directed runs based on
whether all 3 starts found the same solution.  A list of starting values can be input instead of letting the program find them
with  random  search  (e.g.,  StartsList->{{1.,2.},{2.,1.}}).   The  CompileOption  determines  whether  the  user  function  and
constraints will be compiled.  While Compile reduces execution time, some functions can not be compiled, in which case
CompileOption->False should be used.  If the objective function should not be Evaluated, use EvaluateObj->False.  Simpli-
fyOption attempts to simplify the objective function.  If this should not be done or will not improve the solution, this should
be  set  to  False.   The MultiStartMin function also has  a  SearchDirections (default  2)  option.   More search directions help
solve highly nonlinear problems, but increase the execution time exponentially.
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III.3.B  Bounds

Whereas most algorithms require input of an initial  guess or starting point (which must be feasible) to initiate the
search, GlobalSearch requires only bounds on the variables.  Bounds are generally easier to define than are feasible starting
points.   Physical,  logical,  or  economic  considerations  often  provide  guidance  on  realistic  bounds  for  a  variable.   If  the
optimization problem is wing design and one variable is wing thickness, a certain range of thicknesses is sensible to con-
sider.  For a financial problem, the range of values for an investment mix across a product line is clearly bounded between
zero and the total budget, and the upper limit can generally be bounded below a much smaller value than this.  If narrower
bounds  are  known,  then  convergence  will  require  fewer  function  calls,  but  even  quite  wide  bounds  are  acceptable.   If
erroneously  narrow  bounds  are  input,  then  initial  step  size  will  be  too  small,  and  the  function  will  act  more  like  a  local
solver.   It  is  better  to  err  on the side of  wider  bounds.   Upper and lower bounds must  be input  by the user,  as  illustrated
below.   These  bounds  do  not  restrict  the  searching  of  GlobalSearch,  MultiStartMin,  IntervalMin,  or  GlobalPenaltyFn  (as
they do for GlobalMinima) but merely provide an initial guide for generating feasible starts.  Initial bounds do not need to
produce feasible solutions, the program can find initial feasible points, but the values within these bounds are assumed to be
Real.  If hard bounds on variables are necessary (such as positivity restrictions), they can be entered as constraints.

III.3.C  Constraints

Constraints  are  entered  as  Mathematica  functions,  which  may  be  linear  or  nonlinear.   Equality  constraints  are
entered in the third position in standard form.  For example, positivity restrictions on x and y would be represented by the
list:

8-x, -y<

The following problem is a typical  LP problem, with the solution at the intersection of two inequality constraints.
The solution is {2/3,10/3,0}).  

In[22]:= GlobalSearch@-x1 - 2 x2 + x3,

8x1 + x2 + x3 - 4, -x1 + 2 x2 - 2 x3 - 6, 2 x1 + x2 - 5, -x1, -x2, -x3<, ,

88x1, 0, 1<, 8x2, 0, 1<, 8x3, 0, 1<<, .000000001, Starts Ø 1D êê Timing

Out[22]= 80.375, 888x1 Ø 0.666667, x2 Ø 3.33333, x3 Ø 0<, -7.33333<<<

In[23]:= IntervalMin@-x1 - 2 x2 + x3,

8x1 + x2 + x3 - 4, -x1 + 2 x2 - 2 x3 - 6, 2 x1 + x2 - 5, -x1, -x2, -x3<, ,

8Interval@80., 4.<D, Interval@80., 4.<D, Interval@80., 1.<D<,

8x1, x2, x3<, .0000001D êê Timing

Out[23]= 94.625, 99x1 Ø Interval@80.666667, 0.666667<D, x2 Ø Interval@83.33333, 3.33333<D,

x3 Ø IntervalA95.55112μ10-17, 9.15934μ10-16=E=, Interval@8-7.33333, -7.33333<D==

We see that IntervalMin is much slower, but there are problems where it performs better.  We next test GlobalPenaltyFn.  

In[24]:= GlobalPenaltyFn@-x1 - 2 x2 + x3,

8x1 + x2 + x3 - 4, -x1 + 2 x2 - 2 x3 - 6, 2 x1 + x2 - 5, -x1, -x2, -x3<, ,

88x1, 0, 3<, 8x2, 0, 3<, 8x3, 0, 1<<, .000001, Starts Ø 1D êê Timing

Out[24]= 81.734, 888x1 Ø 0.666667, x2 Ø 3.33333, x3 Ø 0<, -7.33333<<<

We see above that GlobalPenaltyFn is slower than GlobalSearch because it can take nonanalytic constraints.  MultiStartMin
is able to solve this problem.
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In[25]:= MultiStartMin@-x1 - 2 x2 + x3,

8x1 + x2 + x3 - 4, -x1 + 2 x2 - 2 x3 - 6, 2 x1 + x2 - 5, -x1, -x2, -x3<, ,

88x1, 0, 3<, 8x2, 0, 3<, 8x3, 0, 1<<, .0000001, Starts Ø 1D êê Timing

Out[25]= 90.125, 999x1 Ø 0.666666, x2 Ø 3.33333, x3 Ø 1.58683μ10-7=, -7.33333===

It is useful to illustrate a function in which the constraints are nonanalytic.  Any function for which Solve will not work falls
in this category.  We take as the example:

Min@y^2 + xD s.t. x ã Sin@yD

The above equality can not be Solved for y uniquely.  GlobalSearch  and  GlobalPenaltyFn nevertheless succeed.  

In[26]:= res = GlobalSearch@y^2 + Sin@yD, , , 88y, 0, 1<<, .000000001, Starts Ø 1D êê Timing

Out[26]= 80.015, 888y Ø -0.450184<, -0.232466<<<

Where x is then

In[27]:= x = N@Sin@yDD ê. res@@2, 1, 1DD

Out[27]= -0.435131

In[28]:= ClearAll@xD

In[29]:= res = GlobalSearch@y^2 + x, , 8x - Sin@yD<,

88x, 0, 1<, 8y, 0, 1<<, .00000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[29]= 80.015, 888x Ø -0.435131, y Ø -0.450184<, -0.232466<<<

In this problem, GlobalPenaltyFn can solve it.

In[30]:= res = GlobalPenaltyFn@y^2 + x, , 8x - Sin@yD<,

88x, -1, 1<, 8y, 0, 1<<, .000000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[30]= 80.031, 888x Ø -0.435131, y Ø -0.450184<, -0.232466<<<

In the next example, we see how a nonlinear constraint can be defined that creates a whole set of solution points, an approxi-
mation  to  which  can  be  obtained  with  enough  starts.   In  this  example,  the  solution  must  lie  outside  the  circle  of  radius
Sqrt[2], but the unconstrained solution is at the origin.  This means that all points on this circle are optimal.

In[31]:= ClearAll@xD

In[32]:= b = GlobalSearch@x^2 + y^2, 82 - Hx^2 + y^2L<, ,

88x, -10, 10<, 8y, -10, 10<<, .0001, Starts Ø 100, CompileOption -> TrueD;

In[33]:= b@@1DD

Out[33]= 88x Ø -1.24498, y Ø -0.670847<, 2.<

In[34]:= c = 8<; Do@AppendTo@c, 8x, y< ê. b@@ii, 1DDD, 8ii, 1, 100<D
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In[35]:= ListPlot@cD

Out[35]= -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

In  this  case,  the  program  finds  only  a  subset  of  the  solutions  because  of  the  order  in  which  multiple  roots  are
processed.  MultiStartMin finds a better sample of points around the circle in this case.  

In[36]:= b = MultiStartMin@x^2 + y^2, 82 - Hx^2 + y^2L<, ,

88x, -10, 10<, 8y, -10, 10<<, .0001, Starts Ø 100, CompileOption -> TrueD;

In[37]:= b@@1DD

Out[37]= 88x Ø -1.38914, y Ø -0.265158<, 2.00001<

In[38]:= c = 8<; Do@AppendTo@c, 8x, y< ê. b@@ii, 1DDD, 8ii, 1, 80<D

In[39]:= ListPlot@cD

Out[39]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Equality constraints are input as a list of equality statements in the third parameter position.  In the following problem, the
solution is {1/3,1/3,1/3}, with f=1/3.

In[40]:= GlobalSearch@x^2 + y^2 + z^2, 8<, 8x + y + z - 1<,

88x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<<, .00000001, Starts Ø 1D êê Timing

Out[40]= 80.031, 888x Ø 0.333333, y Ø 0.333333, z Ø 0.333333<, 0.333333<<<

In[41]:= MultiStartMin@x^2 + y^2 + z^2, 8<, 8x + y + z - 1<,

88x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<<, .00000001, Starts Ø 1D êê Timing

Out[41]= 80.016, 888x Ø 0.333326, y Ø 0.333372, z Ø 0.333302<, 0.333333<<<

In[42]:= GlobalPenaltyFn@x^2 + y^2 + z^2, 8<, 8x + y + z - 1<,

88x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<<, .00000001, Starts Ø 1D êê Timing

Out[42]= 80.016, 888x Ø 0.333333, y Ø 0.333333, z Ø 0.333333<, 0.333333<<<

The  options  PenaltyMethodØTrue,ExactEqualitiesØFalse  are  useful  for  complex  equality  constraints.   The  following
problem needs these options.

In[43]:= vars = 8x1, x2, x3<; nvars = Length@varsD; varlist = 88x1, 0, 1<, 8x2, 0, 1<, 8x3, 0, 1<<;

H* randomly generated solution to test problem *Lsol = Table@Random@D, 8nvars<D;

objf = Hx1 - sol@@1DDL^2 + 2*Hx2 - sol@@2DDL^2 + 3*Hx3 - sol@@3DDL^2;

eqs = 8Sin@5*Hx1 - sol@@1DDLD - 12*Hx3 - sol@@3DDL*Hx2 - sol@@2DDL,

Exp@Hx1 - sol@@1DDL*Hx2 - sol@@2DDL*Hx3 - sol@@3DDLD - 1<;

ineqs = 8HHx1 - sol@@1DDL*Hx2 - sol@@2DDL*Hx3 - sol@@3DDLL^2 +

Sin@15*Hx1*x2*x3 - sol@@1DD*sol@@2DD*sol@@3DDLD - 0.05<;

In[47]:= sol

Out[47]= 80.624533, 0.146612, 0.193704<

In[48]:= res = GlobalPenaltyFn@objf, ineqs, eqs,

varlist, .0000000001, Starts Ø 1, PenaltyMethod Ø TrueD êê Timing

Out[48]= 90.469, 998x1 Ø 0.624533, x2 Ø 0.146621, x3 Ø 0.193699<, 2.42804μ10-10===

In[49]:= res = GlobalPenaltyFn@objf, ineqs, eqs, varlist, .0000000001,

Starts Ø 1, PenaltyMethod Ø True, ExactEqualities Ø TrueD êê Timing

Out[49]= 90.578, 998x1 Ø 0.624533, x2 Ø 0.14661, x3 Ø 0.193704<, 6.45615μ10-12===

In some cases, the solution to a problem occurs at the intersection of constraints.  These problems are difficult but
can be solved.  In the following problem, the solution is exactly at the intersection of the line and the circle: 

In[50]:= r = Solve@8x1 + x2 - 1.2 == 0, x1^2 + x2^2 ã 1<D

Out[50]= 88x1 Ø 0.225834, x2 Ø 0.974166<, 8x1 Ø 0.974166, x2 Ø 0.225834<<
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In[51]:= Hx1 - .1L^2 + Hx2 - .1L^2 + x3^2 ê. r@@1DD

Out[51]= 0.78 + x32

In this problem, some of the solutions are not optimal.

In[54]:= GlobalSearch@Hx1 - .1L^2 + Hx2 - .1L^2 + x3^2,

8x1 + x2 - 1.2<, 8x1^2 + x2^2 - 1<, 88x1, 0, 1<, 8x2, 0, 1<, 8x3, 5, 10<<,

.00000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

LessEqual::nord : Invalid comparison with -0.129711 - 0.381468 Â attempted. à

LessEqual::nord : Invalid comparison with -0.129711 - 0.381468 Â attempted. à

LessEqual::nord : Invalid comparison with -0.169711 - 0.247981 Â attempted. à

General::stop :

Further output of LessEqual::nord will be suppressed during this calculation. à

Out[54]= 80.312, 888x1 Ø 0.974166, x2 Ø 0.225834, x3 Ø -0.00823202<, 0.780068<<<

We see that GlobalSearch found one of the solutions with 1 starts.  GlobalPenaltyFn can also find a solution but is slower.

In[53]:= GlobalPenaltyFn@Hx1 - .1L^2 + Hx2 - .1L^2 + x3^2,

8-x1, -x2, x1 + x2 - 1.2<, 8x1^2 + x2^2 - 1<,

88x1, 0, 1<, 8x2, 0, 1<, 8x3, 5, 10<<, .0000000001, Starts Ø 1D êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 8; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

Out[53]= 91.328, 999x1 Ø 0.974166, x2 Ø 0.225834, x3 Ø -2.52968μ10-6=, 0.78===

MultiStartMin also solves it correctly.
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In[57]:= MultiStartMin@Hx1 - .1L^2 + Hx2 - .1L^2 + x3^2, 8x1 + x2 - 1.2<, 8x1^2 + x2^2 - 1<,

88x1, 0, .5<, 8x2, 0, .5<, 8x3, 5, 10<<, .0000001, Starts Ø 1D êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 12; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 12; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 12; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

LessEqual::nord : Invalid comparison with -0.121512 - 0.403902 Â attempted. à

LessEqual::nord : Invalid comparison with 0.00489123 - 0.672133 Â attempted. à

LessEqual::nord : Invalid comparison with -0.18917 - 0.14757 Â attempted. à

General::stop :

Further output of LessEqual::nord will be suppressed during this calculation. à

Out[57]= 80.141, 888x1 Ø 0.974166, x2 Ø 0.225834, x3 Ø 0.0000161832<, 0.78<<<

In the following example, the constraint forces a solution outside the unit circle.  The solution is 0.737157 at {.707,.707},
which is found by GlobalSearch and GlobalPenaltyFn.  MultiStartMin only succeeds on this problem with multiple starts.
IntervalMin gets pretty close.

In[58]:= MultiStartMin@Hx - .1L^2 + Hy - .1L^2, 8-Hx^2 + y^2 - 1L<,

8<, 88x, -4, 5<, 8y, -4, 5<<, .0000001, Starts Ø 3D êê Timing

Out[58]= 80.156, 888x Ø 0.861922, y Ø 0.507044<, 0.74621<<<

In[59]:= GlobalSearch@Hx - .1L^2 + Hy - .1L^2, 8-Hx^2 + y^2 - 1L<,

8<, 88x, -4, 5<, 8y, -4, 5<<, .000000001, Starts Ø 1D êê Timing

Out[59]= 80.109, 888x Ø 0.707147, y Ø 0.707066<, 0.737157<<<

In[60]:= IntervalMin@Hx - .1L^2 + Hy - .1L^2, 8-Hx^2 + y^2 - 1L<, ,

8Interval@80., 1.<D, Interval@80., 1.<D<, 8x, y<, .0001D êê Timing

Out[60]= 81.219, 88x Ø Interval@80.695487, 0.695545<D, y Ø Interval@80.718552, 0.718576<D<,

Interval@80.737212, 0.73731<D<<

In[61]:= GlobalPenaltyFn@Hx - .1L^2 + Hy - .1L^2, 8-Hx^2 + y^2 - 1L<, ,

88x, 0, 1<, 8y, 0, 1<<, .000000001, Starts Ø 2, ShowProgress Ø FalseD êê Timing

Out[61]= 86.141, 888x Ø 0.705179, y Ø 0.70903<, 0.737158<<<

WARNING:   Constraints can cause difficulties for GlobalSearch.  Constraints can be mistakenly formulated such
that no feasible space exists.  In this case, GlobalSearch will stop with an error message:  

In[62]:= ClearAll@x, y, zD
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In[63]:= GlobalSearch@x^2 + y^2 + z^2, 8x - 1, -x + 2<, 8<,

88x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<<, .00000001, Starts Ø 1D êê Timing

Error: feasible solution not found for starting value

Out[63]= 80.062, 88$Failed<<<

WARNING:  Equality  constraints  should  not  be  used  with  Integer  variables.   The  result  of  doing  so  is  that  the  optimal
solution is not found.

In[64]:= GlobalPenaltyFn@Hx1 - .1L^2 + Hx2 - .1L^2 + x3^2, 8x1 + x2 - 1.2<,

8x1^2 + x2^2 - 1<, 88x1, 0, 1, Integer<, 8x2, 0, .5<, 8x3, 5, 10<<,

.0000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 23; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 9; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 9; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

Out[64]= 90.344, 999x1 Ø 1, x2 Ø 0, x3 Ø -8.10327μ10-9=, 0.82===

III.4  Output

Following solution, a list is returned that contains the solution.  For example, two points in a 2 parameter problem
would  give  the  list  {{{1.1,1.2},-5},{{1.2,1.21},-4.9}}.   Intermediate  output  can  be  printed  out  by  setting  ShowProgress-
>True.

In[65]:= GlobalSearch@x^2 + y^2, 8-x<, , 88x, -5, 5<, 8y, -5, 5<<,

.000000001, Starts Ø 1, ShowProgress Ø TrueD
Global Optimization, Version 5.2

number of variables = 2

tolerance = 1.μ10-9

number of starts = 1

Initial point 1 88x Ø 0, y Ø 0.166722<, 0.0277963<

Vector of search:

99x Ø 1.27086μ10-7, y Ø -7.4504μ10-9=, 1.62063μ10-14=

Out[65]= 999x Ø 1.27086μ10-7, y Ø -7.4504μ10-9=, 1.62063μ10-14==

Following  solution,  a  list  is  returned  that  contains  the  solution  as  a  list  of  replacement  rules  with  corresponding
solutions.  
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III.5  Maximization

To find a maximum instead of a minimum, simply call GlobalSearch with the negative of the function, keeping in
mind that a negative function value will be printed out.

III.6  Limitations

No optimization algorithm can solve all conceivable problems.  Consider a response surface in two dimensions that
is  flat  everywhere  except  for  a  very  small  but  very  deep  pit  at  one  location.   Any  hill-climbing  algorithm will  fail  com-
pletely to solve this problem, because for almost all starting points there is no gradient.

Some functions  have  infinitely  many solutions.   Consider  Sin(1/x)  between  0  and  1.   As  the  function  approaches
zero, the minima (with z = -1) get closer and closer together, as we can see from the plot following:

In[66]:=

Plot @Sin@1êxD, 8x, 0, 1<D

Out[66]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Although it is fundamentally impossible to list all solutions when there are infinitely many, GlobalSolve can show that there
are very many solutions.  If we run the program with 40 starts on the interval [0, 0.6], we obtain many points with values
close  to  -1.0  (shown  below).   This  result  demonstrates  that  there  are  many  solutions  and  that  the  density  of  solutions
increases with an approach to zero.  This is thus an approximate solution to the true situation.  x is bounded away from 0 to
prevent underflow. 
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In[67]:= GlobalSearch@Sin@1êxD, 8-x + .00001, x - .6<, ,

88x, 0.0000001, .6<<, .0001, CompileOption Ø False, Starts Ø 20D

Out[67]= 888x Ø 0.211722<, -0.999942<, 88x Ø 0.212207<, -1.<,

88x Ø 0.212207<, -1.<, 88x Ø 0.212759<, -0.999925<, 88x Ø 0.212207<, -1.<,

88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<,

88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<, 88x Ø 0.00347879<, -1.<,

88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<, 88x Ø 0.0909457<, -1.<,

88x Ø 0.0909457<, -1.<, 88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<,

88x Ø 0.212207<, -1.<, 88x Ø 0.212207<, -1.<, 88x Ø 0.0578745<, -1.<<

By restricting the search region, we find more solutions:

In[68]:= GlobalSearch@Sin@1êxD, 8-x + .000000000001, x - .2<, ,

88x, 0.000001, .2<<, .00001, Starts -> 20D

Out[68]= 988x Ø 0.0909457<, -1.<, 88x Ø 0.0909457<, -1.<,

99x Ø 1.μ10-12=, -0.999988=, 88x Ø 0.0424413<, -1.<, 88x Ø 0.0909457<, -1.<,

88x Ø 0.0025774<, -0.999999<, 88x Ø 0.0909457<, -1.<,

88x Ø 0.0909457<, -1.<, 88x Ø 0.0424413<, -1.<, 88x Ø 0.0909457<, -1.<,

88x Ø 0.0909457<, -1.<, 88x Ø 0.0205361<, -1.<, 88x Ø 0.0909457<, -1.<,

88x Ø 0.0578745<, -1.<, 88x Ø 0.00290693<, -1.<, 88x Ø 0.0424413<, -1.<,

88x Ø 0.0909457<, -1.<, 88x Ø 0.0424413<, -1.<, 88x Ø 0.0909457<, -1.<=

These examples illustrate that not all problems can be solved.  Some are not solvable by any algorithm.  Some may
be ill-posed.  However, for many problems that cause other algorithms to fail, GlobalSolve either succeeds, has a probabil-
ity  of  succeeding,  or  provides  a  partial  or  approximate  solution.  We  may  thus  say  that  the  set  of  unsolvable  problems is
much smaller than it is for other solution methods.  This is particularly so with respect to the inclusion of constraints.

The optimization algorithm fundamentally assumes real valued functions.  It is possible for some parameter values
that are tested to return values that are complex or otherwise not Real.  The program assumes that these are illegal values
and treats them like values that fail a constraint test.  This means that it can solve a problem where values can be complex.
The problem below works even if the input range does not include positive numbers.

In[71]:= GlobalSearch@x^.5, 8<, 8<, 88x, -2, -1<<, .000000000001, Starts Ø 1D

CompiledFunction::cfn : Numerical error encountered

at instruction 3; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 3; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 3; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

Out[71]= 999x Ø 4.98279μ10-25=, 7.05889μ10-13==
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III.7  Error Messages

An  effort  has  been  made  to  trap  as  many  errors  as  possible.   Many  user  errors  will  prompt  Mathematica  error
messages.  On input, only the order of parameters is evaluated in the passing function call.  If a valid value for tolerance (>
0.0) is not input, the following error message is printed, and the program stops:

Error: tolerance must be > 0

If  the  upper  bound  of  the  variable  definitions  is  smaller  than  the  lower  bound,  the  program  will  also  stop  with  an  error
message.

If  a  parameter  is  omitted  from  the  calling  sequence,  Mathematica  cannot  continue.   To  indicate  the  problem,  it
echoes back the names for functions and values for constants in the function call, and then it stops.  This type of echoed-
back  output  means  that  a  format  error  exists  in  the  calling  sequence.   Some  syntax  errors  are  trapped  within  the  Global
Optimization package.

After input, the program compiles the user input function and the constraints, speeding execution.  If these functions
are improperly formatted, this step may produce a compilation error message, which will terminate the run.  If a function is
defined such that it does not return numeric values, this will cause error messages from Mathematica, followed by termina-
tion of GlobalSearch. 

When constraints are used, there may be no feasible region, particularly if the problem has many constraints.  If this
occurs, the following error message is printed, and the program terminates:

Error: no valid initial points found

In this case, check the constraints.  Constraints can be in conflict if care is not taken.

A common mistake is to maximize when the intention was to minimize.  This error can be recognized because the
solution  will  tend  to  run  into  one  of  the  parameter  bounds  and  will  have  an  illogical  value.   For  example,  the  optimal
airplane wing thickness for a design problem might come back as zero.

An  unbounded  solution  may  result  from  an  improperly  formulated  problem  (e.g.,  min(-1/x)  over  {-1,  1}  which
becomes -inf  at  x=0).   Because the function z continues to get larger the closer one gets to zero at an increasing rate, the
program will never report convergence.  ShowProgress->True can be used to check for such problems during a run.

 The user function passed in to GlobalSearch is Compiled.  This may cause compilation errors.  The result is usually
to stop the execution of the program, but it is necessary for the user to realize the source of the error.  Compiled functions
can also generate errors at run time if the user function generates non-machine numbers such as high precision numbers or
infinity.  Mathematica will usually revert to the uncompiled function and continue running.

If the user defines variables in his program by mistake that should be parameters of the function, this will cause the
program to stop or malfunction.  For example, if pp=5 is defined by mistake, this will cause GlobalSearch to detect an error
which can be understood from looking at the error output which shows an invalid parameter list:

In[72]:= pp = 5;
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In[73]:= GlobalSearch@Hpp - 30L^2 Hy - 60L^2, , , 88pp, 0., 100.<, 8y, 1, 5<<, 0.001D

Error: Symbol expected in parameter list, variable 1

885, 0., 100.<, 8y, 1, 5<<

Out[73]= $Failed

Note how the program echoes back the parameter input, showing the mistake.

If the function to be solved is by mistake unbounded, then the parameter MaxIterations will stop the program from
running forever.

In[74]:= GlobalSearch@x + y, 8<, 8<, 88x, -5, 5<, 8y, -5, 5<<,

.0000001, Starts Ø 1, MaxIterations Ø 4D
Warning: MaxIterations exceeded, execution terminated

Result for this starting value not necessarily optimal

Out[74]= 999x Ø -1.00543μ1036, y Ø -1.00543μ1036=, -2.01087μ1036==

MaxIterations can also be used to make a preliminary run to test out execution.

In[75]:= r = GlobalSearch@100.*Hx^2 - yL^2 + H1. - xL^2, 8<, 8<,

88x, -5, 5<, 8y, -10., 10.<<, .0000001, Starts Ø 1, MaxIterations Ø 1D
Warning: MaxIterations exceeded, execution terminated

Result for this starting value not necessarily optimal

Out[75]= 998x Ø 1., y Ø 1.<, 1.2326μ10-30==

We now wish to restart the program with the given ending value.  

In[76]:= rr = r@@1DD

Out[76]= 98x Ø 1., y Ø 1.<, 1.2326μ10-30=

In[77]:= s = 8x, y< ê. rr@@1DD

Out[77]= 81., 1.<

In[78]:= GlobalSearch@100.*Hx^2 - yL^2 + H1. - xL^2, 8<, 8<, 88x, -5, 5<, 8y, -10., 10.<<,

.0000001, StartsList Ø 8s<, ShowProgress Ø FalseD êê Timing

Out[78]= 90.031, 998x Ø 1., y Ø 1.<, 1.2326μ10-30===
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III.8  Performance/Speed

For larger problems, speed can become a limiting factor.  It is suggested that the objective function and constraints
be formulated such that they can be Compiled (see sec. II) which can speed up operation by 2x to 20x.  If a function is very
complex, it can be helpful to pull out subexpressions that do not need to be computed each time, and compute them once in
advance.  Simplify or FullSimplify may also speed up the function.  Some large problems are run next to illustrate perfor-
mance.  Either GlobalSearch or GlobalPenaltyFn can be run for large unconstrained problems, for which they use the same
basic algorithm.  MultiStartMin can only be used on large problems if SearchDirections->1 is used, and FastStepping->True
is recommended for such cases.   Using MultiStartMin will  not be advantageous for problems with highly nonlinear func-
tions, but may be the only option for problems with integer or discrete variables.

In[79]:= vars = Table@ToExpression@StringJoin@"x", ToString@iDDD, 8i, 1, 100<D;

In[80]:= fg = Evaluate@Sum@vars@@iDD^2, 8i, 1, 100<DD;

In[81]:= vardefs = Table@8vars@@iDD, -10, 11<, 8i, 1, 100<D;

In[82]:= GlobalSearch@fg, , , vardefs, .00000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[82]= 90.391, 999x1 Ø 0., x2 Ø 0., x3 Ø 0., x4 Ø 0., x5 Ø 8.88178μ10-16, x6 Ø 0., x7 Ø 0., x8 Ø 0.,

x9 Ø 0., x10 Ø 0., x11 Ø 0., x12 Ø 8.88178μ10-16, x13 Ø 0., x14 Ø 0., x15 Ø 0.,

x16 Ø 0., x17 Ø 0., x18 Ø -8.88178μ10-16, x19 Ø 0., x20 Ø 0., x21 Ø 8.88178μ10-16,

x22 Ø 0., x23 Ø 0., x24 Ø -8.88178μ10-16, x25 Ø 0., x26 Ø 2.22045μ10-16, x27 Ø 0.,

x28 Ø 0., x29 Ø 0., x30 Ø -8.88178μ10-16, x31 Ø 0., x32 Ø 0., x33 Ø 0., x34 Ø 0.,

x35 Ø 0., x36 Ø 0., x37 Ø 0., x38 Ø 0., x39 Ø 0., x40 Ø 0., x41 Ø 0., x42 Ø 0., x43 Ø 0.,

x44 Ø 0., x45 Ø -8.88178μ10-16, x46 Ø 0., x47 Ø 0., x48 Ø 0., x49 Ø 0., x50 Ø 0.,

x51 Ø 0., x52 Ø 0., x53 Ø 0., x54 Ø 0., x55 Ø -4.44089μ10-16, x56 Ø 0., x57 Ø 0.,

x58 Ø 0., x59 Ø 0., x60 Ø 0., x61 Ø 0., x62 Ø 0., x63 Ø 0., x64 Ø 0., x65 Ø 0., x66 Ø 0.,

x67 Ø 0., x68 Ø 0., x69 Ø 0., x70 Ø -8.88178μ10-16, x71 Ø 0., x72 Ø 4.44089μ10-16,

x73 Ø 0., x74 Ø 0., x75 Ø 0., x76 Ø 0., x77 Ø 0., x78 Ø 0., x79 Ø 0., x80 Ø 0., x81 Ø 0.,

x82 Ø 0., x83 Ø 0., x84 Ø 0., x85 Ø 0., x86 Ø 0., x87 Ø 0., x88 Ø -5.55112μ10-17,

x89 Ø 0., x90 Ø 0., x91 Ø 0., x92 Ø 0., x93 Ø 0., x94 Ø 0., x95 Ø 0., x96 Ø 0.,

x97 Ø 0., x98 Ø 0., x99 Ø 0., x100 Ø -8.88178μ10-16=, 7.54656μ10-30===

In[83]:= GlobalPenaltyFn@fg, , , vardefs, .0000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[83]= 80.328,

888x1 Ø 0, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 0, x7 Ø 0, x8 Ø 0, x9 Ø 0, x10 Ø 0, x11 Ø 0,

x12 Ø 0, x13 Ø 0, x14 Ø 0, x15 Ø 0, x16 Ø 0, x17 Ø 0, x18 Ø 0, x19 Ø 0, x20 Ø 0, x21 Ø 0,

x22 Ø 0, x23 Ø 0, x24 Ø 0, x25 Ø 0, x26 Ø 0, x27 Ø 0, x28 Ø 0, x29 Ø 0, x30 Ø 0, x31 Ø 0,

x32 Ø 0, x33 Ø 0, x34 Ø 0, x35 Ø 0, x36 Ø 0, x37 Ø 0, x38 Ø 0, x39 Ø 0, x40 Ø 0, x41 Ø 0,

x42 Ø 0, x43 Ø 0, x44 Ø 0, x45 Ø 0, x46 Ø 0, x47 Ø 0, x48 Ø 0, x49 Ø 0, x50 Ø 0, x51 Ø 0,

x52 Ø 0, x53 Ø 0, x54 Ø 0, x55 Ø 0, x56 Ø 0, x57 Ø 0, x58 Ø 0, x59 Ø 0, x60 Ø 0, x61 Ø 0,

x62 Ø 0, x63 Ø 0, x64 Ø 0, x65 Ø 0, x66 Ø 0, x67 Ø 0, x68 Ø 0, x69 Ø 0, x70 Ø 0, x71 Ø 0,

x72 Ø 0, x73 Ø 0, x74 Ø 0, x75 Ø 0, x76 Ø 0, x77 Ø 0, x78 Ø 0, x79 Ø 0, x80 Ø 0, x81 Ø 0,

x82 Ø 0, x83 Ø 0, x84 Ø 0, x85 Ø 0, x86 Ø 0, x87 Ø 0, x88 Ø 0, x89 Ø 0, x90 Ø 0, x91 Ø 0,

x92 Ø 0, x93 Ø 0, x94 Ø 0, x95 Ø 0, x96 Ø 0, x97 Ø 0, x98 Ø 0, x99 Ø 0, x100 Ø 0<, 0.<<<

In[84]:= vars = Table@ToExpression@StringJoin@"x", ToString@iDDD, 8i, 1, 400<D;

In[85]:= fg = Evaluate@Sum@vars@@iDD^2, 8i, 1, 400<DD;
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In[86]:= vardefs = Table@8vars@@iDD, -10, 11<, 8i, 1, 400<D;

In[87]:= GlobalSearch@fg, , , vardefs, .0000001, Starts Ø 1D êê Timing

Out[87]= 93.875, 999x1 Ø 0., x2 Ø 0., x3 Ø 0., x4 Ø 0., x5 Ø 0., x6 Ø 0., x7 Ø 2.22045μ10-16, x8 Ø 0.,

x9 Ø 4.44089μ10-16, x10 Ø 8.88178μ10-16, x11 Ø 0., x12 Ø 8.88178μ10-16,

x13 Ø -2.22045μ10-16, x14 Ø 0., x15 Ø 0., x16 Ø 4.33681μ10-19, x17 Ø 0.,

x18 Ø 0., x19 Ø 0., x20 Ø 0., x21 Ø 0., x22 Ø -8.88178μ10-16, x23 Ø 0.,

x24 Ø 0., x25 Ø 8.88178μ10-16, x26 Ø 0., x27 Ø 0., x28 Ø 0., x29 Ø 0., x30 Ø 0.,

x31 Ø 0., x32 Ø 0., x33 Ø 2.22045μ10-16, x34 Ø 0., x35 Ø 0., x36 Ø 0., x37 Ø 0.,

x38 Ø -8.88178μ10-16, x39 Ø 0., x40 Ø 0., x41 Ø 0., x42 Ø 0., x43 Ø 0., x44 Ø 0.,

x45 Ø 0., x46 Ø 0., x47 Ø 0., x48 Ø 0., x49 Ø 0., x50 Ø 0., x51 Ø 0., x52 Ø 0., x53 Ø 0.,

x54 Ø 0., x55 Ø 0., x56 Ø 8.88178μ10-16, x57 Ø -4.44089μ10-16, x58 Ø 0., x59 Ø 0.,

x60 Ø -8.88178μ10-16, x61 Ø 0., x62 Ø 0., x63 Ø 0., x64 Ø 0., x65 Ø -8.88178μ10-16,

x66 Ø 0., x67 Ø 0., x68 Ø 0., x69 Ø 0., x70 Ø 0., x71 Ø 0., x72 Ø 0., x73 Ø 0.,

x74 Ø 0., x75 Ø -8.88178μ10-16, x76 Ø 0., x77 Ø 0., x78 Ø 0., x79 Ø 0., x80 Ø 0.,

x81 Ø 0., x82 Ø 0., x83 Ø 0., x84 Ø 0., x85 Ø 8.88178μ10-16, x86 Ø 0., x87 Ø 0.,

x88 Ø 0., x89 Ø 0., x90 Ø 0., x91 Ø 0., x92 Ø 0., x93 Ø 8.88178μ10-16, x94 Ø 0.,

x95 Ø 0., x96 Ø 0., x97 Ø 4.44089μ10-16, x98 Ø 0., x99 Ø 0., x100 Ø 0., x101 Ø 0.,

x102 Ø 0., x103 Ø 0., x104 Ø 4.44089μ10-16, x105 Ø 0., x106 Ø 0., x107 Ø 0.,

x108 Ø 0., x109 Ø 0., x110 Ø 0., x111 Ø 0., x112 Ø 0., x113 Ø 0., x114 Ø 0.,

x115 Ø 0., x116 Ø -8.88178μ10-16, x117 Ø 0., x118 Ø 0., x119 Ø 0., x120 Ø 0.,

x121 Ø -8.88178μ10-16, x122 Ø -4.44089μ10-16, x123 Ø 4.44089μ10-16, x124 Ø 0.,

x125 Ø 0., x126 Ø 0., x127 Ø 0., x128 Ø 8.88178μ10-16, x129 Ø 0., x130 Ø 0., x131 Ø 0.,

x132 Ø 0., x133 Ø 4.44089μ10-16, x134 Ø 0., x135 Ø 0., x136 Ø 2.22045μ10-16, x137 Ø 0.,

x138 Ø 0., x139 Ø 0., x140 Ø 0., x141 Ø 0., x142 Ø 0., x143 Ø -1.11022μ10-16, x144 Ø 0.,

x145 Ø 0., x146 Ø 0., x147 Ø 0., x148 Ø 0., x149 Ø -2.77556μ10-17, x150 Ø 0.,

x151 Ø -2.22045μ10-16, x152 Ø 8.88178μ10-16, x153 Ø 0., x154 Ø 0., x155 Ø 0.,

x156 Ø 0., x157 Ø 0., x158 Ø 0., x159 Ø 0., x160 Ø 0., x161 Ø 8.88178μ10-16, x162 Ø 0.,

x163 Ø 0., x164 Ø 0., x165 Ø 0., x166 Ø -8.88178μ10-16, x167 Ø 0., x168 Ø 0.,

x169 Ø 0., x170 Ø 0., x171 Ø 0., x172 Ø -4.44089μ10-16, x173 Ø -4.44089μ10-16,

x174 Ø 0., x175 Ø 4.44089μ10-16, x176 Ø 0., x177 Ø 0., x178 Ø 0., x179 Ø 0.,

x180 Ø 0., x181 Ø 0., x182 Ø 0., x183 Ø 0., x184 Ø 0., x185 Ø 0., x186 Ø 0., x187 Ø 0.,

x188 Ø 0., x189 Ø 0., x190 Ø 0., x191 Ø 1.38778μ10-17, x192 Ø 0., x193 Ø 0.,

x194 Ø 0., x195 Ø 0., x196 Ø 0., x197 Ø 0., x198 Ø 0., x199 Ø 0., x200 Ø 0., x201 Ø 0.,

x202 Ø 0., x203 Ø 0., x204 Ø 0., x205 Ø -4.44089μ10-16, x206 Ø 0., x207 Ø 0.,

x208 Ø 0., x209 Ø 0., x210 Ø 0., x211 Ø 0., x212 Ø 0., x213 Ø 0., x214 Ø 0., x215 Ø 0.,

x216 Ø -4.44089μ10-16, x217 Ø 0., x218 Ø 0., x219 Ø 0., x220 Ø 0., x221 Ø 0.,

x222 Ø 0., x223 Ø 0., x224 Ø 0., x225 Ø 0., x226 Ø 0., x227 Ø 0., x228 Ø 0.,

x229 Ø 0., x230 Ø 0., x231 Ø 0., x232 Ø 8.88178μ10-16, x233 Ø 0., x234 Ø 0.,

x235 Ø 8.88178μ10-16, x236 Ø 0., x237 Ø 0., x238 Ø 0., x239 Ø 0., x240 Ø 0., x241 Ø 0.,

x242 Ø 0., x243 Ø -1.11022μ10-16, x244 Ø 0., x245 Ø 0., x246 Ø 0., x247 Ø 0.,

x248 Ø 0., x249 Ø 0., x250 Ø 0., x251 Ø 0., x252 Ø 0., x253 Ø 0., x254 Ø 0., x255 Ø 0.,

x256 Ø 0., x257 Ø 0., x258 Ø 0., x259 Ø 0., x260 Ø 0., x261 Ø 0., x262 Ø 0., x263 Ø 0.,

x264 Ø 0., x265 Ø 8.88178μ10-16, x266 Ø 0., x267 Ø 0., x268 Ø 0., x269 Ø 0.,

x270 Ø 8.88178μ10-16, x271 Ø 0., x272 Ø 0., x273 Ø 0., x274 Ø 2.77556μ10-17,

x275 Ø 0., x276 Ø 0., x277 Ø 0., x278 Ø 0., x279 Ø 0., x280 Ø 0., x281 Ø 0., x282 Ø 0.,

x283 Ø 0., x284 Ø 0., x285 Ø 4.44089μ10-16, x286 Ø 4.44089μ10-16, x287 Ø 0.,

x288 Ø 8.88178μ10-16, x289 Ø 0., x290 Ø 0., x291 Ø -8.88178μ10-16, x292 Ø 0.,
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x293 Ø 0., x294 Ø 0., x295 Ø 0., x296 Ø 0., x297 Ø 0., x298 Ø 0., x299 Ø 0., x300 Ø 0.,

x301 Ø 0., x302 Ø 0., x303 Ø 0., x304 Ø 0., x305 Ø 0., x306 Ø 0., x307 Ø 0., x308 Ø 0.,

x309 Ø 0., x310 Ø 0., x311 Ø 0., x312 Ø 0., x313 Ø 0., x314 Ø -8.88178μ10-16,

x315 Ø 0., x316 Ø 0., x317 Ø 0., x318 Ø 0., x319 Ø 0., x320 Ø 0., x321 Ø 0., x322 Ø 0.,

x323 Ø -4.44089μ10-16, x324 Ø -1.11022μ10-16, x325 Ø 0., x326 Ø 0., x327 Ø 0.,

x328 Ø 0., x329 Ø 0., x330 Ø 0., x331 Ø 8.88178μ10-16, x332 Ø 0., x333 Ø 0.,

x334 Ø 0., x335 Ø 0., x336 Ø 0., x337 Ø 0., x338 Ø 0., x339 Ø 0., x340 Ø 0., x341 Ø 0.,

x342 Ø 0., x343 Ø 0., x344 Ø 0., x345 Ø -4.44089μ10-16, x346 Ø 0., x347 Ø 0.,

x348 Ø -4.44089μ10-16, x349 Ø 0., x350 Ø 4.44089μ10-16, x351 Ø 0., x352 Ø 0.,

x353 Ø 0., x354 Ø -4.44089μ10-16, x355 Ø -4.44089μ10-16, x356 Ø 0., x357 Ø 0.,

x358 Ø -8.88178μ10-16, x359 Ø 0., x360 Ø 0., x361 Ø 0., x362 Ø 0., x363 Ø 0.,

x364 Ø 0., x365 Ø 0., x366 Ø 0., x367 Ø 0., x368 Ø 1.38778μ10-17, x369 Ø 0.,

x370 Ø 0., x371 Ø 0., x372 Ø 0., x373 Ø 0., x374 Ø 0., x375 Ø 0., x376 Ø 0., x377 Ø 0.,

x378 Ø 0., x379 Ø 8.88178μ10-16, x380 Ø 0., x381 Ø 0., x382 Ø 0., x383 Ø 0.,

x384 Ø 0., x385 Ø 4.44089μ10-16, x386 Ø 0., x387 Ø 0., x388 Ø 0., x389 Ø 0.,

x390 Ø 0., x391 Ø 8.88178μ10-16, x392 Ø 0., x393 Ø 0., x394 Ø 0., x395 Ø 0.,

x396 Ø 0., x397 Ø 0., x398 Ø 0., x399 Ø -1.11022μ10-16, x400 Ø 0.=, 2.65274μ10-29===

Note that for large problems with constraints or lots of data, execution will be slower.  

III.9  Testing and Examples

In this section, the general nonlinear functions are tested.  The test criteria are the ability to obtain accurate answers,
time required  to  execute,  size  of  problem,  ability  to  handle  noisy functions,  and ability to find multiple  solutions.   In  the
first example, we test for the ability to solve to arbitrary precision:

In[88]:= GlobalSearch@Hx - 30L^2 + Hy - 60L^2, , ,

88x, 0., 10.<, 8y, 1, 5<<, 0.000000000000000001, Starts -> 1D

Out[88]= 888x Ø 30., y Ø 60.<, 0.<<

The following problem is the difficult Rosenbrock function, but it is easily solved.

In[89]:= GlobalSearch@100.*Hx^2 - yL^2 + H1. - xL^2, 8<, 8<, 88x, -5, 5<, 8y, -10., 10.<<,

.00000000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[89]= 80.047, 888x Ø 1., y Ø 1.<, 0.<<<

In[90]:= MultiStartMin@100.*Hx^2 - yL^2 + H1. - xL^2, 8<, 8<,

88x, -5, 5<, 8y, -10., 10.<<, .00000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[90]= 90.062, 998x Ø 0.999992, y Ø 0.999967<, 3.02457μ10-8===

In[91]:= GlobalPenaltyFn@100.*Hx^2 - yL^2 + H1. - xL^2, 8<, 8<,

88x, -5, 5<, 8y, -10., 10.<<, .00000001, Starts Ø 1, ShowProgress Ø FalseD êê Timing

Out[91]= 80.032, 888x Ø 1., y Ø 1.<, 0.<<<
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In[92]:= IntervalMin@100. *Hx^2 - yL^2 + H1. - xL^2, , ,

8Interval@80., 3.1<D, Interval@80., 3.2<D<, 8x, y<, .0000001D êê Timing

Out[92]= 818.796, 88x Ø Interval@80.992646, 0.992652<D, y Ø Interval@80.985332, 0.985338<D<,

Interval@80.0000540026, 0.0000541503<D<<

Such extremely flat functions can be slow for IntervalMin to solve.  In this case, IntervalMin did pretty well, but did not get
the exact answer.  If we restart with narrower Intervals around the above solution, we get a better result:

In[304]:=

IntervalMin@100. *Hx^2 - yL^2 + H1. - xL^2, , ,

8Interval@8.98, 1.1<D, Interval@8.97, 1.1<D<, 8x, y<, .00000001D êê Timing

Out[304]=

954.7 Second, 98x Ø Interval@81.00203, 1.00203<D, y Ø Interval@81.00407, 1.00407<D<,

IntervalA94.12126μ10-6, 4.13963μ10-6=E==

Of particular interest is how the function performs on highly irregular functions.  The following irregular function is
tested:

In[93]:= Plot @Abs@2 x + 3 Sin@xDD, 8x, -40, 40<D

Out[93]=
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In[94]:= GlobalSearch@Abs@2 x + 3 Sin@xDD, , , 88x, -40, 40<<, .0000001, Starts -> 1D êê Timing

Out[94]= 90.015, 999x Ø -1.93805μ10-9=, 9.69023μ10-9===

All 10 starting values found the solution to this problem.  In the next problem, a function is tested that is step-wise
discontinuous:
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In[95]:= Plot@Abs@IntegerPart@iDD, 8i, -10, 10<D

Out[95]=
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In[96]:= GlobalSearch@Abs@IntegerPart@xDD, , ,

88x, 0, 100<<, .1, Starts Ø 1, CompileOption Ø FalseD

Out[96]= 888x Ø 0.989767<, 0<<

The solution is 0 between -1 and 1, so a valid solution was found.  We can also solve this using an integer solution:

In[97]:= MultiStartMin@Abs@xD, , , 88x, 0, 100, Integer<<, .1, Starts Ø 1D

Out[97]= 888x Ø 0<, 0.<<

Problems can be solved that cause FindMinimum to fail.  In the following, any number below 3 has the minimum
function value of 1.
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In[98]:= Plot@Max@1, x - 2D, 8x, 0, 4<D

Out[98]=
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In[99]:= FindMinimum@Max@1, x - 2D, 8x, 5, 6<D

Out[99]= FindMinimum@Max@1, x - 2D, 8x, 5, 6<D

In[101]:=

GlobalSearch@Max@1, x - 2D, , , 88x, 5, 9<<, .1, Starts Ø 1, CompileOption Ø FalseD
Out[101]=

888x Ø 2.51486<, 1<<

In the next problem, a more irregular function is tested:
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In[102]:=

Plot @4 Sin@xD + Sin@4 xD + Sin@8 xD + Sin@16 xD + Sin@32 xD + Sin@64 xD, 8x, 0, 6.28<D
Out[102]=
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In[103]:=

GlobalSearch@4 Sin@xD + Sin@4 xD + Sin@8 xD + Sin@16 xD + Sin@32 xD + Sin@64 xD,

8-x, x - 6<, , 88x, 0, 6.28<<, .000001, Starts -> 10D êê Timing

Out[103]=

80.359, 888x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<,

88x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<,

88x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<<<

Many of the starts found the minimum (-6.98759) and the rest were quite close.  We see next that IntervalMin fails
on this problem because the way terms are handled separately does not allow the algorithm to narrow down the range.  

In[104]:=

IntervalMin@4 Sin@xD + Sin@4 xD + Sin@8 xD + Sin@16 xD + Sin@32 xD + Sin@64 xD,

8<, , 8Interval@80., 6.28<D<, 8x<, .000001D êê Timing

Out[104]=

90.016, 99x Ø IntervalA9-2.22507μ10-308, 6.28=E=, Interval@8-9, 9<D==

In  the  next  problem,  the  scale  of  the  fluctuations  makes  solution  even  more  difficult  than  in  the  above  problem.
Nevertheless, all ten starts find the solution.
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In[105]:=

Plot @Abs@2 x + x * Sin@xDD, 8x, -40, 40<D
Out[105]=
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In[106]:=

GlobalSearch@Abs@2 x + x * Sin@xDD, , , 88x, -40, 40<<, .00000001, Starts -> 10D êê Timing

Out[106]=

90.125, 999x Ø -6.70087μ10-9=, 1.34017μ10-8=, 99x Ø -2.93322μ10-9=, 5.86643μ10-9=,

99x Ø -7.45058μ10-9=, 1.49012μ10-8=, 99x Ø -7.45058μ10-9=, 1.49012μ10-8=,

99x Ø -7.45058μ10-9=, 1.49012μ10-8=, 99x Ø -1.84432μ10-9=, 3.68865μ10-9=,

99x Ø -6.54427μ10-9=, 1.30885μ10-8=, 99x Ø -3.12961μ10-9=, 6.25921μ10-9=,

99x Ø -7.45058μ10-9=, 1.49012μ10-8=, 99x Ø -2.81907μ10-9=, 5.63814μ10-9===

All 10 solutions are correct.  With a smaller range for the initial guess, the problem is still solved correctly for most of the
starts.  

In[107]:=

GlobalSearch@Abs@2 x + x * Sin@xDD, , , 88x, 38., 39<<, .000001, Starts -> 10D êê Timing

Out[107]=

90.125, 999x Ø -7.10874μ10-9=, 1.42175μ10-8=, 99x Ø -1.61639μ10-9=, 3.23278μ10-9=,

99x Ø -6.99283μ10-9=, 1.39857μ10-8=, 99x Ø -5.65239μ10-9=, 1.13048μ10-8=,

99x Ø -8.2679μ10-11=, 1.65358μ10-10=, 99x Ø -7.45058μ10-9=, 1.49012μ10-8=,

99x Ø -1.82016μ10-10=, 3.64033μ10-10=, 99x Ø -1.22585μ10-10=, 2.4517μ10-10=,

99x Ø -5.01469μ10-9=, 1.00294μ10-8=, 99x Ø -7.45058μ10-9=, 1.49012μ10-8===

However, with a small enough range for the initial guess, the problem may not be solved because the solver may be con-
verted to a local solver.  We see next that IntervalMin actually solves this problem quickly and correctly brackets zero. 
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In[108]:=

IntervalMin@Abs@2 x + x * Sin@xDD, 8<, , 8Interval@8-40., 40<D<, 8x<, .0000001D êê Timing

Out[108]=

90.047, 99x Ø IntervalA9-6.66134μ10-16, 6.10623μ10-16=E=, IntervalA90, 1.33227μ10-15=E==

In the next test, a problem with multiple minima, the Branin rcos function, is solved.

In[109]:=

b = GlobalSearch@Hy - x^2 * 5.1êH4. * p ^2L + 5. * xêp - 6.L^2 +

10. *H1. - 1.êH8. * pLL* Cos@xD + 10., 8-40 - x, x - 40, -40 - y, y - 40<, 8<,

88x, -40, 40<, 8y, -40, 40<<, .000001, Starts -> 30, CompileOption -> TrueD;

In[110]:=

c = 8<; Do@AppendTo@c, 8x, y< ê. b@@ii, 1DDD, 8ii, 1, 30<D

In[111]:=

ListPlot@cD
Out[111]=
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All six solutions to this problem were found with 30 starts.   In the next test, the Csendes function is tested, which
has a highly dissected but flat region around the optimum, shaped like an ashtray (see next section for illustrative figures).

In[112]:=

GlobalSearch@x^6 * H2.0 + Sin@1.0êxDL + y^6 * H2.0 + Sin@1.0êyDL, , ,

88x, -1., 1.<, 8y, -1., 1.<<, 0.0000000000000000001D êê Timing

Out[112]=

90.156, 998x Ø 0.0000575029, y Ø -0.0000435469<, 5.67993μ10-26=,

98x Ø -0.00036275, y Ø -0.000500678<, 4.92μ10-20=,

98x Ø -0.000417382, y Ø 0.000259364<, 6.12527μ10-21===
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We can see that the minimum point {0,0} is being approached with arbitrary accuracy.  In the test of this function
with  the  GlobalMinima  function  below,  we  see  that  GlobalMinima  can  be  used  to  define  the  flat  region  around  the
minimum.

The following function has many local minima:

In[113]:=

Plot3DA20 SinAPi ë 2 Hx - 2 PiLE + 20 SinAPi ë 2 Hy - 2 PiLE + Hx - 2 PiL^2 + Hy - 2 PiL^2,

8x, 0, 10<, 8y, 0, 10<E
Out[113]=

We can see that this could be difficult to find.  It is known that the solution is -38 at {5.322,5.322}.

In[114]:=

GlobalSearchA20 SinAPi ë 2 Hx - 2 PiLE + 20 SinAPi ë 2 Hy - 2 PiLE + Hx - 2 PiL^2 + Hy - 2 PiL^2,

8<, , 88x, 0, 10<, 8y, 0, 10<<, .000000001, Starts Ø 4E êê Timing

Out[114]=

80.094, 888x Ø 5.32216, y Ø 5.32216<, -38.0779<, 88x Ø 5.32216, y Ø 5.32216<, -38.0779<<<

GlobalSearch is able to find the true minimum when several starts are used.  IntervalMin solves this problem reliably:

In[115]:=

IntervalMinA20 SinAPi ë 2 Hx - 2 PiLE + 20 SinAPi ë 2 Hy - 2 PiLE + Hx - 2 PiL^2 + Hy - 2 PiL^2, , ,

8Interval@80., 10.<D, Interval@80., 10.<D<, 8x, y<, .0001E êê Timing

Out[115]=

82.687, 88x Ø Interval@85.32211, 5.32214<D, y Ø Interval@85.32211, 5.32214<D<,

Interval@8-38.078, -38.0778<D<<
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IV  THE GlobalMinima FUNCTION

IV.1  Introduction

This function represents  a  robust  approach to global  optimization.   Traditional  gradient  (local)  approaches require
the user to know how many optima are being sought for the function to be solved, and roughly where the optima are, so that
a good initial guess can be made.  The user, however, rarely can make a good initial guess and has no information about the
existence of multiple minima.  In the absence of such information, existing algorithms will generally converge to an answer,
but this is only a local solution that may not be globally optimal.  Furthermore, even global optima may not be unique.  In
addition, if the region around the optimum is very flat, most algorithms will report difficulty with convergence.  In reality,
such a flat region, for real-world problems, may indicate the existence of an indifference zone of equally good solutions.

This function is designed to overcome these difficulties.  It uses the Adaptive Grid Refinement (AGR) algorithm (an
n-dimensional adaptation of Newton's method related to adaptive mesh generation) which finds multiple optima and defines
optimal regions in a single run.  Because the user does not need to know much about the function, the AGR algorithm saves
considerable time for the user.  It is not necessary to know how many optima exist or where they are; the AGR algorithm
will generally find them all.  Feasible starting points do not need to be provided.  The AGR algorithm does this at some cost
in computer time by making more function calls, and is thus limited to smaller problems. The AGR algorithm also increases
the user's certainty that all useful solutions have been found.  The genetic algorithm method can find multiple optima, but
only  stochastically,  it  does  not  allow  constraints,  it  is  difficult  to  use,  and  does  not  define  optimal  regions.  Other  global
methods that are available are either difficult to use, require special conditions for the user function, or do not allow con-
straints.  These global methods also do not generally provide information on solution regions, but rather assume that only
optimal  points  are  being  sought.   Compared  to  existing  algorithms,  the  AGR algorithm is  the  easiest  to  use,  is  the  most
general,  and  provides  the  most  information.  It  is  not  feasible  for  larger  problems,  however,  in  which  case  GlobalSearch,
GlobalPenaltyFn, IntervalMin, or MultiStartMin should be used.

IV.2  The Grid Refinement Approach to Nonlinear Optimization

The AGR algorithm works by a grid refinement process.  Consider a function

(16)(x-2)^2

where we wish to minimize z.  In this case, the answer is obviously z= 0 at x= 2, as can be seen from the plot:
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In[116]:=

Plot@Hx - 2L^2, 8x, -2, 6<D
Out[116]=
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The Adaptive Grid Refinement  (AGR) algorithm works as follows.  The interval to be searched for a solution (say,
-100 to 100) is gridded in this case into n initial grid points (with n = 11 being a useful initial grid density) at a distance d =
18.18  units  apart.   At  each  x  point,  z  is  evaluated.   The  best  points  (with  the  lowest  z  values)  are  kept,  and  the  rest  are
thrown away.  At each x kept, new points (daughters) are evaluated on each side at one-third the distance between the first
set  of  points,  and  z  is  again  evaluated.   This  one-third  trisection  prevents  duplication  of  points  during  daughter  point
generation.   This  process  of  grid  refinement  continues  until  a  user  stopping  criterion  is  met,  when  all  optimal  points  are
displayed.   The  same  procedure  is  used  for  any  number  of  dimensions.   In  two  dimensions,  each  point  generates  eight
daughter points.  In three dimensions, 26 points are generated as the corners of a hypercube.  The grid refinement algorithm
is  in  essence  a  generalized-descent  approach.   At  each  iteration,  the  population  of  points  in  the  working  set  is  moving
downhill, but over multiple regions and directions.  Consider

(17)min HzL = ‚
i=1

2

xi
2

for a two-dimensional (2D) problem.  For an initial  grid that is symmetric around 0, points in all four quadrants will remain
at each iteration and will converge toward 0 from all four directions, very much like four steepest-descent vectors.

The AGR algorithm is derivative-free and uses no search vectors.  It is therefore more numerically stable than other
algorithms.  For example, discontinuities (such as step functions) do not cause problems, nor do evaluations in the vicinity
of  a  constraint  boundary.   The algorithm uses  very  little  computational  time in  operations  other  than function calls.   The
size  of  the problem (the number of  dimensions)  is  limited only by execution time.     The transparency of  the algorithm's
operation  makes  this  tool  ideal  for  teaching concepts  of  optimization  to  introductory  college  classes  or  high  school  math
students.  No advanced mathematical training is required to understand and use it.

The AGR algorithm is similar to a variety of interval methods that have been formally shown to converge (Pinter,
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1996).   AGR also has certain similarities to Taboo Search (Cvijovic and Klinowski,  1995) and Jones'  algorithm (Jones et
al., 1993).

In the worst case, with the optimum falling exactly halfway between two initial grid points, the error estimate of the
optimum will decrease as 

(18)
1

2 * 3i
 Hxmax - xminL ên

where i is the number of iterations, the min and max terms reflect the bounds on the search region for the choice parameter
x, and n is the number of initial grid points.  Thus, if the initial grid is at 10 unit intervals, after 6 iterations we can estimate
the optimal parameter value to within ±0.000686.  After 10 iterations, we can achieve ±0.00000847.  On average, a point
will fall away from this worst case scenario, and convergence will be slightly faster.

We can illustrate the grid refinement procedure with the Rosenbrock function.  In the following figure, the contours of the
function are shown.  The points represent the values kept after the initial gridding and after each subsequent grid refinement
step.  We can see the rapid convergence to the solution at {1,1}.
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Grid refinement algorithms tend to increase their computational costs exponentially and can use too much memory
space.   In  the  AGR  algorithm,  memory  constraints  are  overcome  by  judicious  memory  management  and  by  repeated
pruning of the working solution set during algorithm operation.  Execution time presents more of a problem.  On a fast PC,
small problems run in seconds, problems with up to 7 variables run in minutes, problems from 8 to 11 variables run in up to
hours, and problems of 12 to 15 variables run overnight.  This is because millions of function calls may need to be made in
higher dimensions.  The AGR algorithm is therefore not suitable for functions whose solution is itself time consuming, such
as optimizing  the output of a simulation model.  On a fast Unix machine, up to 20 variables might be feasible.  Although
the practical upper limit of 20 variables prevents this algorithm from being universal, its ease of use and ability to find all
optima and optimal regions certainly recommend it for the large subset of problems that fall within its domain. 
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IV.3  Program Operation

IV.3.A  Parameters and Default Values

The user  must  input  several  parameters.   The initial  grid density defines the initial  gridding on each x dimension.
Thus, for a 2D problem, an initial grid density of 11 x 11 will give 112   = 121 initial function calls.  As the dimensionality
increases,  it  is  advisable to reduce the initial  grid density to reduce execution time.  On the other hand,  the more (true or
false) minima there are likely to be and the more poorly behaved the function, the larger the initial grid density should be
(15 x 15, 20 x 20, or even higher).  Otherwise, minima may be missed.  A high grid density with a high dimensionality may
not be feasible, since initial grid exploration requires a function call at the number of grid points raised to the power of the
number of dimensions.

(19)n = gridd

The second input parameter, the contraction coefficient (C), defines the degree of contraction of the grid region on
each  iteration.   For  the  largest  (zl)  and  smallest  (zs)  function  values  at  the  current  iteration,  a  point zi  will  be  kept  for
further refinement only if

(20)
zi < zs + Hzl - zsL C

That is, for C = 0.1, the only points that will be kept are less than 10% of the range larger than the current minimum. If local
minima are  expected to  be  a  problem,  values  of  0.25  to  0.5+ will  help  prevent  the  true minima from being missed.   The
parameter C is cut in half twice as the program proceeds.

The  tolerance  (T)  defines  the  amount  of  improvement  (absolute,  not  relative)  in  the  smallest  z  required  at  each
iteration.  If at least this much improvement is not found, the program stops.  The tolerance can be set to very small values,
such as 10-15, to achieve a highly accurate estimate of the minimum.  If the user sets tolerance = 0, the program will stop if
the minimum remains the same for two iterations, but if there is a very gradual slope near the minimum and slight improve-
ment is achieved with each iteration, the program will not terminate.  Thus, tolerance values of zero are not advisable.  To
select a good tolerance value, the user can make an initial run with a large tolerance to see if multiple optima exist, and then
make a second run with a smaller tolerance and bounds that are closer around the rough estimate of the optimum (or around
each solution region if there are several).

A second solution criterion is provided by the indifference (I).  When the tolerance criterion causes the program to
stop, all points from intermediate iterations with values between zs  and zs  + I are considered part of the optimal region(s).
This  is  because the user  is  often indifferent  to  extremely small  differences in z,  but  may be interested in the existence of
multiple  solutions  that  are  (within  I)  equally  good.   Thus,  for  a  steel  mill,  there  may  be  a  range  of  furnace  temperatures
within which the output steel quality is approximately the same.  There is no point in trying to control the furnace tempera-
ture closer than this target zone; in fact, such control is likely to be costly or impossible.  In general, for real-world optimiza-
tion problems the existence of zones of indifference is extremely important information, because it is far easier to control a
process within some range than to keep it exactly at some "optimal" point.  Only the AGR algorithm provides information
on zones of indifference to guide real-world decision making.  Consider the function

(21)z = x4

with I = 0.1, which is minimized at x = 0.  All values of x between -0.562 and +0.562 produce a z less than I, and the user is
thus indifferent to these differences.  The "answer" is therefore the range -0.562 < x < 0.562 and not just the point x = 0.
The  AGR  algorithm  provides  an  approximation  to  this  range  that  improves  as  initial  grid  density  improves   If  only  the
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absolute minimum point is being sought, I can be set to zero.  If I is set very large, the solution set may define a large region
containing many thousands of points.

For higher-dimensional problems, initial grid density may be so coarse that a full picture of the indifference region
is not found.  This situation will be evident if there are few points in the indifference region relative to the dimensionality.
The AGR algorithm can be reapplied to a smaller domain around a particular optimum by setting the ranges for xi  closer to
this zone than in the initial run in order to better define the indifference region.

The AGR algorithm is implemented in Mathematica via the GlobalMinima command, which has eight options.  The
defaults are MaxIterations->25, CompileOption->True, ShowProgress->True, StartsList->{}, EvaluateObj->True, Simplify-
Option->True, UserMemory->32, and Starts->3.  MaxIterations prevents the program from running away to infinity when a
mistake is made in the function (Min[x] for example).  For very computationally expensive problems (like those with many
parameters), it is useful to use Starts->1 to evaluate the time a run takes.  For general usage, Starts->3 (the default) is good.
The results of this short run can then be used to define further, more directed runs based on whether all 3 starts found the
same  solution.   A  list  of  starting  values  can  be  input  instead  of  letting  the  program  find  them  with  random  search  (e.g.
StartsList->{{1.,2.},{2.,1.}}).  The CompileOption determines whether the user function and constraints will be compiled.
While Compile reduces execution time, some functions can not be compiled, in which case CompileOption->False should
be used.  If the objective function should not be Evaluated, use EvaluateObj->False.  SimplifyOption attempts to simplify
the objective function.  If this should not be done or will not improve the solution, this should be set to False.  UserMemory,
in units of Megabytes, is a user input defining the free memory available on their machine.  GlobalMinima has several ways
of executing, depending on how much memory is available.  If more memory is available, it runs faster.

IV.3.B  Bounds

Whereas local algorithms require input of an initial  guess or starting point (which must be feasible) to initiate the
search,  GlobalMinima  requires  only  bounds  on  the  variables.   Bounds  are  generally  easier  to  define  than  are  feasible
starting points.  Physical, logical, or economic considerations often provide guidance on realistic bounds for a variable.  If
the  optimization  problem is  wing  design  and  one  variable  is  wing  thickness,  a  certain  range  of  thicknesses  is  sensible  to
consider.   For  a  financial  problem,  the  range  of  values  for  an  investment  mix  across  a  product  line  is  clearly  bounded
between zero and the total budget, and the upper limit can generally be bounded below a much smaller value than this.  If
narrower bounds are known, then convergence will require fewer function calls, but even quite wide bounds are acceptable.
GlobalMinima can not search outside of the bounds,  and if  the solution found runs right  against an input bound, then the
true solution may lie outside the bounds and another run may be required if the bounds do not actually represent a constraint.

IV.3.C  Constraints

Constraints  are  entered  as  Mathematica  functions,  which  may  be  linear  or  nonlinear.   Constraints  may  be  any
logical function that defines a region or regions of space.   Constraints are entered as a list.  The terms of the inequalities
can be any valid Mathematica  inequality expression.  For example, we can define a 3D, doughnut-shaped search region (a
sphere with a hollow middle) as follows:

In[66]:= 1. < x^2 + y^2 + z^2 < 10.;

In  contrast  to  gradient  search  algorithms,  for  which  constraints  are  a  real  problem,  GlobalMinima  handles  con-
straints easily.  In fact, constraints, by limiting the space to be searched, may greatly reduce the number of function calls.
When constraints are involved, it is advisable to increase the initial grid density somewhat.  Any number of constraints is
allowed, but equality constraints are not allowed.   Equality constraints can be approximated by a bounding constraint such
as:

In[67]:= 0.9 < x1 + x2 + x3 < 1.1;

which becomes in standard form:

In[67]:= 8x1 + x2 + x3 - 1.1, -Hx1 + x2 + x3L + 0.9<;
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but in this case, a higher initial grid density is needed to obtain points that fall in the narrow feasible zone.

Note that simple bounds on the parameters are handled by the variable definition terms {x, xmin, xmax}.  Duplicating
these bounds as constraints is valid but is unnecessary and will slow program execution.  To be specific, no nonnegativity
constraints are needed, as these are handled by the bounds inputs.

WARNING:  Constraints can cause difficulties for GlobalMinima.  Problems are caused by the creation of unreach-
able regions of the search space by the constraints.  In an unconstrained problem, the gridding is such that the entire search
space  can be  reached by iterating from the  initial  grid  configuration.   This  may not  be  true when constraints  are  present.
This can happen in several ways.  First, the feasible space may be defined such that no initial grid points fall in the feasible
region.  For example, for bounds {-100,100} with a gridding of 5, a constraint {.1<x<.2} will be such a small space that the
initial grid won't fall into it except with a very high initial gridding.  If this happens, GlobalMinima will exit with an error
message.  Second, a small unreachable space can be created right against the constraint boundary.  For example, for initial
grid  points  {-5,0,5},  the  point  0  provides  access  to  the  region  -2.5<x<2.5.   If  a  constraint  is  entered  {x>1},  the  region
{1>x>2.5}  is  no  longer  reachable,  since  only  the  grid  point  {5}  is  available  for  grid  refinement.   Thus  in  this  case,  the
smallest  value of  x  that  can be found is 2.5 if  the minimization tends to push the solution up against  the constraint.   The
solution to this difficulty is to rerun the problem with tighter bounds focused around the solution found, with a higher grid
density and/or a shift in the grid.  For example a shift from 4 to 5 grid points will alter the intersection between the gridding
and the constraint region, as will a zoom in or an alteration in the left or right bounds.  

IV.3.D  Memory Usage

The algorithm used by the program is able to trade memory for speed.  This means that if more memory is available
it will run faster.  The default for the option UserMemory is 32 (in units of Megabytes).  If your machine has more memory
than  this,  setting  UserMemory  to  the  higher  value  will  likely  make  it  run  faster.   If  the  kernel  runs  out  of  memory,  try
quitting all other applications.  If the kernel still runs out of memory, it may be necessary to restrict UserMemory to smaller
values to force GlobalMinima to use the computational path that requires less memory but takes longer.

IV.4  Output

During program execution, output showing the size of the current solution set and the current minimum is option-
ally printed at each iteration.  ShowProgress->True will print out these intermediate results, which provide information for
evaluating convergence and whether the contraction coefficient is too tight or too loose.  Especially for higher dimensional
problems, this intermediate output should always be printed.  Following solution, a list is returned that contains the solution.
For example, two points in a 2 parameter problem would give the list {{{1.1,1.2},-5},{{1.2,1.21},-4.9}}.  The total number
of function calls is also printed.  Output is illustrated below.

IV.5  Maximization

The algorithm assumes that z is being minimized.  If a function is to be maximized, simply minimize -z.  The results
will then be in terms of the correct parameter values, but the z values will be negatives of their true values.
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IV.6  Limitations

No optimization algorithm can solve all conceivable problems.  Consider a response surface in two dimensions that
is flat everywhere except for a very small but very deep pit at one location.  Steepest-descent algorithms will fail completely
to solve this problem, because for almost all starting points there is no gradient.  The algorithms will just stop and say that
the gradient is zero.  GlobalMinima will stop after two iterations because no reduction has been made in the minimum, and
it will identify points across the entire region as valid.  This result tells the user that the surface is very flat.  The next step
that can be taken, if there is reason to believe that an optimum does exist somewhere, is to increase the grid density and run
GlobalMinima again.   Initial  densities > 1000 are feasible for problems with few dimensions and may by chance find the
narrow optimal zone.  Once this zone is identified, convergence is rapid.  There is thus at least a chance that GlobalMinima
can solve such an "impossible" problem.

Some functions  have  infinitely  many solutions.   Consider  Sin(1/x)  between  0  and  1.   As  the  function  approaches
zero, the minima (with z = -1) get closer and closer together, as we can see from the plot following:

In[117]:=

Plot @Sin@1êxD, 8x, 0, 1<D

Out[117]=

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Although it  is  fundamentally impossible to list  all  solutions when there are infinitely many, GlobalMinima can show that
there are very many solutions.  If we try an initial grid density of 20 on the interval [0, 1], with contraction = 0.4, we obtain
many points  with values close to -1.0 (see section IV for details).   This result  demonstrates that there are many solutions
and that the density of solutions increases with an approach to zero.  This is thus an approximate solution to the true situa-
tion.  One can determine that this is an approximate solution by increasing the grid density to find more solutions close to
zero.  Making two runs allows us to extrapolate the result that there are very many solutions close to zero, perhaps infinitely
many (as in this case).
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These examples illustrate that not all problems can be solved.  Some are not solvable by any algorithm.  Some may
be  ill-posed.   However,  for  many problems that  cause  other  algorithms to  fail,  the  AGR algorithm either  succeeds,  has  a
probability of succeeding, or provides a partial or approximate solution. We may thus say that the set of unsolvable prob-
lems  is  much smaller  for  the  AGR algorithm than  for  other  solution methods.   This  is  particularly  so  with  respect  to  the
inclusion of constraints.

IV.7  Efficiency

Although the number of function calls is a typical criterion for comparing the speed of optimization algorithms, this
measure  does  not  tell  the  entire  story.   Many  algorithms  do  considerable  computing  for  things  such  as  derivatives  and
gradients and inverting matrices, whereas the AGR algorithm does very little such secondary computing.  The AGR algo-
rithm is thus faster than the number of function calls alone would indicate.  A second important point is that the literature
comparing algorithms often indicates that an algorithm had only some probability of finding a solution (for a random initial
starting point).   For  real  problems where the  “correct”  answer  is  not  known,  this  means that  the  problem must  be  solved
many times with different initial conditions to start the algorithm; sometimes hundreds or thousands of runs are necessary.
Genetic algorithms and simulated annealing behave in this way (Ingber and Rosen, 1992).  Thus, the actual efficiency is a
function of the total number of runs, not just the single-run function call count or the execution time.  This requirement for
making  multiple  runs  creates  substantial  work  for  the  user.   With  GlobalMinima,  a  single  run  is  sufficient  to  generate
reliable solutions.  In addition, it is easier to define feasible bounds on the domain of a problem than to generate hundreds
of feasible starting points for multiple runs, especially if constraints are involved.

It is obvious that a grid refinement approach like that used here will require function calls as an exponential function
of the number of dimensions.  The initial gridding can be slow if too great a grid density is input.  For example, for a five-
dimensional problem with a grid density of 7, the initial number of grid points is 75 = 16, 807.  After the initial grid calcula-
tion, execution time is governed by the generation of daughter points in the process of grid refinement.  The formula for the
number of daughters d generated by a point in the current solution set is:

(22)d = 3n - 1

This gives d = {2, 8, 26, 80, 242 ...} for i = {1, 2, 3, 4, 5 ...}.  With this formulation, large problems take too long to run.
One  approach  to  reducing  execution  time  is  to  make  the  contraction  coefficient  smaller.   For  problems  with  only  one
minimum,  this  economy  can  cut  execution  time  by  0.5  to  0.9.   However,  this  strategy  will  cause  multiple  optima  to  be
missed.   The  grid-based  approach  used  here  is  thus  obviously  not  suitable  for  very  large  problems,  but  does  allow  for
constraints,  even nonlinear  constraints.   Therefore,  a  contraction coefficient  much below 0.05 is  not  recommended unless
the function is likely to be smooth.  For large problems or problems with complex constraints, the MultiStartMin function is
recommended.
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IV.8  Error Messages

An  effort  has  been  made  to  trap  as  many  errors  as  possible.   Much  of  the  setup  for  running  GlobalMinima  uses
Mathematica formats.  Many user errors will prompt Mathematica error messages.  On input, only the order of parameters
is evaluated in the passing function call,  not their names.  The user is thus free to use any names, though the names used
here  and  in  the  example  notebooks  are  the  most  obvious  and  will  help  prevent  mistakes.   Therefore  using  “c”  for
“contraction” is not an error.  If valid values for input parameters (tolerance >= 0.0, indifference >= 0, 0.0 < contraction <
0.8) are not input, the following error message is printed, and the program stops:

Error found by GlobalMinima

Error:  Input parameter outside range

If  a  parameter  is  omitted  from  the  calling  sequence,  Mathematica  cannot  continue.   To  indicate  the  problem,  it
echoes back the names for functions and values for constants in the function call, and then it stops.  This type of echoed-
back output means that a format error exists in the calling sequence.

After  input,  the  program  compiles  the  user  input  function  and  the  constraints,  speeding  execution  by  a  factor  of
about  six.   If  these  functions  are  improperly  formatted,  this  step  may  produce  a  compilation  error  message,  which  will
terminate the run.  If a function is defined such that it does not return numeric values, this will cause error messages from
Mathematica, followed by termination of GlobalMinima. 

If  a  completely flat  function is  mistakenly  defined,  every point  that  is  tried  will  be kept,  and the solution set  will
keep growing.  The program traps this  type of error and exits  with a message that the response surface is completely flat
after the initial gridding.  If a flat function is input for a large problem with a high initial grid, all available memory could
be used up before GlobalMinima can detect that the function is flat.  

When constraints are used, there may be no feasible region, particularly if the problem has many constraints.  If this
occurs, the following error message is printed, and the program terminates:

Error found by GlobalMinima

Error:  No valid grid points generated

In  this  case,  check  the  constraints  and  their  relation  to  the  bounds  on  the  parameters.   Constraints  and  bounds  can  be  in
conflict  if  care  is  not  taken.   In  some cases,  the constraints  are  valid,  but  a  higher initial  grid density is  needed to obtain
feasible points.

A common mistake is to maximize when the intention was to minimize.  This error can be recognized because the
solution  will  tend  to  run  into  one  of  the  parameter  bounds  and  will  have  an  illogical  z  value.   For  example,  the  optimal
airplane wing thickness for a design problem might come back as zero.

An  unbounded  solution  may  result  from  an  improperly  formulated  problem  (e.g.,  min(-1/x)  over  {-1,  1}  which
becomes -inf  at  x=0).   Because the function z continues to get larger the closer one gets to zero at an increasing rate, the
program will  never  report  convergence.   If  this  mistake has been made,  GlobalMinima will  terminate  after  MaxIterations
and will print out results showing a very large (negative) function value.

 The  user  function  passed  in  to  GlobalMinima  is  Compiled.   This  may  cause  compilation  errors.   The  result  is
usually to stop the execution of  the program, but  it  is  necessary for the user to realize the source of the error.   Compiled
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functions  can also generate  errors  at  run time if  the user  function generates  non-machine numbers  such as  high precision
numbers or infinity.  Mathematica will usually revert to the uncompiled function and continue running.

If the user defines variables in his program by mistake that should be parameters of the function, this will cause the
program to stop or malfunction.  For example, if pp=5 is defined by mistake, this will cause Mathematica to detect an error
but GlobalMinima to attempt to execute:

In[118]:=

pp = 5;

In[119]:=

GlobalMinima@Hpp - 30L^2 Hy - 60L^2, , 88pp, 0., 100.<, 8y, 1, 5<<, 20, 0.001, 0.3, 0.01D

Error: Symbol expected in parameter list, variable 1

Warning: memory is restricted for initial grid and performance will be affected.

Please increase UserMemory if possible and close other applications.

fatal error encountered, job stopped

Out[119]=

$Failed

In this example, the parameter list {pp,0.,100.} has become {5,0.,100.} which does not match the function input sequence,
causing the program to stop. 

IV.9  A STEP-BY-STEP EXAMPLE

Our example is a function with multiple optima, the camelback function (Griewank,  19__):
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In[120]:=

Plot3D@4*x^2 - 2.1*x^4 + x^6ê3 + x*y - 4*y^2 + 4*y^4, 8x, -1, 1<, 8y, -1, 1<D
Out[120]=

This function has two minima, which can be seen in the figure.  GlobalMinima easily finds the two solutions. Even
with  an  initial  grid  =  7  points  and  contraction  =  0.3,  GlobalMinima  finds  min  =  -1.293439  at  the  two  solution  points
{0.4867, -0.74074} and {-0.4867, 0.74074}.  We now illustrate how this solution is obtained.

GlobalMinima  is  a  Mathematica  package  and  must  be  installed  by  using  the  Get  command.   The  function  to  be
minimized  must  be  defined;  in  this  case,  it  is  the  camelback function  depicted  above.   This  is  the  first  parameter  for  the
function call.  The second parameter is the constraints, input as a list of inequality functions separated by commas.  If there
are no constraints, an empty list must be entered as {}.  When a set of constraints is entered, Mathematica returns a True or
False value.  GolobalMinima tests each potential grid point against the constraint equation set.  The third parameter is the
variable names and their bounds, in any order, each defined as a list.  Each variable used in the function must be defined.
The fourth parameter, the indifference parameter, defines the range of values larger than the best solution found that we will
consider  essentially  equivalent  and  therefore  equally  good.  We  must  define  initial  grid  density  (Integer)  and  tolerance
(Real), where tolerance specifies the improvement in the solution necessary to continue iterating (i.e., if (old min - min) >
tolerance, keep going).  Note that this is an absolute rather than a relative tolerance.

The contraction coefficient is defined for input where the range is typically 0.5 to 0.1. The contraction coefficient is
cut  in  half  after  the first  iteration and in half  again after  the second.  This is  because the initial  grid narrows the solution
space to regions where faster winnowing of points is possible.

We can now execute GlobalMinima.   Note that  parameter  names are arbitrary but that order is  fixed.  The option
ShowProgress causes intermediate output to be printed.  In this first example, no constraints are being used, so an empty list
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{} is entered.  By setting indifference very small, we only get the best solutions:

In[121]:=

toler = 0.001;

grid = 7;

contraction = 0.25;

indif = 0.001;
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In[125]:=

GlobalMinima@4.*a1^2*a1^4 + H1.ê3.L*a1^6 + a1*a2 - 4.*a2^2 + 4.*a2^4, ,

88a1, -1., 1.<, 8a2, -1, 1.<<, grid, toler, contraction, indif, ShowProgress -> TrueD
Global Optimization, Version 5.2

dimension= 2

grid density= 7

contraction= 0.25

indifference= 0.001

tolerance= 0.001

no constraints in use

full efficiency, memory needed:
147

50 000

creating initial grid

max=-0.53242 min=-1.1186 number of nodes=16

daughters generated per node = 9

contraction coefficient cut=0.125

iteration 1

max=-1.21774 min=-1.28637 number of nodes=12

contraction coefficient cut=0.0625

iteration 2

max=-1.29207 min=-1.29278 number of nodes=4

iteration 3

max=-1.29338 min=-1.29344 number of nodes=4

iteration 4

max=-1.29369 min=-1.29369 number of nodes=2

iteration 5

max=-1.29371 min=-1.29371 number of nodes=2

total function calls=353

final results:

Out[125]=

888a1 Ø -0.4903, a2 Ø 0.736038<, -1.29371<, 88a1 Ø -0.4903, a2 Ø 0.737213<, -1.29369<,

88a1 Ø -0.486772, a2 Ø 0.730159<, -1.29338<, 88a1 Ø -0.486772, a2 Ø 0.740741<, -1.29344<,

88a1 Ø -0.47619, a2 Ø 0.730159<, -1.29278<, 88a1 Ø 0.47619, a2 Ø -0.730159<, -1.29278<,

88a1 Ø 0.486772, a2 Ø -0.740741<, -1.29344<, 88a1 Ø 0.486772, a2 Ø -0.730159<, -1.29338<,

88a1 Ø 0.4903, a2 Ø -0.737213<, -1.29369<, 88a1 Ø 0.4903, a2 Ø -0.736038<, -1.29371<<
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GlobalMinima in this example provided stepwise reports on its progress.  After echoing back the input parameters,
it  reports  on  the  memory needed for  computations.   If  more memory is  available,  the  program will  run faster  unless  it  is
already printing out "full efficiency".  At each iteration, it reported the current minimum and maximum and the number of
points in the solution set.  For large problems, the execution time can become extremely high if too many points are being
kept.   In  this  case,  it  can  be  useful  to  make  the  contraction  coefficient  somewhat  smaller.   If  a  problem is  known  to  be
convex and well-behaved (e.g., z = x2), a very small contraction (<0.05) will increase speed dramatically.  A helpful type of
printed output is a 2D plot of indifference-region values, for cases with two variables only.  These plots help provide insight
into program operation and the process of grid refinement and convergence.

The  program can  be  run  with  more  compact  output  by  omitting  the  ShowProgress  option,  which  then  allows  the
default False to take precendence.

The  camelback  problem  has  two  optimal  solutions.   A  constraint  that  selects  the  lower  right  quadrant  as  a  valid
region finds just one of the two solutions, as shown below.

In[126]:=

toler = 0.00001;

grid = 7;

contraction = 0.3;

indif = 0.0001;

In[130]:=

GlobalMinima@4.*a1^2*a1^4 + H1.ê3.L*a1^6 + a1*a2 - 4.*a2^2 + 4.*a2^4,

8-a1, a2<, 88a1, -1., 1.<, 8a2, -1, 1.<<, grid, toler,

contraction, indif, ShowProgress Ø FalseD êê Timing

Out[130]=

80.016, 888a1 Ø 0.490169, a2 Ø -0.735907<, -1.29371<,

88a1 Ø 0.490213, a2 Ø -0.735951<, -1.29371<, 88a1 Ø 0.4903, a2 Ø -0.737213<, -1.29369<,

88a1 Ø 0.4903, a2 Ø -0.736038<, -1.29371<, 88a1 Ø 0.4903, a2 Ø -0.733686<, -1.29366<<<

We can see that only the solutions in one quadrant were found, as desired.  

IV.10  Testing

No numerical  algorithm can be  guaranteed not  to  fail.   However,  the approach taken here is  far  more robust  than
other approaches.  The algorithm has been tested with a number of both simple and complex functions and has been shown
to  perform  well  for  a  number  of  test  functions  that  exhibit  false  minima,  multiple  minima,  and  minimal  regions.   Test
functions  have  included  positive  polynomials  with  multiple  roots,  poorly  behaved  functions  with  large  numbers  of  false
minima, the Rosenbrock function,  a  number of multiple-minima problems, and many others.   The only difficulty encoun-
tered  is  that  for  multiple-minima  problems,  some  solutions  could  be  missed  if  the  initial  grid  density  is  too  low.   The
algorithm should be stable for achieving high-precision results, because no derivatives are used, and testing has shown that
high accuracy can be achieved easily.  Mathematica uses high precision computations, and stores numbers as exact ratios of
whole numbers whenever possible.  Thus very little error is expected from truncation.  Nondifferentiable functions, such as
step functions, were tested and caused no numerical difficulties.  The algorithm has no trouble with problems having up to
dozens of true optima.  For pathological functions with thousands of optima, the program may be able to find only scores of
solutions in a particular run. 

This package is not a tool for pure mathematics but rather is designed for applied problems.  In the Csendes function
discussed below, a box around the origin contains only solutions less than some value.  Near the origin, values within the
box may be 10-33  or less.  GlobalMinima is designed to define this box and to converge near the best minimum.  Conver-
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gence to the absolute minimum (in this case, zero at x = 0) is of less interest, because all locations within the defined box
region  are  essentially  equally  good  (to  10-33).   It  is  thus  difficult  to  compare  the  AGR  algorithm  directly  to  other  algo-
rithms,  because other approaches seek out  the analytical optimum point whereas the AGR algorithm seeks out the practi-
cally optimal region(s).  What we can say is that although the AGR algorithm may not always find the analytical minimum
of a function, it usually gets very close, and it can also find multiple minima and optimal regions, which other algorithms
cannot.

IV.10.A  A Simple Polynomial.
The use of the package is best illustrated with examples.  We begin with some simple cases.  The function ⁄i=1

n x2 is

symmetric  and  for  any  number  of  dimensions  has  a  global  minimum  at  the  origin  with  z  =  0.   This  problem  meets  the
classic criteria of gradient descent algorithms, which converge to the solution from any starting point for functions with no
saddles,  discontinuities,  or  false  minima.   GlobalMinima  converges  to  the  correct  answer  easily.   Although  the  AGR
algorithm is not as fast as a steepest-descent algorithm, it is quite fast for such well-behaved and steep problems.

A simple modification to this function creates a problem with multiple solutions:

In[132]:=

Plot @Hx - 30L^2 Hx - 60L^2, 8x, 0, 100<D
Out[132]=

20 40 60 80 100

1.μ106

2.μ106

3.μ106

4.μ106

5.μ106

Here, zÇ = 0 at x = 30 and at x = 60.  When we run GlobalMinima over the interval {0, 100}, we need an initial grid density
of 20 points to find both solutions:

53



In[133]:=

GlobalMinima@Hx - 30L^2 Hx - 60L^2, , 88x, 0., 100.<<, 20, 0.00001, 0.3, 0.0001D êê Timing

Out[133]=

90.016, 988x Ø 29.9999<, 0.0000145192<, 98x Ø 30.<, 1.61324μ10-6=,

98x Ø 30.<, 1.79248μ10-7=, 98x Ø 30.<, 1.99165μ10-8=, 98x Ø 30.<, 2.21294μ10-9=,

98x Ø 30.<, 2.21294μ10-9=, 98x Ø 30.<, 1.99165μ10-8=, 98x Ø 30.<, 1.79248μ10-7=,

98x Ø 30.<, 1.61323μ10-6=, 88x Ø 30.0001<, 0.000014519<, 88x Ø 59.9999<, 0.000014519<,

98x Ø 60.<, 1.61323μ10-6=, 98x Ø 60.<, 1.79248μ10-7=, 98x Ø 60.<, 1.99165μ10-8=,

98x Ø 60.<, 2.21294μ10-9=, 98x Ø 60.<, 2.21294μ10-9=, 98x Ø 60.<, 1.99165μ10-8=,

98x Ø 60.<, 1.79248μ10-7=, 98x Ø 60.<, 1.61324μ10-6=, 88x Ø 60.0001<, 0.0000145192<==

Note that for small problems like this, the solution is very fast.  While some of the values look like duplicates, note that they
must  not  be  because  otherwise  the  values  of  the  function  would  be  identical.   This  results  from  significant  digits  that
Mathematica  does not show on output.  Traditional methods would find one or the other of these solutions, depending on
the  initial  guess  given  to  the  algorithm.   In  this  case,  the  maximum and  minimum coordinates  of  the  indifference  region
overstate the size of the region, which is really just two widely separated clusters of points.  

IV.10.B  The Rosenbrock Function
An  interesting  problem  is  the  Rosenbrock  function  (Ingber  and  Rosen,  1992)   a  classic  test   of  convergence  of

optimization algorithms.  The plot of this function is:

In[134]:=

Plot3D@100.*Hx^2 - yL^2 + H1 - xL^2, 8x, -5, 5<, 8y, -10, 10<D
Out[134]=

This  function  becomes  quite  shallow  as  the  optimal  region  is  approached,  and  some  algorithms  experience  convergence
difficulties with it.  We can see that GlobalMinima does not experience difficulties with it and finds the global minimum z
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= 0 at {1, 1}, even with an initial grid = 5 and contraction = 0.2, so long as the tolerance is small (< 10-7).  The execution
time is faster than when using GlobalSearch.

In[135]:=

GlobalMinima@100.*Hx^2 - yL^2 + H1. - xL^2, ,

88x, -5, 5.<, 8y, -10., 10.<<, 8, 0.00000001, 0.2, 0.000000000001D êê Timing

Out[135]=

80.188, 888x Ø 0.999997, y Ø 0.999994<, 0<,

88x Ø 0.999997, y Ø 0.999994<, 0<, 88x Ø 0.999997, y Ø 0.999994<, 0<,

88x Ø 0.999997, y Ø 0.999994<, 0<, 88x Ø 0.999997, y Ø 0.999995<, 0<,

88x Ø 0.999997, y Ø 0.999994<, 0<, 88x Ø 0.999997, y Ø 0.999994<, 0<,

88x Ø 0.999997, y Ø 0.999995<, 0<, 88x Ø 0.999997, y Ø 0.999995<, 0<,

88x Ø 0.999997, y Ø 0.999996<, 0<, 88x Ø 0.999998, y Ø 0.999995<, 0<,

88x Ø 0.999998, y Ø 0.999996<, 0<, 88x Ø 0.999998, y Ø 0.999996<, 0<,

88x Ø 0.999998, y Ø 0.999995<, 0<, 88x Ø 0.999998, y Ø 0.999996<, 0<,

88x Ø 0.999998, y Ø 0.999996<, 0<, 88x Ø 0.999999, y Ø 0.999998<, 0<,

88x Ø 0.999999, y Ø 0.999999<, 0<, 88x Ø 0.999999, y Ø 0.999998<, 0<,

88x Ø 0.999999, y Ø 0.999999<, 0<, 88x Ø 0.999999, y Ø 0.999999<, 0<,

88x Ø 1., y Ø 0.999998<, 0<, 88x Ø 1., y Ø 0.999999<, 0<, 88x Ø 1., y Ø 0.999999<, 0<,

88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.<, 0<,

88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.<, 0<,

88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.<, 0<, 88x Ø 1., y Ø 1.00001<, 0<,

88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<,

88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<,

88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<,

88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<, 88x Ø 1., y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00001<, 0<,

88x Ø 1.00001, y Ø 1.00001<, 0<, 88x Ø 1.00001, y Ø 1.00002<, 0<<<

IV.10.C  The Branin rcos Function
A related function, the Branin rcos function (Dixon and Szego, 1978), has a more complex surface:
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In[136]:=

Plot3D@Hy - x^2*5.1êH4.*3.14159^2L + 5.*xê3.14159 - 6.L^2 +

10.*H1. - 1.êH8.*3.14159LL*Cos@xD + 10., 8x, -40, 40<, 8y, -40, 40<D

Out[136]=

In  the  region {-40,  40},  there  are  six  equivalent  minima.   With traditional  algorithms,  it  would  be  very  difficult  to  know
what  initial  guesses  to  use.   The  number  of  possible  minima is  certainly not  clear  from inspection of  the  equation or  the
plot.  Zooming in a little on the flat region, we can see a horseshoe-shaped valley:
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In[137]:=

Plot3D@Hy - x^2*5.1êH4.*3.14159^2L + 5.*xê3.14159 - 6.L^2 +

10.*H1. - 1.êH8.*3.14159LL*Cos@xD + 10., 8x, -20, 40<, 8y, -40, 40<D

Out[137]=

However, we still do not have much information about the solutions.  GlobalMinima provides a solution:

In[138]:=

ans = GlobalMinima@Hy - x^2*5.1êH4.*3.14159^2L + 5.*xê3.14159 - 6.L^2 +

10.*H1. - 1.êH8.*3.14159LL*Cos@xD + 10., ,

88x, -40, 40<, 8y, -40, 40<<, 11, 0.001, 0.3, 0.01, ShowProgress -> TrueD

Here, the semicolon was used to suppress output of the list of points, which are instead stored in "ans".  From this example,
we can see  that  GlobalMinima finds  all  six  optima with the given parameters and that  the indifference parameter  defines
regions around these optima.

IV.10.D  The Csendes Function

A very difficult problem is the Csendes function (Csendes, 1985; Courrieu, 1997):

(23)Cn HSL = ‚
i=1

n

xi
6 2 + Sin 

1

xi

- 1 < xi < 1

This function has a unique global minimum (0) at x = 0, an oscillation frequency that approaches infinity as one approaches
the origin, and a countable infinity of local minima, making local searches impractical.  For a 2D version, we can plot the
function:
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In[139]:=

Plot3D@x^6*H2.0 + Sin@1.0êxDL + y^6*H2.0 + Sin@1.0êyDL, 8x, -1., 1.<, 8y, -1., 1.<D
Out[139]=

At this scale, the plot appears smooth, but in cross section and closer to the origin it gets increasingly wavy as we approach
zero:
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In[140]:=

Plot @x^6 * H2. + Sin@1.êxDL, 8x, - .1, .1<D
Out[140]=

-0.10 -0.05 0.05 0.10

2.μ10-7

4.μ10-7

6.μ10-7

8.μ10-7

1.μ10-6

1.2μ10-6

Although the waviness increases close to zero, the absolute magnitude of the oscillations goes to zero as we approach the
origin.  We can try to solve this problem as follows, with grid = 10 and tolerance = 0.0000001.

(24)

GlobalMinima@
x^6 * H2.0 + Sin@1.0 ê xDL + y^6 * H2.0 + Sin@1.0 ê yDL, ,

88x, -1., 1.<, 8y, -1., 1.<<, 10, 0.00001, 0.2, 0.0000001D

The  solution  to  this  is  not  shown  here  because  many  pages  of  printout  result  from  the  identification  of  the  indifference
region.  It was found that the best solution is 10-15  at {0.0037, 0.0037}, but that the entire region within the box ±0.056 in
both dimensions is less than 0.00001 (based on the indifference zone criterion) and that the region within the box -0.167 to
0.21 in both dimensions is less than 0.0001.  Zooming in around the best solution and restarting with a new grid does yield
some improvement (z = 10-30 at {9e-06, 9e-06}), but we have to consider whether improvement from 10-15 could possibly
have significance.

We can also turn the problem around and ask how bad the local solution can be in the optimal neighborhood.  In the
region within ±0.056, we find that the worst solution found is around 0.0000001.  This enables us to put bounds on the set
of points in the optimal region.  If these bounds are wide, then very large Z values might be adjacent to very small ones, in
which case it is not advisable to view the region full of optimal solutions as truly optimal, because the region is also full of
bad solutions.  From a purely mathematical viewpoint, this is irrelevant; however, from a practical viewpoint, we should not
try to implement an optimal policy or design if very bad solutions are very close to it, because our ability to implement a
solution is always imperfect.  An obvious example of this difficulty occurs with sin(1/x), whose plot looks like
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In[141]:=

Plot@Sin @1êxD, 8x, 0, 1<D
Out[141]=

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

GlobalMinima  with  20  initial  grid  points  yields  z  =  -0.999  at  points  {0.0033,0.0335,0.0424,0.058,0.09}.   This  is  not  a
complete set, but it does show that many equivalent solutions exist.  Solving for the maxima on this same interval, we find
that  z  =  -0.999  at  {0.022,0.025,0.03,0.037,0.049,0.07}.   We  can  see  that  maxima  alternate  with  and  are  very  close  to
minima over the region.  Unless our implementation is perfect, which is quite unlikely, we cannot in the real world imple-
ment the optimal solution for such a problem without great risk of actually implementing a worst possible solution.  Thus,
when multiple optima exist, a combined minimization-maximization is useful to define the feasibility of the solutions.

IV.10.E  Wavy Functions, the W Function
Another "difficult" function is the W function (Courrieu,1997):

(25)Wn, k HxL =
1

n
 ‚
i=1

n1

-cos HkxiL exp I-xi
2 ë 2M

for -p<x<p.  W functions have their unique global minimum (0) at x = 0.  The number of local minima in the search domain
is kn (for k odd) or (k + 1)n (for k even).  Here we used only k = 10, which gave 121 local minima for n = 2 and more than
2.59 x 1010 local minima for n = 10.  The function oscillates between two hulls of constant mean (= 1) whose distance from
each other is maximal in the neighborhood of the solution.

A one-dimensional slice across the W function shows why this is a difficult function for optimization algorithms.  
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In[16]:= Plot@1 - Cos@10. *xD Exp@-x^2ê2D, 8x, - 3.14159, 3.14159<D;

-3 -2 -1 1 2 3

0.5

1

1.5

2

The solution of this function with the AGR algorithm depends on having sufficient grid density so that an initial point falls
into the inner oscillation that goes to zero.  With an initial grid density of 40 points for a 2D problem, GlobalMinima finds
the  solution  to  arbitrary  accuracy,  depending  on  Tolerance.   Again  for  such  a  problem  in  real-world  applications,  it  is
important to know whether bad solutions are close to good ones.  Here we can zoom in on the best solution and, over the
interval {-1, 1} on each dimension, find min(z) = -W.  When we do this, GlobalMinima finds the worst solution z = 1.95 at
{-0.311, -0.311} and three other symmetrically located points, all very close to the global minimum (as can also be seen in
the one dimensional figure above).  This is a potentially unstable situation.  We must then evaluate whether we can imple-
ment a solution to this problem in the real world with sufficient accuracy to ensure that neither noise nor error will lead to
the adverse solutions rather than the desired optimal one.

IV.10.F  More Wavy Functions 
Some further examples of wavy functions are instructive.  First, we consider the function Sin_1:

(26)z =  |x + 3 Sin(x) |
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In[142]:=

Plot@Abs@x + 3 Sin@xDD, 8x, -40, 40<D
Out[142]=

-40 -20 20 40

10

20

30

40

When solved by solvers such as IMSL or the Mathematica  FindMinimum function, this function yields local minima unless
the initial guess is near the origin.  GlobalMinima solved this to arbitrary accuracy (on {-40, 40}) with 26 initial grid points.
An accuracy of 10-12 was achieved with 150 function calls.  

The related waxy function Sin_2:

(27)z = | 2x + xSinx |
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In[143]:=

Plot @Abs @2 x + x * Sin @xDD, 8x, -40, 40<D
Out[143]=
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with 12 initial grid points GlobalMinima attained an accuracy of 10-12 with 152 function calls.

IV.10.G  Wavy Fractals 
As an example of a very wavy function, a fractal (nondifferentiable) figure on the line was constructed:
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In[144]:=

Plot@4 Sin@xD + Sin@4 xD + Sin@8 xD + Sin@16 xD + Sin@32 xD + Sin@64 xD, 8x, 0, 6.28<D
Out[144]=
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(Here this figure was iterated to just six levels and evaluated between 0 and 2 .) With just 10 initial grid points, GlobalMin-
ima found the  solution  z  =  -6.98759 at  x  =  4.48989.   Even with  as  few as  5  initial  grid  points,  the  optimal  solution was
found.

In[145]:=

GlobalMinima@4 Sin@xD + Sin@4 xD + Sin@8 xD + Sin@16 xD + Sin@32 xD + Sin@64 xD, ,

88x, 0., 6.28<<, 10, 0.00001, 0.2, 0.0000001D êê Timing

Out[145]=

80.016, 888x Ø 4.48984<, -6.98759<, 88x Ø 4.48984<, -6.98759<<<

Note that this is much faster than using MultiStartMin or GlobalSearch and also more reliable on this very wavy function.
GlobalMinima will be faster for small problems (<3 variables without flat regions).

V  NONLINEAR REGRESSION: THE NLRegression 
FUNCTION

V.1  Introduction

NLRegression is a function that performs nonlinear regression using nonlinear least-squares.  It is able to incorpo-
rate constraints which may represent physical limits on the parameters being estimated, such as that a growth rate can not be
negative.
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The  optimizer  underlying  NLRegression  is  GlobalSearch.   All  options  used  by  GlobalSearch  are  accepted  by
NLRegression and passed down to it except StartsList.  See the GlobalSearch section for its options.  The only other option
accepted is Weights, which is the weight to be assigned to each data point.  Weighting might be employed when some of
the data have a greater reliability than others.  The format for the function call is

(28)
NLRegression[data,expression,independent_variables,inequalities,equalities,{{var1name,l
owbound,highbound}..},tolerance,options]

The output of the NLRegression procedure is a table of confidence intervals on the parameters, sensitivity plots, the
fit  parameter values, and the fit  statistics.   The sensitivity plot can be very useful for detecting parameters that are redun-
dant.  

The typical regression problem involves fitting data to a nonlinear model.  If the model is nonanalytic (black box),
the problem can not be solved by NLRegression, but instead must be solved by setting up the least-squares error function
which  is  then  passed  in  to  GlobalSearch.   If  the  function  returns  values  that  are  below  machine  accuracy  or  can  return
complex results, CompileOption->False should be used.  There are four options: FitStatistic, SensitivityPlots, Weights and
Norm:

In[146]:=

? FitStatistic

Fit criterion for NLRegression.

LeastSquare default. ChiSquare also available option.

In[147]:=

? Weights

Weight assigned to data point i during

regression analysis. Does not affect sum of squares.

In[148]:=

? Norm

Norm for fitting in NLRegression. L2 is default. L1 also available. à

In[149]:=

? SensitivityPlots

Prints sensitivity plots if True.

In[150]:=

? UserResiduals

Regression option for passing a user function for residuals.
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Let's consider a simple regression problem.

In[152]:=

p = Table@i, 8i, 0, 20<D
Out[152]=

80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

In[153]:=

ClearAll@a, b, xD

In[154]:=

eqn = a + b*x^2

Out[154]=

a + b x2

Where a and b are parameters, and x is the independent variable.  

In[155]:=

data = 8<; Do@AppendTo@data, 8x, eqn ê. 8a Ø 1, b Ø .1<<D, 8x, 0, 20<D

In[156]:=

data

Out[156]=

880, 1<, 81, 1.1<, 82, 1.4<, 83, 1.9<, 84, 2.6<, 85, 3.5<, 86, 4.6<, 87, 5.9<,

88, 7.4<, 89, 9.1<, 810, 11.<, 811, 13.1<, 812, 15.4<, 813, 17.9<, 814, 20.6<,

815, 23.5<, 816, 26.6<, 817, 29.9<, 818, 33.4<, 819, 37.1<, 820, 41.<<

In[157]:=

ListPlot@dataD
Out[157]=
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In[158]:=

r = NLRegression@data, eqn, 8x<, 8<, 8<, 88a, 0, 3<, 8b, 0, 1<<,

.0000001, SensitivityPlots Ø False, StartsList Ø 882, .5<<D êê Timing

Out[158]=

92.547, 9DegreesOfFreedom Ø 19, TotalSS Ø 3304.33, ParameterEstimate Ø 8a Ø 1., b Ø 0.1<,

ResidualSS Ø 1.13652μ10-14, RSquare Ø 1., ConfidenceIntervals Ø

8a Ø Interval@80.997817, 1.00218<D, b Ø Interval@80.0999882, 0.100012<D<==

We recover exactly our original parameters.  It is possible that the best fit to data violates some constraint such as
physical  feasibility.   In this  case,  it  is  necessary to constrain the optimization problem.  We introduce some measurement
error into the data. 

In[159]:=

data@@1, 2DD = data@@1, 2DD - 1

Out[159]=

0

In[160]:=

data@@2, 2DD = data@@2, 2DD - 1

Out[160]=

0.1

In[161]:=

data

Out[161]=

880, 0<, 81, 0.1<, 82, 1.4<, 83, 1.9<, 84, 2.6<, 85, 3.5<, 86, 4.6<, 87, 5.9<,

88, 7.4<, 89, 9.1<, 810, 11.<, 811, 13.1<, 812, 15.4<, 813, 17.9<, 814, 20.6<,

815, 23.5<, 816, 26.6<, 817, 29.9<, 818, 33.4<, 819, 37.1<, 820, 41.<<

In[162]:=

ListPlot@dataD
Out[162]=
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In[163]:=

r = NLRegression@data, eqn, 8x<, 8<, 8<, 88a, 0, 3<, 8b, 0, 1<<, .0000001D êê Timing

Sensitivity plot variable a

0.70 0.75 0.80 0.85 0.90 0.95
a

1.7

1.8

1.9

2.0

2.1

ss

Sensitivity plot variable b

0.09 0.10 0.11 0.12
b

50

100

150

200

250

300
ss

Out[163]=

80.703, 8DegreesOfFreedom Ø 19,

TotalSS Ø 3360.6, ParameterEstimate Ø 8a Ø 0.792125, b Ø 0.100824<,

ResidualSS Ø 1.58507, RSquare Ø 0.999528, ConfidenceIntervals Ø

8a Ø Interval@80.505452, 1.0788<D, b Ø Interval@80.0992788, 0.10237<D<<<

We see  above that  the  error  added to  the  data  causes  "a"  to  fall  down to  .792.   If  we know that  parameter  a  can not  fall
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p
below .9 for some reason, we may add this constraint to the problem.  a>.9 is converted to standard form as {-a+.9}.  We
add this to the function call.

In[164]:=

r = NLRegression@data, eqn, 8x<, 8-a + .9<, 8<, 88a, 0, 3<, 8b, 0, 1<<, .0000001D êê Timing

Warning: C.I. and sens. plots not defined with constraints

Out[164]=

80.062, 8DegreesOfFreedom Ø 19, TotalSS Ø 3360.6,

ParameterEstimate Ø 8a Ø 0.9, b Ø 0.100396<, ResidualSS Ø 1.69681, RSquare Ø 0.999495<<

The addition of  the constraint  satisfies the restrictions on the problem. Note that with constraints the confidence intervals
and sensitivity plots are not defined and can not be printed. Another way to approach this problem is to use the L1 norm,
which reduces the influence of outliers.  We try this next, without constraints.
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In[165]:=

r =

NLRegression@data, eqn, 8x<, 8<, 8<, 88a, 0, 3<, 8b, 0, 1<<, .0000001, Norm Ø L1D êê Timing

Sensitivity plot variable a

0.9 1.0 1.1 1.2
a

3

4

5

6

ss

Sensitivity plot variable b

0.09 0.10 0.11 0.12
b

10

20

30

40

50

60

ss

Out[165]=

81.094, 8DegreesOfFreedom Ø 19, TotalSS Ø 3360.6, ParameterEstimate Ø 8a Ø 1., b Ø 0.1<,

ResidualSS Ø 2., RSquare Ø 0.999405, ConfidenceIntervals Ø

8a Ø Interval@81.22315, 1.22317<D, b Ø Interval@80.0983608, 0.101636<D<<<
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We note two things immediately.  First,  the sensitivity plots are now linear rather than quadratic,  because of the different
norm.  Second, the L1 norm recovers the true parameters in spite of the error in the data and without the use of constraints.

V.2  Utilizing Chi-Square fit Criteria

It is sometimes useful to use a chi-square fit statistic:

In[178]:=

FitStatistic Ø ChiSquare

Out[178]=

FitStatistic Ø ChiSquare

V.3  Multiple Independent Variables in Regression Problems

In the next example,the fitting of a function to data is illustrated when there are multiple independent variables.  A
common example of such a problem is when several experiments are done under different conditions and all data from all
experiments are to be used to estimate certain parameters.

In[179]:=

p = Table@i, 8i, 1, 20<D
Out[179]=

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

In[180]:=

ClearAll@x, a, b, c, gD

In[181]:=

y1 = d Ha * x^g + bL + c *H2 * b + a * x^gL
Out[181]=

d Hb + a xgL + c H2 b + a xgL

In[182]:=

c = 1; d = 0;

dat1 = 8<; curve1 = 8<; curve2 = 8<; Do@k = y1 ê. 8x -> p@@iDD, a Ø .1, b Ø 10., g Ø 2<;

AppendTo@dat1, 8c, d, p@@iDD, k<D; AppendTo@curve1, 8p@@iDD, k<D;, 8i, 1, 20<D;

c = 0; d = 1;

Do@k = y1 ê. 8x -> p@@iDD, a Ø .1, b Ø 10., g Ø 2<;

AppendTo@dat1, 8c, d, p@@iDD, k<D; AppendTo@curve2, 8p@@iDD, k<D;, 8i, 1, 20<D
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In[186]:=

p1 = ListPlot@curve1D
Out[186]=
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In[187]:=

p2 = ListPlot@curve2D
Out[187]=
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In[188]:=

Show@p1, p2D
Out[188]=
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In[189]:=

ClearAll@c, d, xD

In[190]:=

indepvars = 8c, d, x<
Out[190]=

8c, d, x<

In[191]:=

r = NLRegression@dat1, y1, indepvars,

8<, 8<, 88a, 0, 1<, 8b, 0, 20<, 8g, 1, 3<<, .0000001D êê Timing

Sensitivity plot variable a
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0.09 0.10 0.11 0.12
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100
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Sensitivity plot variable b

9 10 11 12
b

100
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300

400

ss

Sensitivity plot variable g
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1.8 2.0 2.2 2.4
g

5000

10 000

15 000

20 000

ss

Out[191]=

911.781, 9DegreesOfFreedom Ø 37, TotalSS Ø 7216.42,

ParameterEstimate Ø 8a Ø 0.1, b Ø 10., g Ø 2.<, ResidualSS Ø 6.34686μ10-25,

RSquare Ø 1., ConfidenceIntervals Ø 8a Ø Interval@80.0999917, 0.100008<D,

b Ø Interval@89.999, 10.001<D, g Ø Interval@81.99997, 2.00003<D<==

In[192]:=

rr = r@@2DD
Out[192]=

9DegreesOfFreedom Ø 37, TotalSS Ø 7216.42,

ParameterEstimate Ø 8a Ø 0.1, b Ø 10., g Ø 2.<, ResidualSS Ø 6.34686μ10-25,

RSquare Ø 1., ConfidenceIntervals Ø 8a Ø Interval@80.0999917, 0.100008<D,

b Ø Interval@89.999, 10.001<D, g Ø Interval@81.99997, 2.00003<D<=

In[193]:=

rrr = rr@@3DD
Out[193]=

ParameterEstimate Ø 8a Ø 0.1, b Ø 10., g Ø 2.<

In[194]:=

pars = rrr@@2DD
Out[194]=

8a Ø 0.1, b Ø 10., g Ø 2.<

In[195]:=

y1

Out[195]=

d Hb + a xgL + c H2 b + a xgL
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In[196]:=

pars2 = Join@pars, 8c Ø 1, d Ø 0<D
Out[196]=

8a Ø 0.1, b Ø 10., g Ø 2., c Ø 1, d Ø 0<

In[197]:=

p3 = Plot@y1 ê. pars2, 8x, 1, 20<D
Out[197]=
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In[198]:=

pars3 = Join@pars, 8c Ø 0, d Ø 1<D
Out[198]=

8a Ø 0.1, b Ø 10., g Ø 2., c Ø 0, d Ø 1<
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In[199]:=

p4 = Plot@y1 ê. pars3, 8x, 1, 20<D
Out[199]=

10 15 20

20

30

40

50

In[200]:=

Show@p1, p2, p3, p4D
Out[200]=
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We see that we have simultaneously fit both curves.  Problems with multiple independent variables can be fit even if
they can not be graphed in the manner above.

VI  MAXIMUM LIKELIHOOD ESTIMATION: THE 
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MaxLikelihood FUNCTION

VI.1  Introduction

In  this  section,  the MaxLikelihood  function is  described.   This  function is  an  estimation procedure  which attempts  to
maximize the log-likelihood of a function with respect to a data set.   It  is a useful alternative to nonlinear regression (the
NLRegression  function).   The  statistics  used  are  based  on  Crooke  et  al.  (1999).   The  function  uses  GlobalSearch  as  the
minimizing function, which is needed because some functions require constraints to be solved properly.  It thus accepts all
GlobalSearch options, except CompileOption and SimplifyOption.  This is because Compile does not work well with Log[],
and because a sum of Log terms will generally not simplify.  It is assumed that the function to be solved is algebraic, and
black box functions  are  not  allowed.   Weighting is  not  yet  implemented.   Special  functions are pre-programmed for  effi-
ciency and ease of use.  The pre-programmed functions can be ascertained as follows:

In[419]:=

? LikelihoodModels

Predefined models for MaxLikelihood

function:NormalModel,PoissonModel,BetaModel,GammaModel,LogNormalModel.

The syntax for the function is as follows:

(29)
MaxLikelihood[data,expression,independent_variables,constraints,{{var1name,lowbound,
highbound}..},tolerance,options]

VI.2  Examples and Built-In Functions

We first  illustrate  use  of  the  MaxLikelihood  function  for  determining  the  mean  m   and  standard  deviation  s   from a

random sample that has been generated by the Normal distribution:

f Hx; m, sL = e
-
Ix+mM2

2 s2

s 2 p
, x œ .

This probability distribution density is defined as NormalDistribution.

 For demonstration purposes, we draw a set of pseudo random numbers from the Normal distribution with m = 10 and s = 1.

In[201]:=

T = 100;

exact = 8m -> 10, s -> 1<;

data = Table@Random@NormalDistribution@m, sD ê. exactD, 8T<D;

Next, we define the probability density that we would like to fit as a pure function.

In[204]:=

Clear@fD;

f = PDF@NormalDistribution@m, sD, ÒD &;
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In[206]:=

g = f@xD
Out[206]=

‰
-
Hx-mL2

2 s2

2 p s

In[207]:=

mle = MaxLikelihood@data, g, 8x<, 8<,

88m, 8, 12<, 8s, .8, 1.5<<, .000001, CompileOption Ø TrueD êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 24; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 24; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 24; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -144.247

Parameter Standard Error z-statistic

m 10.05 0.1075 93.49
s 1.024 0.06432 15.92

Out[207]=

80.687, 8ParameterEstimate Ø 8m Ø 10.0456, s Ø 1.02381<, LogLikelihood Ø -144.247,

vcov Ø 880.0115462, -0.00209818<, 8-0.00209818, 0.00413659<<<<

We see that we have recovered the true parameters pretty well.  A large sample size would be needed for a better estimate.
We can compare the results using the built-in function NormalModel:
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In[208]:=

mle = MaxLikelihood@data, NormalModel, 8x<, 8<,

88m, 8, 12<, 8s, .8, 1.5<<, .000001, CompileOption Ø TrueD êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 17; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 17; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 17; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -144.247

Parameter Standard Error z-statistic

m 10.05 0.1075 93.49
s 1.024 0.06432 15.92

Out[208]=

80.078, 8ParameterEstimate Ø 8m Ø 10.0456, s Ø 1.02381<, LogLikelihood Ø -144.247,

vcov Ø 880.0115462, -0.00209818<, 8-0.00209818, 0.00413659<<<<

We see that the exact same result is obtained, but the run is about 4 times faster.  Note that the order of the parameters, but
not their names, is assumed to match the {mean,variance} parameters of the normal model.  In this example, since the data
is a sample from the distribution, we do not get back exactly the parameters we used to generate the data unless we draw a
very large sample data set. 

In[209]:=

T = 200;

exact = 8m -> 10, s -> 1<;

data = Table@Random@NormalDistribution@m, sD ê. exactD, 8T<D;

In[212]:=

mle =

MaxLikelihood@data, NormalModel, 8x<, 8<, 88m, 8, 12<, 8s, .8, 1.5<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 200

LogHLL: -296.231

Parameter Standard Error z-statistic

m 10.03 0.0759 132.1
s 1.064 0.06104 17.43

Out[212]=

80.078, 8ParameterEstimate Ø 8m Ø 10.0277, s Ø 1.06419<, LogLikelihood Ø -296.231,

vcov Ø 880.00576139, -0.000606893<, 8-0.000606893, 0.00372613<<<<

We see above that a larger sample size gave a much better estimate of the parameters.  Note also that the execution time is
nearly unaffected by the size of the data set for the built in model, although time required goes up linearly with data set size
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for the standard function.

Next we consider the estimation of the mean l for a sample data drawn from the Poisson distribution:

f Hx; lL = e-l  lx

x!
, x = 0, 1, 2, … .

We use the same approach to illustrate the method, generating a sample with a known mean and then estimating the mean
from the sample.  We draw sample data from a distribution with l = 10.

In[213]:=

Clear@fD;

T = 100;

exact = l -> 10;

data = Table@Random@PoissonDistribution@lD ê. exactD, 8T<D;

f = PDF@PoissonDistribution@lD, ÒD &;

In[218]:=

g = f@xD
Out[218]=

‰-l lx

x!

In[220]:=

mle = MaxLikelihood@data, PoissonModel, 8x<, 8<, 88l, 6, 9<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -267.396

Parameter Standard Error z-statistic

l 9.56 0.2727 35.05

Out[220]=

80.031, 8ParameterEstimate Ø 8l Ø 9.56<, LogLikelihood Ø -267.396, vcov Ø 880.074386<<<<

Once again, the preprogrammed model is faster.  Next we evaluate the Beta function.

Our next example is the Beta Distribution

f Hx; a, bL =
GHa+bL H1-xLq-1  xp-1

GHaL GHbL
, 0 § x § 1

where a, b > -1 are parameters and G  denotes the gamma function.    As above,  we draw sample data from the specified

distribution.

81



In[235]:=

Clear@fD;

T = 200;

exact = 8a -> 2, b -> 5<;

data = Table@Random@BetaDistribution@a, bD ê. exactD, 8T<D;

f = PDF@BetaDistribution@a, bD, ÒD &;

In[240]:=

g = f@xD
Out[240]=

H1 - xL-1+b x-1+a

Beta@a, bD

In this case, we must add constraints or the function goes to negative infinity during the solution.

In[241]:=

mle = MaxLikelihood@data, g, 8x<, 8-a + 1, -b<, 88a, 1, 5<, 8b, 3, 8<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 200

LogHLL: 91.717

Parameter Standard Error z-statistic

a 2.107 0.1899 11.09
b 4.878 0.4828 10.1

Out[241]=

81.313, 8ParameterEstimate Ø 8a Ø 2.10727, b Ø 4.87844<,

LogLikelihood Ø 91.717, vcov Ø 880.0360752, 0.0768617<, 80.0768617, 0.233123<<<<

In[242]:=

mle = MaxLikelihood@data, BetaModel,

8x<, 8-a + 1, -b + 1<, 88a, 1, 5<, 8b, 3, 8<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 200

LogHLL: 91.717

Parameter Standard Error z-statistic

a 2.107 0.1899 11.09
b 4.878 0.4828 10.1

Out[242]=

80.125, 8ParameterEstimate Ø 8a Ø 2.10727, b Ø 4.87844<,

LogLikelihood Ø 91.717, vcov Ø 880.0360752, 0.0768617<, 80.0768617, 0.233123<<<<

Next we illustrate the Gamma distribution.  Note that the order of parameters is assumed to match that in the Gamma built
in function.
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In[243]:=

Clear@fD;

T = 100;

exact = 8a Ø 1, l Ø 1<;

data = Table@Random@GammaDistribution@a, lD ê. exactD, 8T<D;

f = PDF@GammaDistribution@a, lD, ÒD &;

In[248]:=

g = f@xD
Out[248]=

‰
-

x

l x-1+a l-a

Gamma@aD

Note  that  we must  constrain the parameters to be positive to prevent  the function running away to -Infinity.   In  addition,
lambda must  be  constrained away from 0 to  prevent  underflow during computations,  even though the final  answer is  not
near zero.

In[249]:=

mle = MaxLikelihood@data, g, 8x<,

8-a + .0001, a - 5, -l +.0001, l - 8<, 88a, .2, 5<, 8l, 3, 8<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -103.626

Parameter Standard Error z-statistic

a 0.8749 0.09857 8.876
l 1.192 0.1975 6.036

Out[249]=

80.672, 8ParameterEstimate Ø 8a Ø 0.87492, l Ø 1.19244<, LogLikelihood Ø -103.626,

vcov Ø 880.00971663, -0.014305<, 8-0.014305, 0.0390238<<<<

In[250]:=

mle = MaxLikelihood@data, GammaModel, 8x<,

8-a + .0001, a - 5, -l +.0001, l - 8<, 88a, .2, 5<, 8l, 3, 8<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -103.626

Parameter Standard Error z-statistic

a 0.8749 0.09857 8.876
l 1.192 0.1975 6.036

Out[250]=

80.063, 8ParameterEstimate Ø 8a Ø 0.87492, l Ø 1.19244<, LogLikelihood Ø -103.626,

vcov Ø 880.00971663, -0.014305<, 8-0.014305, 0.0390238<<<<

In this case we get a huge speedup (10 times faster).  Next, we test the LogNormal predefined model.
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In[251]:=

Clear@fD;

T = 100;

exact = 8m -> 20, s -> 5<;

data = Table@Random@LogNormalDistribution@m, sD ê. exactD, 8T<D;

f = PDF@LogNormalDistribution@m, sD, ÒD &;

In[256]:=

g = f@xD
Out[256]=

‰
-
H-m+Log@xDL2

2 s2

2 p x s

In[257]:=

mle = MaxLikelihood@data, g, 8x<, 8<, 88m, 8, 12<, 8s, .8, 10<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -2296.65

Parameter Standard Error z-statistic

m 19.92 0.5117 38.93
s 5.086 0.371 13.71

Out[257]=

80.579, 8ParameterEstimate Ø 8m Ø 19.9211, s Ø 5.08585<,

LogLikelihood Ø -2296.65, vcov Ø 880.261864, -0.0210043<, 8-0.0210043, 0.137646<<<<

In[258]:=

mle = MaxLikelihood@data, LogNormalModel,

8x<, 8<, 88m, 8, 12<, 8s, .8, 10<<, .000001D êê Timing

-----Maximum Likelihood with Gradient Variance Computation-----

Number of Observations: 100

LogHLL: -2296.65

Parameter Standard Error z-statistic

m 19.92 0.5117 38.93
s 5.086 0.371 13.71

Out[258]=

80.047, 8ParameterEstimate Ø 8m Ø 19.9211, s Ø 5.08585<,

LogLikelihood Ø -2296.65, vcov Ø 880.261864, -0.0210043<, 8-0.0210043, 0.137646<<<<
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VII  DISCRETE VARIABLE PROBLEMS: THE 
 InterchangeMethodMin & TabuSearchMin FUNCTIONS

V.1I  Introduction

InterchangeMethodMin  and  TabuSearchMin  are  functions  which  maximize  a  linear  or  nonlinear  function  of  integer  0-1
variables  either  with  or  without  constraints.   This  type  of  problem comes  up  often  in  operations  research  (e.g.,  network,
scheduling, and allocation applications).  Integer 0-1 problems are not generally solvable with an analytic approach such as
Linear Programming.  The method used here is the Interchange method (Densham and Rushton, 1992; Goldberg and Paz,
1991; Lin and Kernighan, 1973; Teitz and Bart, 1968), which is similar to the author's SWAP algorithm (Loehle, 2000).  It
has been shown that the Interchange method is guaranteed to get close to the optimum solution, but for complex problems
may  not  find  the  exact  solution.     On  the  other  hand,  it  is  much  faster  than  Simulated  Annealing  (Murray  and  Church,
1995).  The Interchange algorithm begins with a feasible start generated randomly.  It then makes changes in the configura-
tion  at  each iteration until  no  more progress  is  possible.   Note  that  while  it  is  possible  to  input  this  type of  problem into
MultiStartMin because it accepts discrete variables, MultiStartMin assumes that only a few discrete variables are involved,
and may generate a large set of possible moves and run slowly for large problems.  TabuSearchMin operates with a basic
Interchange  framework,  but  then  adds  a  tabu  list  feature.   The  tabu  list  is  the  list  of  n  previous  moves  that  will  not  be
revisited in looking for the next good move.  This feature adds efficiency because bad moves are not checked repeatedly.

The functions are defined by 

(30)InterchangeMethodMin[expr,ineqs,{varlist},tolerance,options]

(31)TabuSearchMin[expr,ineqs,{varlist},tolerance,options]

where expr is the function to be minimized, which need not be linear, and ineqs is the inequalities, which are optional and
are in standard form. There are three options for the program.  Starts defines the number of random starting points to test
(default 5).  Input starting points can be input with the StartsList option.  CompileOption can be set to False if the function
is not compilable.   ShowProgress shows intermediate stages of the computation.  Program operation is shown next in the
following examples of applications.  Note that the range of applications is not exhausted by these examples.

VII.2  Applications

VII.2.A Capital Allocation

In many investment  problems,  the goal  is  to  allocate a  fixed amount of  money across a  series  of  investments.   When the
items to be allocated are discrete,  and must be allocated to one or another use in their entirety, then the problem must be
solved  with  integer  programming.   In  the  following  example,  the  variables  {x1,x2,x3,x4}  are  0-1.   There  are  several
constraints.  The objective function is given by 

(32)Max HzL = .2 x1 + .3 x2 + .5 x3 + .1 x4

This problem may be solved as follows.  We minimize the negative of z to maximize, and enter all the constraints, which
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are less than inequalities:

In[259]:=

ClearAll@x1, x2, x3, x4D

In[260]:=

InterchangeMethodMin@-H.2 x1 + .3 x2 + .5 x3 + .1 x4L,

8.5 x1 + x2 + 1.5 x3 + .1 x4 - 3.1, .3 x1 + .8 x2 + 1.5 x3 + .4 x4 - 2.5,

.2 x1 + .2 x2 + .3 x3 + .1 x4 - .4<, 8x1, x2, x3, x4<, .001, Starts Ø 4D êê Timing

Out[260]=

80.187, 888x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<,

88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<<<

Seven random starts were used, but only 2 unique starts were used due to duplications.  Two starts found the correct answer
{0,0,1,1}.   On  larger  problems,  performance  might  not  be  quite  this  good.   TabuSearch  also  can  solve  this  problem cor-
rectly:

In[261]:=

TabuSearchMin@-H.2 x1 + .3 x2 + .5 x3 + .1 x4L, 8.5 x1 + x2 + 1.5 x3 + .1 x4 - 3.1,

.3 x1 + .8 x2 + 1.5 x3 + .4 x4 - 2.5, .2 x1 + .2 x2 + .3 x3 + .1 x4 - .4<,

8x1, x2, x3, x4<, .001, Starts Ø 4, TabuListLength Ø 1D êê Timing

Out[261]=

80.047, 888x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<,

88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<<<

Note  that  Tabu  Search  may  perform  worse  than  Interchange  on  small  problems.   Note  also  that  a  small  tabu  list  size  is
needed for this problem.  If we specify a tabu list too long, a warning results:

In[262]:=

TabuSearchMin@-H.2 x1 + .3 x2 + .5 x3 + .1 x4L, 8.5 x1 + x2 + 1.5 x3 + .1 x4 - 3.1,

.3 x1 + .8 x2 + 1.5 x3 + .4 x4 - 2.5, .2 x1 + .2 x2 + .3 x3 + .1 x4 - .4<,

8x1, x2, x3, x4<, .001, Starts Ø 4, TabuListLength Ø 100D êê Timing

Warning: TabuListLength too long, will cause gridlock

TabuListLength shortened to 2

Out[262]=

80.062, 888x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<,

88x1 Ø 1, x2 Ø 1, x3 Ø 0, x4 Ø 0<, -0.5<, 88x1 Ø 0, x2 Ø 0, x3 Ø 1, x4 Ø 1<, -0.6<<<

VII.2.B Vehicle Routing/Travelling Salesman

A  very  common  problem  in  operations  research  is  vehicle  routing.   This  problem  arises  in  delivery  service,  airline,  and
other transportation contexts.  To illustrate, define a set of 8 cities with coordinates:

(33)c={{1,1},{2,0.1},{3,0.1},{4,1},{1,2},{2,2},{3,2},{4,2}}
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Where the objective is to minimize the sum of the links between cities.  We define the objective function as the sum of the
distance*existence  of  the  link  over  all  possible  links  between  cities.   Self-loops  (e.g.,  x11)  are  removed  from  the  lists.
Constraints are added that force every city to have at least 2 links (for entry and exit).  Finally, the sum of all edges must be
at least 8.  We really want exactly 8 links, but the algorithm does not accept equality constraints.  The minimization of the
sum of link distances will force the solution to exactly 8. Links are defined between cities such that there are no repeated
links (e.g., x13 but no x31) to make it faster. 

In[263]:=

lis = 8x12, x13, x23, x14, x24, x34, x15, x25, x35, x45, x16, x26, x36,

x46, x56, x17, x27, x37, x47, x57, x67, x18, x28, x38, x48, x58, x68, x78<
Out[263]=

8x12, x13, x23, x14, x24, x34, x15, x25, x35, x45, x16, x26, x36,

x46, x56, x17, x27, x37, x47, x57, x67, x18, x28, x38, x48, x58, x68, x78<

In[264]:=

InterchangeMethodMinB

2 J1.3453624047073711` x12 + 2.193171219946131` x13 + 3 x14 + x15 + 2 x16 + 5 x17 +

10 x18 + 1.` x23 + 2.193171219946131` x24 + 2.1470910553583886` x25 + 1.9` x26 +

2.1470910553583886` x27 + 2.758622844826744` x28 + 1.3453624047073711` x34 +

2.758622844826744` x35 + 2.1470910553583886` x36 + 1.9` x37 + 2.1470910553583886`

x38 + 10 x45 + 5 x46 + 2 x47 + x48 + x56 + 2 x57 + 3 x58 + x67 + 2 x68 + x78N +

Abs@x12 + x13 + x14 + x15 + x16 + x17 + x18 - 2D + Abs@x12 + x23 + x24 + x25 + x26 + x27 + x28 - 2D +

Abs@x13 + x23 + x34 + x35 + x36 + x37 + x38 - 2D +

Abs@x14 + x24 + x34 + x45 + x46 + x47 + x48 - 2D +

Abs@x15 + x25 + x35 + x45 + x56 + x57 + x58 - 2D +

Abs@x16 + x26 + x36 + x46 + x56 + x67 + x68 - 2D +

Abs@x17 + x27 + x37 + x47 + x57 + x67 + x78 - 2D +

Abs@x18 + x28 + x38 + x48 + x58 + x68 + x78 - 2D,

8-Hx12 + x13 + x14 + x15 + x16 + x17 + x18 + x23 + x24 + x25 + x26 + x27 + x28 + x34 + x35 +

x36 + x37 + x38 + x45 + x46 + x47 + x48 + x56 + x57 + x58 + x67 + x68 + x78L + 8<,

lis, .01, Starts Ø 5, CompileOption Ø True, ShowProgress Ø FalseF êê Timing

Out[264]=

85.016,

888x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0, x45 Ø 0,

x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0, x57 Ø 0,

x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<<<
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We see that the function found the solution in 4 out of 5 starts, which is a loop around the points in a rough circle.  Even the
starts that failed got quite close to the best solution and had the proper number of links defined.  The timing is quite good.
The problem of  subgraphs  that  are  not  linked to  form a  complete  vehicle  route  can  occur  in  this  problem but  is  unlikely
unless the subgraphs produce exactly the same total travel distance as the linked route.

In[265]:=

TabuSearchMinB

2 J1.3453624047073711` x12 + 2.193171219946131` x13 + 3 x14 + x15 + 2 x16 + 5 x17 +

10 x18 + 1.` x23 + 2.193171219946131` x24 + 2.1470910553583886` x25 + 1.9` x26 +

2.1470910553583886` x27 + 2.758622844826744` x28 + 1.3453624047073711` x34 +

2.758622844826744` x35 + 2.1470910553583886` x36 + 1.9` x37 + 2.1470910553583886`

x38 + 10 x45 + 5 x46 + 2 x47 + x48 + x56 + 2 x57 + 3 x58 + x67 + 2 x68 + x78N +

Abs@x12 + x13 + x14 + x15 + x16 + x17 + x18 - 2D + Abs@x12 + x23 + x24 + x25 + x26 + x27 + x28 - 2D +

Abs@x13 + x23 + x34 + x35 + x36 + x37 + x38 - 2D +

Abs@x14 + x24 + x34 + x45 + x46 + x47 + x48 - 2D +

Abs@x15 + x25 + x35 + x45 + x56 + x57 + x58 - 2D +

Abs@x16 + x26 + x36 + x46 + x56 + x67 + x68 - 2D +

Abs@x17 + x27 + x37 + x47 + x57 + x67 + x78 - 2D +

Abs@x18 + x28 + x38 + x48 + x58 + x68 + x78 - 2D,

8-Hx12 + x13 + x14 + x15 + x16 + x17 + x18 + x23 + x24 + x25 + x26 + x27 + x28 + x34 + x35 +

x36 + x37 + x38 + x45 + x46 + x47 + x48 + x56 + x57 + x58 + x67 + x68 + x78L + 8<,

lis, .01, Starts Ø 5, TabuListLength Ø 60F êê Timing

Out[265]=

80.859,

888x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0, x45 Ø 0,

x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 0, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0, x57 Ø 1,

x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 21.3814<,

88x12 Ø 0, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 1, x34 Ø 0, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 1, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 1,

x57 Ø 0, x67 Ø 0, x18 Ø 0, x28 Ø 0, x38 Ø 1, x48 Ø 0, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 22.3374<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 0, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 1,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 19.5192<,

88x12 Ø 0, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 1, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 19.5192<,

88x12 Ø 1, x13 Ø 0, x23 Ø 1, x14 Ø 0, x24 Ø 0, x34 Ø 1, x15 Ø 1, x25 Ø 0, x35 Ø 0,

x45 Ø 0, x16 Ø 0, x26 Ø 0, x36 Ø 0, x46 Ø 0, x56 Ø 1, x17 Ø 0, x27 Ø 0, x37 Ø 0, x47 Ø 0,

x57 Ø 0, x67 Ø 1, x18 Ø 0, x28 Ø 0, x38 Ø 0, x48 Ø 1, x58 Ø 0, x68 Ø 0, x78 Ø 1<, 17.3814<<<

We see that the TabuSearchMin function found the solution in 1 out of 5 starts, which is a loop around the points in a rough
circle, but in 1/3 the time of the InterchangeMethod.  Even the starts that failed got quite close to the best solution and had
the  proper  number  of  links  defined.   The  timing  is  quite  good.   The  problem of  subgraphs  that  are  not  linked  to  form a
complete vehicle route can occur in this problem but is unlikely unless the subgraphs produce exactly the same total travel
distance as the linked route.
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VII.2.C Minimum Spanning Tree

The construction of a minimum spanning tree is a problem that comes up in problems of delivery from fixed warehouses,
utility network design, and other applications.  We begin with the weighted graph, with nodes (a,b,c,d,e,f), and with edges
and weights defined by:

(34){xab,xac,xae,xbc,xbd,xcd,xce,xcf,xdf,xef}

(35)87, 2, 2, 1, 3, 3, 4, 4, 5, 6<
This  can  be  solved  with  the  interchange  method.   The  objective  function  is  to  minimize  the  sum of  the  weighted  edges.
This produces the minimum tree we desire.  We know that we want 5 edges as the final solution (#nodes -1), so we add an
inequality that the sum of the edges must be greater than 5.  This allows more than 5 initially, but then edges are trimmed as
the algorithm proceeds.  If an equality constraint is put in, the program will fail.  Additional constraints force every node to
have at least one edge touching it.

In[266]:=

InterchangeMethodMin@7 xab + 2 xac + 2 xae + 1 xbc + 3 xbd + 3 xcd + 4 xce + 4 xcf + 5 xdf + 6 xef,

8-Hxab + xac + xae + xbc + xbd + xcd + xce + xcf + xdf + xefL + 5,

-Hxab + xac + xaeL + 1, -Hxab + xbc + xbdL + 1, -Hxac + xbc + xcd + xce + xcfL + 1,

-Hxbd + xcd + xdfL + 1, -Hxae + xce + xefL + 1, -Hxcf + xdf + xefL + 1<,

8xab, xac, xae, xbc, xbd, xcd, xce, xcf, xdf, xef<, .1,

Starts Ø 1, CompileOption Ø TrueD êê Timing

Out[266]=

80.156, 888xab Ø 0, xac Ø 1, xae Ø 1,

xbc Ø 1, xbd Ø 0, xcd Ø 1, xce Ø 0, xcf Ø 1, xdf Ø 0, xef Ø 0<, 12.<<<

We see that the function returns the correct solution {ac,ae,bc,bd,cf} with a very fast execution time.  This reflects the fast
computational time for binary variables.  Large problems can thus be solved.

In[267]:=

TabuSearchMin@7 xab + 2 xac + 2 xae + 1 xbc + 3 xbd + 3 xcd + 4 xce + 4 xcf + 5 xdf + 6 xef,

8-Hxab + xac + xae + xbc + xbd + xcd + xce + xcf + xdf + xefL + 5,

-Hxab + xac + xaeL + 1, -Hxab + xbc + xbdL + 1, -Hxac + xbc + xcd + xce + xcfL + 1,

-Hxbd + xcd + xdfL + 1, -Hxae + xce + xefL + 1, -Hxcf + xdf + xefL + 1<,

8xab, xac, xae, xbc, xbd, xcd, xce, xcf, xdf, xef<, .1, Starts Ø 1,

TabuListLength Ø 10, CompileOption Ø TrueD êê Timing

Out[267]=

80.031, 888xab Ø 0, xac Ø 1, xae Ø 1,

xbc Ø 1, xbd Ø 0, xcd Ø 1, xce Ø 0, xcf Ø 1, xdf Ø 0, xef Ø 0<, 12.<<<

We  see  that  the  function  returns  the  correct  solution  {ac,ae,bc,bd,cf}  with  a  very  fast  execution  time.  For  such  smaller
problems, the Tabu Search approach does not provide superior speed. 
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VIII  THE MaxAllocation FUNCTION

VIII.1  Introduction

MaxAllocation is a function to maximize a nonlinear function subject to a linear constraint.

(36)Max Hf HxiLL s.t .0 < xi < rhs, ‚xi

i=1

n

 = rhs

This type of  problem comes up often in finance,  economics,  and investment.   Traditional algorithms have a great deal of
trouble with such a problem, though apparently simple.  A new algorithm enables a very efficient solution of this type of
problem.  The algorithm is based on the idea of path following.  If one can stay on the constraint line, then the solution stays
feasible at all times.  An approach to path following is based on the SWAP algorithm (Loehle, 2001). We first discretize the
interval of the rhs.  This discretization is made proportional to the number of variables, N, for convenience.  The initial 2N
pieces  are  placed  onto  all  the  variables  equally  (each  variable  is  given  a  value  2*rhs/N).   At  iteration  1,  each  variable  is
tested to see if swapping a single piece from that variable would improve the solution.  This performs a rectangular move in
N space.  After no more pieces can be moved from variable 1 (either all have been moved or no improvement is obtained),
testing proceeds to variable 2 to see if any pieces can be moved, and so on.  Note that some of the pieces moved from 1 to 2
might be redistributed at this point.  After the algorithm has tested all the variables in order for the possibility of making a
swap,  the number of  pieces on each variable  is  doubled (with half the length) for the next iteration.   This enables a finer
resolution of the function.

The function is defined by 

(37)MaxAllocation@function, varlist, rhs, tolerance, optionsD

where rhs is the right hand side value (from eqn (1)) and tolerance defines the stopping criterion.  There are three options
for  the  program.   MaxIterations  will  stop the  program at  the  specified number  of  iterations if  desired.   CompileOption is
useful if the function is not compilable.  ShowProgress shows intermediate stages of the computation. 

Operation of the function is shown in the following example.  This example is a sum of diminishing return terms.
This is  a  function with no nonlinear interaction terms.  It  can be shown that the algorithm converges to the analytic opti-
mum in this case.

In[268]:=

ClearAll@x2D

In[269]:=

varlist = 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,

x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,

x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,

x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60<;

In[270]:=

v@x_D := Sum@i*H1.0 - E^H-3.*x@@iDDLL, 8i, 1, 60<D

Note the technique used here to take advantage of indexed variables.  The function v is defined with a tensor as an argu-
ment.  Then function vvv is defined to accept a list and turn it into a tensor by passing it down to v.  This function can be
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compiled, and is in the following example.

In[271]:=

vvv = Function@8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,

x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,

x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,

x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60<,

v@8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16,

x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31,

x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45, x46,

x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60<DD;

In[272]:=

t = Table@1, 8i, 1, 60<D
Out[272]=

81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

In[273]:=

v@tD
Out[273]=

1738.89

In[274]:=

Apply@vvv, tD
Out[274]=

1738.89

In[275]:=

MaxAllocation@vvv@x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,

x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,

x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,

x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60D,

varlist, 1.0, .1, CompileOption Ø True, ShowProgress Ø FalseD êê Timing

Out[275]=

81.547, 88x1 Ø 0, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 0, x7 Ø 0, x8 Ø 0, x9 Ø 0, x10 Ø 0, x11 Ø 0,

x12 Ø 0, x13 Ø 0, x14 Ø 0, x15 Ø 0, x16 Ø 0, x17 Ø 0, x18 Ø 0, x19 Ø 0, x20 Ø 0, x21 Ø 0,

x22 Ø 0, x23 Ø 0, x24 Ø 0, x25 Ø 0, x26 Ø 0, x27 Ø 0, x28 Ø 0, x29 Ø 0, x30 Ø 0,

x31 Ø 0, x32 Ø 0, x33 Ø 0, x34 Ø 0, x35 Ø 0, x36 Ø 0, x37 Ø 0, x38 Ø 0, x39 Ø 0,

x40 Ø 0, x41 Ø 0, x42 Ø 0, x43 Ø 0, x44 Ø 0.00416667, x45 Ø 0.0125, x46 Ø 0.01875,

x47 Ø 0.0270833, x48 Ø 0.0333333, x49 Ø 0.0395833, x50 Ø 0.0479167, x51 Ø 0.0541667,

x52 Ø 0.0604167, x53 Ø 0.0666667, x54 Ø 0.0729167, x55 Ø 0.0791667, x56 Ø 0.0854167,

x57 Ø 0.0916667, x58 Ø 0.0958333, x59 Ø 0.102083, x60 Ø 0.108333<, 146.317<<

Next, we can compare the value of compiling the function in terms of timing.
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In[276]:=

MaxAllocation@vvv@x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,

x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,

x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44, x45,

x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59, x60D,

varlist, 1.0, .1, CompileOption -> FalseD êê Timing

Out[276]=

85.109, 88x1 Ø 0, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 0, x7 Ø 0, x8 Ø 0, x9 Ø 0, x10 Ø 0, x11 Ø 0,

x12 Ø 0, x13 Ø 0, x14 Ø 0, x15 Ø 0, x16 Ø 0, x17 Ø 0, x18 Ø 0, x19 Ø 0, x20 Ø 0, x21 Ø 0,

x22 Ø 0, x23 Ø 0, x24 Ø 0, x25 Ø 0, x26 Ø 0, x27 Ø 0, x28 Ø 0, x29 Ø 0, x30 Ø 0,

x31 Ø 0, x32 Ø 0, x33 Ø 0, x34 Ø 0, x35 Ø 0, x36 Ø 0, x37 Ø 0, x38 Ø 0, x39 Ø 0,

x40 Ø 0, x41 Ø 0, x42 Ø 0, x43 Ø 0, x44 Ø 0.00416667, x45 Ø 0.0125, x46 Ø 0.01875,

x47 Ø 0.0270833, x48 Ø 0.0333333, x49 Ø 0.0395833, x50 Ø 0.0479167, x51 Ø 0.0541667,

x52 Ø 0.0604167, x53 Ø 0.0666667, x54 Ø 0.0729167, x55 Ø 0.0791667, x56 Ø 0.0854167,

x57 Ø 0.0916667, x58 Ø 0.0958333, x59 Ø 0.102083, x60 Ø 0.108333<, 146.317<<

We can see that the compiled version runs 5 times faster.  

It  would be useful  to have a proof that this  algorithm works.  At this  time, no proof is available.  The algorithm has been
tested  on  a  suite  of  problems  with  known solutions,  and  gives  good  results.    The  algorithm has  been  designed to  guard
against infinite loops.   It is possible that a problem could be devised with local minima that would prevent a global opti-
mum from being reached, but no such problem has yet been encountered. The initial equitable distribution of pieces across
the variables guards against interaction (e.g., x1*x2) type terms which can not be improved by rectangular moves if they are
initialized to zero. 

The  above  problem with  250  variables  took 10 minutes  to  run on a  Pentium III  600 MHz machine.   Because  the
execution  time  goes  up  nonlinearly  with  the  number  of  variables,  it  is  likely  that  the  upper  limit  for  an  overnight  run  is
350-1000 variables, depending on the machine used.

VIII.2  Applications

VIII.2.A Investment Allocation Problems

In many investment problems, the goal is to allocate a fixed amount of money across a series of investments.  We
need not invest in all the options available.  A typical problem to solve is the following, (from A.K. Dixit, Optimization in
Economic Theory):  A capital sum C is available for allocation among n investment projects.  The expected return from a
portfolio of xj projects is

(38)⁄j=1
n Aa j  x j - 0.5 b j  x j

2E

subject to:

(39)‚
j=1

nxj

= C

This problem may be solved as follows:
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In[277]:=

a = 81000, 2000, 3000<;

In[278]:=

rhs = 10.0;

In[279]:=

b = 8100, 500, 1000.<;

In[280]:=

h@x_D := Sum@a@@iDD*x@@iDD - .5*b@@iDD*x@@iDD^2, 8i, 1, 3<D;

In[281]:=

fff = Function@8a1, a2, a3<, h@8a1, a2, a3<DD;

In[282]:=

MaxAllocation@fff@a1, a2, a3D, 8a1, a2, a3<, rhs, .1, ShowProgress Ø TrueD

Global Optimization, Version 5.2

number of variables = 3

constraint rhs = 10.

tolerance = 0.1

88a1 Ø 4.66667, a2 Ø 2.83333, a3 Ø 2.5<, 11 612.5<

88a1 Ø 4.58333, a2 Ø 2.91667, a3 Ø 2.5<, 11 614.6<

88a1 Ø 4.625, a2 Ø 2.91667, a3 Ø 2.45833<, 11 615.4<

88a1 Ø 4.625, a2 Ø 2.91667, a3 Ø 2.45833<, 11 615.4<
Out[282]=

88a1 Ø 4.625, a2 Ø 2.91667, a3 Ø 2.45833<, 11 615.4<

Here we find the solution which is an interesting mix of investments.  This problem can be extended to 350 to 1000 variable
cases for overnight runs, depending on machine speed.

VIII.2.B Derivative Hedging with Quadratic Programming

A  common  problem  in  finance  is  derivative  construction  to  hedge  an  investment.   One  technique  for  derivative
construction  is  to  construct  a  target  payoff  value  (T)  for  the  instrument,  and  then  to  allocate  investment  to  a  series  of
instruments with return R to get as close to the payoff value as possible using a quadratic objective function (for 3 instru-
ments here):

(40)⁄i=1
3 ATi -⁄j=1

3 x j  Ri, jE
2

(41)‚
j=1

3

xj pj § C
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This  can  be  solved  with  MaxAllocation.   First,  for  a  problem  with  3  possible  investments,  we  make  a  dummy  variable
(index  4  here)  to  take  up  the  slack  in  the  investment  (to  represent  the  part  of  C  NOT  invested).   Also,  the  equation  is
rearranged  so  that  x  represents  the  dollar  amount  invested  in  each  instrument,  so  x  is  divided  by  the  price  p  in  eqn.  (3).
Then C represents our rhs and the problem is given by:

In[283]:=

p = 81, 1, 1<;

In[284]:=

targetpayoff = 81000, 2000, 3000<;

In[285]:=

payoff = 881000, 0, 0<, 80, 2000, 0<, 80, 0, 3000<<;

In[286]:=

fy@x_D := -SumAItargetpayoff@@iDD - SumAIx@@jDD ë p@@jDDM*payoff@@i, jDD,

8j, 1, 3<EM^2, 8i, 1, 3<E;

In[287]:=

fff = Function@8a1, a2, a3, a4<, fy@8a1, a2, a3<DD;

In[288]:=

MaxAllocation@fff@a1, a2, a3, a4D, 8a1, a2, a3, a4<, 6., .1D

Out[288]=

88a1 Ø 0.999976, a2 Ø 0.999976, a3 Ø 0.999976, a4 Ø 3.00007<, -0.00834465<

In  this  example,  we  know  the  exact  answer,  and  the  algorithm  converged  to  the  exact  answer  quickly.   Such  derivative
construction problems can be solved with hundreds of variables.

IX  APPLICATIONS

IX.1  Zeros of a Function/Roots of a Polynomial  

Although  the  Mathematica  function  FindRoot  can  find  the  zeros  of  a  function,  it  can  occur  that  a  function  is  not
analytic, in which case FindRoot will not work.  For example, a function might need to be calculated recursively, algorithmi-
cally, or by simulation.  FindRoot also will only find a single root at a time from a given starting point.  In addition, we may
invoke  the  need  for  identifying  the  indifference  zone:  we  may  want  all  the  solutions  that  are  within  some  indifference
region of the zero or root.   It  is  a  simple matter to use either GlobalMinima or MultiStartMin to find roots of a function.
Consider the function

(42)x2 - 25

where the roots or zeros are obviously +5  and -5.  As formulated, the function looks like
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In[289]:=

Plot@x^2 - 25, 8x, -10, 10<D
Out[289]=

-10 -5 5 10

-20

20

40

60

and the minimum is at -25.  If, however, we evaluate the absolute value of the function

In[290]:=

Plot@Abs@x^2 - 25D, 8x, -10, 10<D
Out[290]=

-10 -5 5 10
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20

30

40

50

60

70

then we can simply minimize the function as in all the above examples and we will find the roots or zeros of the function,
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which are now the minima.  In cases where there is a region of solutions with values near zero, this procedure will likewise
allow us to define these regions.

In[291]:=

GlobalMinima@Abs@x^2 - 25D, , 88x, -10, 10<<, 10, 0.00001, 0.1, 0.0000001D êê Timing

Out[291]=

92.94209μ10-15, 888x Ø -5<, 0<, 88x Ø 5<, 0<<=

In[292]:=

MultiStartMin@Abs@x^2 - 25D, 8<, 8<, 8 8x, -10, 10<<, .0000001, Starts Ø 4D êê Timing

Out[292]=

90.047, 988x Ø 5.<, 0.0000489897<, 88x Ø 5.<, 0.0000171186<,

88x Ø 5.<, 0.0000425679<, 98x Ø 5.<, 5.81469μ10-6===

In[293]:=

GlobalSearch@Abs@x^2 - 25D, 8<, 8<, 8 8x, -10, 10<<, .0000001, Starts Ø 4D êê Timing

Out[293]=

90.063, 998x Ø -5.<, 1.5376μ10-7=, 98x Ø 5.<, 3.72529μ10-7=,

98x Ø 5.<, 3.06218μ10-7=, 98x Ø 5.<, 7.96277μ10-8===

We can see that all three functions find the two solutions but on this small problem GlobalMinima is faster.   The other 2
functions also need multiple starts to find both solutions.

IX.2  Integer Programming: the Knapsack Problem

As discussed above, MultiStartMin allows integer variables.  This implies that it can solve integer programming problems.
Optimization problems with integer variables are difficult because they violate the assumptions of continuous methods such
as  LP  or  gradient  descent.   Various  methods  have  been  applied  to  integer  programming  problems,  including  heuristic
search.  The method used here for integer variables is a generalized descent with discrete step sizes, combined with limited
interchange.  This method is illustrated for the knapsack problem.  In the knapsack problem, the optimum return on packing
of discrete variables is desired.  This could occur when packing a truck, where different packages have different shipping
values.  On the other hand, the size of each package may differ, and the total space available is constrained.  We next test
such a problem.  Because we wish to maximize, we put a negative sign in front of the objective function.  To use GlobalPen-
altyFn  on  this  problem,  it  is  necessary  to  multiply  100  times  the  positivity  constraints  to  prevent  it  from going  negative.
Only the best solutions are shown in the output.  The GlobalPenaltyFn solution can be quite close.
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In[294]:=

GlobalPenaltyFn@-Hx1 + 2 x2 + 4 x3 + 15 x4 + 80 x5 + 100 x6L, 8-100 x1, -100 x2, -100 x3,

-100 x4, -100 x5, -100 x6, 1 x1 + 3 x2 + 15 x3 + 29 x4 + 70 x5 + 59 x6 - 300<, ,

88x1, 0, 5, Integer<, 8x2, 0, 5, Integer<, 8x3, 0, 5, Integer<,

8x4, 0, 5, Integer<, 8x5, 0, 5, Integer<, 8x6, 0, 5, Integer<<,

.00001, ShowProgress Ø False, Starts Ø 20D êê Timing

Out[294]=

89.766, 888x1 Ø 4, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 4, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<,

88x1 Ø 2, x2 Ø 1, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -504.<<<

In[295]:=

MultiStartMin@-Hx1 + 2 x2 + 4 x3 + 15 x4 + 80 x5 + 100 x6L,

8-x1, -x2, -x3, -x4, -x5, -x6, 1 x1 + 3 x2 + 15 x3 + 29 x4 + 70 x5 + 59 x6 - 300<, ,

88x1, 0, 2, Integer<, 8x2, 0, 2, Integer<, 8x3, 0, 2, Integer<,

8x4, 0, 2, Integer<, 8x5, 0, 2, Integer<, 8x6, 0, 4, Integer<<,

.00001, ShowProgress Ø False, Starts Ø 10D êê Timing

Out[295]=

80.766, 888x1 Ø 20, x2 Ø 5, x3 Ø 0, x4 Ø 1, x5 Ø 0, x6 Ø 4<, -445.<<<

We see  that  the  correct  solution  {{5,0,0,0,0,5},-505.}  was  not  found out  of  10  or  20  starts  with  either  method.   A better
approach is to first solve the continuous problem, and then pass the result back to the discrete problem:

In[296]:=

res = GlobalSearch@-Hx1 + 2 x2 + 4 x3 + 15 x4 + 80 x5 + 100 x6L,

8-x1, -x2, -x3, -x4, -x5, -x6, 1 x1 + 3 x2 + 15 x3 + 29 x4 + 70 x5 + 59 x6 - 300<, ,

88x1, 0, 2<, 8x2, 0, 2<, 8x3, 0, 2<, 8x4, 0, 2<, 8x5, 0, 2<, 8x6, 0, 4<<,

.00001, ShowProgress Ø False, Starts Ø 1D êê Timing

Out[296]=

80.547, 888x1 Ø 0., x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5.08475<, -508.475<<<

We next pass this result, after we make it Integer, back to MultiStartMin or GlobalPenaltyFn, obtaining the correct solution:

In[297]:=

s = 8x1, x2, x3, x4, x5, x6< ê. res@@2, 1, 1DD
Out[297]=

80., 0, 0, 0, 0, 5.08475<

In[298]:=

s = Round@sD
Out[298]=

80, 0, 0, 0, 0, 5<

97



In[299]:=

MultiStartMin@-Hx1 + 2 x2 + 4 x3 + 15 x4 + 80 x5 + 100 x6L,

8-x1, -x2, -x3, -x4, -x5, -x6, 1 x1 + 3 x2 + 15 x3 + 29 x4 + 70 x5 + 59 x6 - 300<, ,

88x1, 0, 2, Integer<, 8x2, 0, 2, Integer<, 8x3, 0, 2, Integer<,

8x4, 0, 2, Integer<, 8x5, 0, 2, Integer<, 8x6, 0, 4, Integer<<,

.00001, ShowProgress Ø False, StartsList Ø 8s<D êê Timing

Out[299]=

80.078, 888x1 Ø 5, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -505.<<<

In[300]:=

GlobalPenaltyFn@-Hx1 + 2 x2 + 4 x3 + 15 x4 + 80 x5 + 100 x6L,

8-x1, -x2, -x3, -x4, -x5, -x6, 1 x1 + 3 x2 + 15 x3 + 29 x4 + 70 x5 + 59 x6 - 300<, ,

88x1, 0, 2, Integer<, 8x2, 0, 2, Integer<, 8x3, 0, 2, Integer<,

8x4, 0, 2, Integer<, 8x5, 0, 2, Integer<, 8x6, 0, 4, Integer<<,

.00001, ShowProgress Ø False, StartsList Ø 8s<D êê Timing

Out[300]=

80.469, 888x1 Ø 3, x2 Ø 0, x3 Ø 0, x4 Ø 0, x5 Ø 0, x6 Ø 5<, -503.<<<

IX.3  Differential Equation Models

The following example shows how to fit parameters in a differential equation model.

In[301]:=

sol = NDSolve@8y'@xD ã y@xD, y@0D ã 1<, y, 8x, 0, 2<D
Out[301]=

88y Ø InterpolatingFunction@880., 2.<<, <>D<<

In[302]:=

y@1.5D ê. sol

Out[302]=

84.48169<
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In[303]:=

Plot@y@tD ê. sol, 8t, 0, 2<D
Out[303]=
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In[304]:=

fn = Function@8a<,

so = NDSolve@8y'@xD ã y@xD, y@0D ã a<, y, 8x, 0, 2<D; j = y@1.5D ê. so; j@@1DDD
Out[304]=

Function@8a<, so = NDSolve@8y£@xD ã y@xD, y@0D ã a<, y, 8x, 0, 2<D; j = y@1.5D ê. so; jP1TD

In[305]:=

fn@1D
Out[305]=

4.48169

In[306]:=

gg@x_D := Abs@fn@xD - fn@1DD

In[307]:=

GlobalSearch@gg, 8<, , 88x, 0, 2<<, .00001,

CompileOption Ø False, SimplifyOption Ø False, Starts Ø 1D êê Timing

Out[307]=

91.563, 998x Ø 1.<, 5.47942μ10-6===

In  this  example  we  see  that  we  recovered  the  original  parameter  a=1.   Note  that  CompileOption->False  was  necessary
because  a  Mathematica  function  was  passed  in,  which  prohibits  compilation.   SimplifyOption->False  was  also  needed  to
prevent error messages (although the correct  answer is still  obtained without it).   It  is  also possible to fit  models in cases
where we want to fit the entire time trajectory to the data, in which case the function is evaluated at many points and some
measure of fit computed. 
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IX.4  Constraint Equations

One of the hurdles to solving nonlinear optimization problems is finding a feasible starting point.  This is particularly true
when there are a large number of constraints.   In the following example, it  is  clear that the feasible region is the positive
quarter of a sphere.  

In[308]:=

ClearAll@zD

In[309]:=

constraints = 8-x, -y, -z, x^2 + y^2 + z^2 - 2<
Out[309]=

9-x, -y, -z, -2 + x2 + y2 + z2=

It is possible to use optimization to find the feasible region.  We set up the problem to solve for a constant objective func-
tion, so that the program stops when it finds feasible initial points.

In[310]:=

MultiStartMin@2, constraints, , 88x, -5, 5<, 8y, -5, 5<, 8z, -5, 5<<,

.001, Starts Ø 10, ShowProgress Ø FalseD êê Timing

Out[310]=

80.281, 888x Ø 0.0483366, y Ø 0.53029, z Ø 1.13155<, 2<,

88x Ø 0.09089, y Ø 0.52393, z Ø 0.421732<, 2<,

88x Ø 1.10698, y Ø 0.0178877, z Ø 0.36338<, 2<,

88x Ø 0.545995, y Ø 1.02937, z Ø 0.0676439<, 2<,

88x Ø 0.47304, y Ø 0.109673, z Ø 0.254154<, 2<,

88x Ø 0.251385, y Ø 0.464905, z Ø 0.297733<, 2<,

88x Ø 0.199679, y Ø 0.72498, z Ø 0.116262<, 2<,

88x Ø 0.172754, y Ø 0.45899, z Ø 0.258331<, 2<,

88x Ø 0.206245, y Ø 0.773349, z Ø 0.158459<, 2<,

88x Ø 0.00838564, y Ø 1.14862, z Ø 0.119339<, 2<<<

In[311]:=

GlobalPenaltyFn@2, constraints, , 88x, -5, 5<, 8y, -5, 5<, 8z, -5, 5<<,

.001, Starts Ø 10, ShowProgress Ø FalseD êê Timing

Out[311]=

81.032, 888x Ø 1.1668, y Ø 0.174565, z Ø 0.186763<, 2<,

88x Ø 0.490512, y Ø 0.275311, z Ø 0.040621<, 2<,

88x Ø 0.036959, y Ø 0.65716, z Ø 0.162351<, 2<,

88x Ø 0.869512, y Ø 0.237804, z Ø 0.103923<, 2<,

88x Ø 0.579303, y Ø 1.08266, z Ø 0.17406<, 2<,

88x Ø 0.294281, y Ø 0.611031, z Ø 0.0758022<, 2<,

88x Ø 0.150908, y Ø 0.0202404, z Ø 0.275322<, 2<,

88x Ø 0.986036, y Ø 0.493321, z Ø 0.11452<, 2<,

88x Ø 1.38911, y Ø 0.155131, z Ø 0.154396<, 2<,

88x Ø 0.000117562, y Ø 0.0162639, z Ø 0.469868<, 2<<<
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In[312]:=

GlobalSearch@2, constraints, , 88x, -5, 5<, 8y, -5, 5<, 8z, -5, 5<<,

.001, Starts Ø 10, ShowProgress Ø FalseD êê Timing

CompiledFunction::cfn : Numerical error encountered

at instruction 11; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 11; proceeding with uncompiled evaluation. à

CompiledFunction::cfn : Numerical error encountered

at instruction 11; proceeding with uncompiled evaluation. à

General::stop : Further output of

CompiledFunction::cfn will be suppressed during this calculation. à

Out[312]=

80.328, 888x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<,

88x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<,

88x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<,

88x Ø 0, y Ø 0, z Ø 0<, 2<, 88x Ø 0, y Ø 0, z Ø 0<, 2<<<

The above result gives a set of feasible points, which gives a basis for defining the feasible region.  
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