
 TRAIN AND ANALYZE NEURAL NETWORKS TO FIT YOUR DATA

 TRAIN AND ANALYZE NEURAL NETWORKS TO FIT YOUR DATA

September 2005
First edition
Intended for use with Mathematica 5

Software and manual written by: Jonas Sjöberg

Product managers: Yezabel Dooley and Kristin Kummer
Project managers: Julienne Davison and Jennifer Peterson
Editors: Rebecca Bigelow and Jan Progen
Proofreader: Sam Daniel
Software quality assurance: Jay Hawkins, Cindie Strater, Angela Thelen, and Rachelle Bergmann
Package design by: Larry Adelston, Megan Gillette, Richard Miske, and Kara Wilson

Special thanks to the many alpha and beta testers and the people at Wolfram Research who gave me valuable input and feedback during the
development of this package. In particular, I would like to thank Rachelle Bergmann and Julia Guelfi at Wolfram Research and Sam Daniel, a
technical staff member at Motorola’s Integrated Solutions Division, who gave thousands of suggestions on the software and the documentation.

Published by Wolfram Research, Inc., 100 Trade Center Drive, Champaign, Illinois 61820-7237, USA
phone: +1-217-398-0700; fax: +1-217-398-0747; email: info@wolfram.com; web: www.wolfram.com

Copyright © 1998–2004 Wolfram Research, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of Wolfram Research, Inc.

Wolfram Research, Inc. is the holder of the copyright to the Neural Networks software and documentation (“Product”) described in this document,
including without limitation such aspects of the Product as its code, structure, sequence, organization, “look and feel”, programming language, and
compilation of command names. Use of the Product, unless pursuant to the terms of a license granted by Wolfram Research, Inc. or as otherwise
authorized by law, is an infringement of the copyright.

Wolfram Research, Inc. makes no representations, express or implied, with respect to this Product, including without limitations, any
implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which are expressly disclaimed. Users
should be aware that included in the terms and conditions under which Wolfram Research, Inc. is willing to license the Product is a
provision that Wolfram Research, Inc. and its distribution licensees, distributors, and dealers shall in no event be liable for any indirect,
incidental, or consequential damages, and that liability for direct damages shall be limited to the amount of the purchase price paid for
the Product.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and
omissions. Wolfram Research, Inc. shall not be responsible under any circumstances for providing information on or corrections to errors
and omissions discovered at any time in this document or the package software it describes, whether or not they are aware of the errors or
omissions. Wolfram Research, Inc. does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury, or significant loss.

Mathematica is a registered trademark of Wolfram Research, Inc. All other trademarks used herein are the property of their respective owners.
Mathematica is not associated with Mathematica Policy Research, Inc. or MathTech, Inc.

T4055 267204 0905.rcm

Table of Contents

1 Introduction.. 1

1.1 Features of This Package... 2

2 Neural Network Theory—A Short Tutorial.. 5

2.1 Introduction to Neural Networks.. 5

2.1.1 Function Approximation.. 7

2.1.2 Time Series and Dynamic Systems... 8

2.1.3 Classification and Clustering... 9

2.2 Data Preprocessing... 10

2.3 Linear Models... 12

2.4 The Perceptron... 13

2.5 Feedforward and Radial Basis Function Networks... 16

2.5.1 Feedforward Neural Networks... 16
2.5.2 Radial Basis Function Networks... 20

2.5.3 Training Feedforward and Radial Basis Function Networks.. 22

2.6 Dynamic Neural Networks... 26

2.7 Hopfield Network.. 29

2.8 Unsupervised and Vector Quantization Networks... 31

2.9 Further Reading... 32

3 Getting Started and Basic Examples... 35

3.1 Palettes and Loading the Package.. 35
3.1.1 Loading the Package and Data.. 35

3.1.2 Palettes.. 36

3.2 Package Conventions... 37
3.2.1 Data Format.. 37

3.2.2 Function Names.. 40

3.2.3 Network Format... 40

3.3 NetClassificationPlot.. 42

3.4 Basic Examples.. 45

3.4.1 Classification Problem Example.. 45

3.4.2 Function Approximation Example.. 49

4 The Perceptron... 53

4.1 Perceptron Network Functions and Options.. 53

4.1.1 InitializePerceptron... 53
4.1.2 PerceptronFit.. 54

4.1.3 NetInformation... 56

4.1.4 NetPlot.. 57

4.2 Examples... 59

4.2.1 Two Classes in Two Dimensions.. 59

4.2.2 Several Classes in Two Dimensions.. 66
4.2.3 Higher-Dimensional Classification... 72

4.3 Further Reading... 78

5 The Feedforward Neural Network.. 79

5.1 Feedforward Network Functions and Options... 80

5.1.1 InitializeFeedForwardNet... 80
5.1.2 NeuralFit... 83

5.1.3 NetInformation... 84

5.1.4 NetPlot.. 85

5.1.5 LinearizeNet and NeuronDelete... 87
5.1.6 SetNeuralD, NeuralD, and NNModelInfo.. 88

5.2 Examples... 90
5.2.1 Function Approximation in One Dimension... 90

5.2.2 Function Approximation from One to Two Dimensions.. 99

5.2.3 Function Approximation in Two Dimensions... 102

5.3 Classification with Feedforward Networks... 108

5.4 Further Reading... 117

6 The Radial Basis Function Network... 119

6.1 RBF Network Functions and Options.. 119
6.1.1 InitializeRBFNet.. 119

6.1.2 NeuralFit... 121

6.1.3 NetInformation... 122

6.1.4 NetPlot.. 122
6.1.5 LinearizeNet and NeuronDelete... 122

6.1.6 SetNeuralD, NeuralD, and NNModelInfo.. 123

6.2 Examples... 124

6.2.1 Function Approximation in One Dimension... 124

6.2.2 Function Approximation from One to Two Dimensions.. 135

6.2.3 Function Approximation in Two Dimensions... 135

6.3 Classification with RBF Networks.. 139

6.4 Further Reading... 147

7 Training Feedforward and Radial Basis Function Networks... 149

7.1 NeuralFit... 149

7.2 Examples of Different Training Algorithms.. 152

7.3 Train with FindMinimum... 159

7.4 Troubleshooting... 161

7.5 Regularization and Stopped Search.. 161

7.5.1 Regularization... 162
7.5.2 Stopped Search... 162

7.5.3 Example.. 163

7.6 Separable Training... 169

7.6.1 Small Example.. 169

7.6.2 Larger Example... 174

7.7 Options Controlling Training Results Presentation.. 176

7.8 The Training Record... 180

7.9 Writing Your Own Training Algorithms... 183

7.10 Further Reading... 186

8 Dynamic Neural Networks.. 187

8.1 Dynamic Network Functions and Options.. 187
8.1.1 Initializing and Training Dynamic Neural Networks... 187

8.1.2 NetInformation... 190

8.1.3 Predicting and Simulating.. 191

8.1.4 Linearizing a Nonlinear Model... 194
8.1.5 NetPlot—Evaluate Model and Training.. 195

8.1.6 MakeRegressor... 197

8.2 Examples... 197

8.2.1 Introductory Dynamic Example.. 197

8.2.2 Identifying the Dynamics of a DC Motor.. 206

8.2.3 Identifying the Dynamics of a Hydraulic Actuator... 213
8.2.4 Bias-Variance Tradeoff—Avoiding Overfitting... 220

8.2.5 Fix Some Parameters—More Advanced Model Structures... 227

8.3 Further Reading... 231

9 Hopfield Networks.. 233

9.1 Hopfield Network Functions and Options.. 233
9.1.1 HopfieldFit... 233

9.1.2 NetInformation... 235

9.1.3 HopfieldEnergy.. 235

9.1.4 NetPlot.. 235

9.2 Examples... 237

9.2.1 Discrete-Time Two-Dimensional Example.. 237
9.2.2 Discrete-Time Classification of Letters.. 240

9.2.3 Continuous-Time Two-Dimensional Example.. 244

9.2.4 Continuous-Time Classification of Letters.. 247

9.3 Further Reading... 251

10 Unsupervised Networks.. 253

10.1 Unsupervised Network Functions and Options.. 253
10.1.1 InitializeUnsupervisedNet.. 253

10.1.2 UnsupervisedNetFit.. 256

10.1.3 NetInformation... 264

10.1.4 UnsupervisedNetDistance, UnUsedNeurons, and NeuronDelete... 264
10.1.5 NetPlot.. 266

10.2 Examples without Self-Organized Maps... 268
10.2.1 Clustering in Two-Dimensional Space.. 268

10.2.2 Clustering in Three-Dimensional Space.. 278

10.2.3 Pitfalls with Skewed Data Density and Badly Scaled Data.. 281

10.3 Examples with Self-Organized Maps.. 285

10.3.1 Mapping from Two to One Dimensions.. 285

10.3.2 Mapping from Two Dimensions to a Ring.. 292
10.3.3 Adding a SOM to an Existing Unsupervised Network... 295

10.3.4 Mapping from Two to Two Dimensions... 296

10.3.5 Mapping from Three to One Dimensions.. 300

10.3.6 Mapping from Three to Two Dimensions... 302

10.4 Change Step Length and Neighbor Influence.. 305

10.5 Further Reading... 308

11 Vector Quantization... 309

11.1 Vector Quantization Network Functions and Options... 309
11.1.1 InitializeVQ... 309

11.1.2 VQFit... 312

11.1.3 NetInformation... 315
11.1.4 VQDistance, VQPerformance, UnUsedNeurons, and NeuronDelete.. 316

11.1.5 NetPlot.. 317

11.2 Examples... 319

11.2.1 VQ in Two-Dimensional Space... 320
11.2.2 VQ in Three-Dimensional Space... 331

11.2.3 Overlapping Classes... 336

11.2.4 Skewed Data Densities and Badly Scaled Data... 339

11.2.5 Too Few Codebook Vectors.. 342

11.3 Change Step Length.. 345

11.4 Further Reading... 346

12 Application Examples... 347

12.1 Classification of Paper Quality.. 347
12.1.1 VQ Network.. 349

12.1.2 RBF Network.. 354

12.1.3 FF Network... 358

12.2 Prediction of Currency Exchange Rate.. 362

13 Changing the Neural Network Structure... 369

13.1 Change the Parameter Values of an Existing Network.. 369

13.1.1 Feedforward Network.. 369

13.1.2 RBF Network.. 371
13.1.3 Unsupervised Network... 373

13.1.4 Vector Quantization Network... 374

13.2 Fixed Parameters.. 375

13.3 Select Your Own Neuron Function.. 381

13.3.1 The Basis Function in an RBF Network... 381
13.3.2 The Neuron Function in a Feedforward Network... 384

13.4 Accessing the Values of the Neurons.. 389
13.4.1 The Neurons of a Feedforward Network.. 389

13.4.2 The Basis Functions of an RBF Network... 391

Index.. 395

1 Introduction

Neural Networks is a Mathematica package designed to train, visualize, and validate neural network models.
A neural network model is a structure that can be adjusted to produce a mapping from a given set of data to
features of or relationships among the data. The model is adjusted, or trained, using a collection of data from
a given source as input, typically referred to as the training set. After successful training, the neural network
will be able to perform classification, estimation, prediction, or simulation on new data from the same or
similar sources. The Neural Networks package supports different types of training or learning algorithms.

More specifically, the Neural Networks package uses numerical data to specify and evaluate artificial neural
network models. Given a set of data, 8xi, yi<i=1

N from an unknown function, y = f HxL, this package uses numeri-
cal algorithms to derive reasonable estimates of the function, f HxL. This involves three basic steps: First, a
neural network structure is chosen that is considered suitable for the type of data and underlying process to
be modeled. Second, the neural network is trained by using a sufficiently representative set of data. Third,
the trained network is tested with different data, from the same or related sources, to validate that the
mapping is of acceptable quality.

The package contains many of the standard neural network structures and related learning algorithms. It
also includes some special functions needed to address a number of typical problems, such as classification
and clustering, time series and dynamic systems, and function estimation problems. In addition, special
performance evaluation functions are included to validate and illustrate the quality of the desired mapping.

The documentation contains a number of examples that demonstrate the use of the different neural network
models. You can solve many problems simply by applying the example commands to your own data.

Most functions in the Neural Networks package support a number of different options that you can use to
modify the algorithms. However, the default values have been chosen so as to give good results for a large
variety of problems, allowing you to get started quickly using only a few commands. As you gain experi-
ence, you will be able to customize the algorithms by changing the options.

Choosing the proper type of neural network for a certain problem can be a critical issue. The package con-
tains many examples illustrating the possible uses of the different neural network types. Studying these
examples will help you choose the network type suited to the situation.

Solved problems, illustrations, and other facilities available in the Neural Networks package should enable
the interested reader to tackle many problems after reviewing corresponding parts of the guide. However,

this guide does not contain an exhaustive introduction to neural networks. Although an attempt was made
to illustrate the possibilities and limitations of neural network methods in various application areas, this
guide is by no means a substitute for standard textbooks, such as those listed in the references at the end of
most chapters. Also, while this guide contains a number of examples in which Mathematica functions are
used with Neural Networks commands, it is definitely not an introduction to Mathematica itself. The reader is
advised to consult the standard Mathematica reference: Wolfram, Stephen, The Mathematica Book, 5th ed.
(Wolfram Media, 2003).

1.1 Features of This Package

The following table lists the neural network types supported by the Neural Networks package along with
their typical usage. Chapter 2, Neural Network Theory—A Short Tutorial, gives brief explanations of the
different neural network types.

Network type Typical use HsL of the network

Radial basis function function approximation, classification,
dynamic systems modeling

Feedforward function approximation, classification,
dynamic systems modeling

Dynamic dynamic systems modeling, time series

Hopfield classification, auto-associative memory

Perceptron classification

Vector quantization classification

Unsupervised clustering, self-organizing maps, Kohonen networks

Neural network types supported by the Neural Networks package.

The functions in the package are constructed so that only the minimum amount of information has to be
specified by the user. For example, the number of inputs and outputs of a network are automatically
extracted from the dimensionality of the data so they do not need to be entered explicitly.

2 Neural Networks

Trained networks are contained in special objects with a head that identifies the type of network. You do not
have to keep track of all of the parameters and other information contained in a neural network model;
everything is contained in the network object. Extracting or changing parts of the neural network informa-
tion can be done by addressing the appropriate part of the object.

Intermediate information is logged during the training of a network and returned in a special training
record at the end of the training. This record can be used to analyze the training performance and to access
parameter values at intermediate training stages.

The structure of feedforward and radial basis function neural network types can be modified to customize the
network for your specific problem. For example, the neuron activation function can be changed to some
other suitable function. You can also set some of the network parameters to predefined values and exclude
them from the training.

A neural network model can be customized when the unknown function is known to have a special struc-
ture. For example, in many situations the unknown function is recognized as more nonlinear in some inputs
than in others. The Neural Networks package allows you to define a model that is linear with respect to some
of the inputs and nonlinear with respect to other inputs. After the neural network structure has been
defined, you can proceed with the network’s training as you would with a network that does not have a
defined structure.

The Neural Networks package contains special initialization algorithms for the network parameters, or
weights, that start the training with reasonably good performance. After this initialization, an iterative
training algorithm is applied to the network and the parameter set is optimized. The special initialization
makes the training much faster than a completely random choice for the parameters. This also alleviates
difficulties encountered in problems with multiple local minima.

For feedforward, radial basis function, and dynamic neural networks, the weights are adjusted iteratively using
gradient-based methods. The Levenberg-Marquardt algorithm is used by default, because it is considered to
be the best choice for most problems. Another feature in favor of this algorithm is that it can take advantage
of a situation where a network is linear in some of its parameters. Making use of the separability of the
linear and nonlinear parts of the underlying minimization problem will speed up training considerably.

Chapter 1: Introduction 3

For large data sets and large neural network models, the training algorithms for some types of neural net-
works will become computation intensive. This package reduces the computation load in two ways: (1) the
expressions are optimized before numerical evaluation, thus minimizing the number of operations, and (2)
the computation-intensive functions use the Compile command to send compiled code to Mathematica.
Because compiled code can only work with machine-precision numbers, numerical precision will be some-
what restricted. In most practical applications this limitation will be of little significance. If you would prefer
noncompiled evaluation, you could set the compiled option to false, Compiled → False.

4 Neural Networks

2 Neural Network Theory—A Short Tutorial

Starting with measured data from some known or unknown source, a neural network may be trained to
perform classification, estimation, simulation, and prediction of the underlying process generating the data.
Therefore, neural networks, or neural nets, are software tools designed to estimate relationships in data. An
estimated relationship is essentially a mapping, or a function, relating raw data to its features. The Neural
Networks package supports several function estimation techniques that may be described in terms of differ-
ent types of neural networks and associated learning algorithms.

The general area of artificial neural networks has its roots in our understanding of the human brain. In this
regard, initial concepts were based on attempts to mimic the brain’s way of processing information. Efforts
that followed gave rise to various models of biological neural network structures and learning algorithms.
This is in contrast to the computational models found in this package, which are only concerned with artifi-
cial neural networks as a tool for solving different types of problems where unknown relationships are
sought among given data. Still, much of the nomenclature in the neural network arena has its origins in
biological neural networks, and thus, the original terminology will be used alongside with more traditional
nomenclature from statistics and engineering.

2.1 Introduction to Neural Networks

In the context of this package, a neural network is nothing more than a function with adjustable or tunable
parameters. Let the input to a neural network be denoted by x, a real-valued (row) vector of arbitrary
dimensionality or length. As such, x is typically referred to as input, input vector, regressor, or sometimes,
pattern vector. Typically, the length of vector x is said to be the number of inputs to the network. Let the
network output be denoted by ỳ, an approximation of the desired output y, also a real-valued vector having
one or more components, and the number of outputs from the network. Often data sets contain many input-
output pairs. Thus x and y denote matrices with one input and one output vector on each row.

Generally, a neural network is a structure involving weighted interconnections among neurons, or units,
which are most often nonlinear scalar transformations, but they can also be linear. Figure 2.1 shows an
example of a one-hidden-layer neural network with three inputs, x = {x1, x2, x3} that, along with a unity bias
input, feed each of the two neurons comprising the hidden layer. The two outputs from this layer and a unity
bias are then fed into the single output layer neuron, yielding the scalar output, ỳ. The layer of neurons is
called hidden because its outputs are not directly seen in the data. This particular type of neural network is

described in detail in Section 2.5, Feedforward and Radial Basis Function Networks. Here, this network will
be used to explain common notation and nomenclature used in the package.

Figure 2.1. A feedforward neural network with three inputs, two hidden neurons, and one output neuron.

Each arrow in Figure 2.1 corresponds to a real-valued parameter, or a weight, of the network. The values of
these parameters are tuned in the network training.

Generally, a neuron is structured to process multiple inputs, including the unity bias, in a nonlinear way,
producing a single output. Specifically, all inputs to a neuron are first augmented by multiplicative weights.
These weighted inputs are summed and then transformed via a nonlinear activation function, s. As indicated
in Figure 2.1, the neurons in the first layer of the network are nonlinear. The single output neuron is linear,
since no activation function is used.

By inspection of Figure 2.1, the output of the network is given by

(1)

ŷ = b2 + „
i=1

2

wi
2 σ

ikjjjjjbi1 + ‚
j=1

3

wi,j
1 xj

y{zzzzz
= w1

2 σ Hw1,11 x1 + w1,2
1 x2 + w1,3

1 x3 + b1
1L +

w2
2 σ Hw2,11 x1 + w2,2

1 x2 + w2,3
1 x3 + b2

1L + b2

involving the various parameters of the network, the weights 9wi,j
1 , bi,j

1 , wi
2, b2=. The weights are sometimes

referred to as synaptic strengths.

Equation 2.1 is a nonlinear mapping, ¿Øỳ, specifically representing the neural network in Figure 2.1. In
general, this mapping is given in more compact form by

(2)ỳ = g Hq, xL

6 Neural Networks

where the q is a real-valued vector whose components are the parameters of the network, namely, the
weights. When algorithmic aspects, independent of the exact structure of the neural network, are discussed,
then this compact form becomes more convenient to use than an explicit one, such as that of Equation 2.1.

This package supports several types of neural networks from which a user can choose. Upon assigning
design parameters to a chosen network, thus specifying its structure g(·,·), the user can begin to train it. The
goal of training is to find values of the parameters q so that, for any input x, the network output ỳ is a good
approximation of the desired output y. Training is carried out via suitable algorithms that tune the parame-
ters q so that input training data map well to corresponding desired outputs. These algorithms are iterative
in nature, starting at some initial value for the parameter vector q and incrementally updating it to improve
the performance of the network.

Before the trained network is accepted, it should be validated. Roughly, this means running a number of
tests to determine whether the network model meets certain requirements. Probably the simplest way, and
often the best, is to test the neural network on a data set that was not used for training, but which was
generated under similar conditions. Trained neural networks often fail this validation test, in which case the
user will have to choose a better model. Sometimes, however, it might be enough to just repeat the training,
starting from different initial parameters q. Once the neural network is validated, it is ready to be used on
new data.

The general purpose of the Neural Networks package can be described as function approximation. However,
depending on the origin of the data, and the intended use of the obtained neural network model, the func-
tion approximation problem may be subdivided into several types of problems. Different types of function
approximation problems are described in Section 2.1.1. Section 1.1, Features of This Package, includes a table
giving an overview of the supported neural networks and the particular types of problems they are
intended to address.

2.1.1 Function Approximation

When input data originates from a function with real-valued outputs over a continuous range, the neural
network is said to perform a traditional function approximation. An example of an approximation problem
could be one where the temperature of an object is to be determined from secondary measurements, such as
emission of radiation. Another more trivial example could be to estimate shoe size based on a person’s
height. These two examples involve models with one input and one output. A more advanced model of the
second example might use gender as a second input in order to derive a more accurate estimate of the shoe
size.

Chapter 2: Neural Network Theory—A Short Tutorial 7

Pure functions may be approximated with the following two network types:

 è Feedforward Neural Networks

 è Radial Basis Function Networks

and a basic example can be found in Section 3.4.2, Function Approximation Example.

2.1.2 Time Series and Dynamic Systems

A special type of function approximation problem is one where the input data is time dependent. This
means that the function at hand has “memory”, is thus dynamic, and is referred to as a dynamic system. For
such systems, past information can be used to predict its future behavior. Two examples of dynamic system
problems are: (1) predicting the price of a state bond or that of some other financial instrument; and (2)
describing the speed of an engine as a function of the applied voltage and load.

In both of these examples the output signal at some time instant depends on what has happened earlier. The
first example is a time-series problem modeled as a system involving no inputs. In the second example there
are two inputs: the applied voltage and the load. Examples of these kinds can be found in Section 8.2.2,
Identifying the Dynamics of a DC Motor, and in Section 12.2, Prediction of Currency Exchange Rate.

The process of finding a model of a system from observed inputs and outputs is generally known as system
identification. The special case involving time series is more commonly known as time-series analysis. This is
an applied science field that employs many different models and methods. The Neural Network package
supports both linear and nonlinear models and methods in the form of neural network structures and
associated learning algorithms.

A neural network models a dynamic system by employing memory in its inputs; specifically, storing a
number of past input and output data. Such neural network structures are often referred to as tapped-delay-
line neural networks, or NFIR, NARX, and NAR models.

Dynamic neural networks can be either feedforward in structure or employ radial basis functions, and they
must accommodate memory for past information. This is further described in Section 2.6, Dynamic Neural
Networks.

The Neural Networks package contains many useful Mathematica functions for working with dynamic neural
networks. These built-in functions facilitate the training and use of the dynamic neural networks for predic-
tion and simulation.

8 Neural Networks

2.1.3 Classification and Clustering

In the context of neural networks, classification involves deriving a function that will separate data into
categories, or classes, characterized by a distinct set of features. This function is mechanized by a so-called
network classifier, which is trained using data from the different classes as inputs, and vectors indicating the
true class as outputs.

A network classifier typically maps a given input vector to one of a number of classes represented by an
equal number of outputs, by producing 1 at the output class and 0 elsewhere. However, the outputs are not
always binary (0 or 1); sometimes they may range over 80, 1<, indicating the degrees of participation of a
given input over the output classes. The Neural Networks package contains some functions especially suited
for this kind of constrained approximation.

The following types of neural networks are available for solving classification problems:

 è Perceptron

 è Vector Quantization Networks

 è Feedforward Neural Networks

 è Radial Basis Function Networks

 è Hopfield Networks

A basic classification example can be found in Section 3.4.1, Classification Problem Example.

When the desired outputs are not specified, a neural network can only operate on input data. As such, the
neural network cannot be trained to produce a desired output in a supervised way, but must instead look
for hidden structures in the input data without supervision, employing so-called self-organizing. Structures
in data manifest themselves as constellations of clusters that imply levels of correlation among the raw data
and a consequent reduction in dimensionality and increased information in coding efficiency. Specifically, a
particular input data vector that falls within a given cluster could be represented by its unique centroid
within some squared error. As such, unsupervised networks may be viewed as classifiers, where the classes
are the discovered clusters.

An unsupervised network can also employ a neighbor feature so that “proximity” among clusters may be
preserved in the clustering process. Such networks, known as self-organizing maps or Kohonen networks, may
be interpreted loosely as being nonlinear projections of the original data onto a one- or two-dimensional
space.

Chapter 2: Neural Network Theory—A Short Tutorial 9

Unsupervised networks and self-organizing maps are described in some detail in Section 2.8, Unsupervised
and Vector Quantization Networks.

2.2 Data Preprocessing

The Neural Networks package offers several algorithms to build models using data. Before applying any of
the built-in functions for training, it is important to check that the data is “reasonable.” Naturally, you
cannot expect to obtain good models from poor or insufficient data. Unfortunately, there is no standard
procedure that can be used to test the quality of the data. Depending on the problem, there might be special
features in the data that may be used in testing data quality. Toward this end, some general advice follows.

One way to check for quality is to view graphical representations of the data in question, in the hope of
selecting a reasonable subset while eliminating problematic parts. For this purpose, you can use any suitable
Mathematica plotting function or employ other such functions that come with the Neural Networks package
especially designed to visualize the data in classification, time series, and dynamic system problems.

In examining the data for a classification problem, some reasonable questions to ask may include the
following:

 è Are all classes equally represented by the data?

 è Are there any outliers, that is, data samples dissimilar from the rest?

For time-dependent data, the following questions might be considered:

 è Are there any outliers, that is, data samples very different from neighboring values?

 è Does the input signal of the dynamic system lie within the interesting amplitude range?

 è Does the input signal of the dynamic system excite the interesting frequency range?

Answers to these questions might reveal potential difficulties in using the given data for training. If so, new
data may be needed.

Even if they appear to be quite reasonable, it might be a good idea to consider preprocessing the data before
initiating training. Preprocessing is a transformation, or conditioning, of data designed to make modeling
easier and more robust. For example, a known nonlinearity in some given data could be removed by an
appropriate transformation, producing data that conforms to a linear model that is easier to work with.

10 Neural Networks

Similarly, removing detected trends and outliers in the data will improve the accuracy of the model. There-
fore, before training a neural network, you should consider the possibility of transforming the data in some
useful way.

You should always make sure that the range of the data is neither too small nor too large so that you stay
well within the machine precision of your computer. If this is not possible, you should scale the data.
Although Mathematica can work with arbitrary accuracy, you gain substantial computational speed if you
stay within machine precision. The reason for this is that the Neural Networks package achieves substantial
computational speed-up using the Compile command, which limits subsequent computation to the preci-
sion of the machine.

It is also advisable to scale the data so that the different input signals have approximately the same numeri-
cal range. This is not necessary for feedforward and Hopfield networks, but is recommended for all other
network models. The reason for this is that the other network models rely on Euclidean measures, so that
unscaled data could bias or interfere with the training process. Scaling the data so that all inputs have the
same range often speeds up the training and improves resulting performance of the derived model.

It is also a good idea to divide the data set into training data and validation data. The validation data should
not be used in the training but, instead, be reserved for the quality check of the obtained network.

You may use any of the available Mathematica commands to perform the data preprocessing before applying
neural network algorithms; therefore, you may consult the standard Mathematica reference: Wolfram,
Stephen, The Mathematica Book, 5th ed. (Wolfram Media, 2003). Some interesting starting points might be
Section 1.6.6 Manipulating Numerical Data, Section 1.6.7 Statistics, and Section 1.8.3, Vectors and Matrices,
as well as the standard Mathematica add-on packages Statistics`DataManipulation` and Linearg
Algebra`MatrixManipulation`.

Chapter 2: Neural Network Theory—A Short Tutorial 11

2.3 Linear Models

A general modeling principle is to “try simple things first.” The idea behind this principle is that there is no
reason to make a model more complex than necessary. The simplest type of model is often a linear model.
Figure 2.2 illustrates a linear model. Each arrow in the figure symbolizes a parameter in the model.

Figure 2.2. A linear model.

Mathematically, the linear model gives rise to the following simple equation for the output

(3)ŷ = w1 x1 + w2 x2 + ... + wn xn + b

Linear models are called regression models in traditional statistics. In this case the output ỳ is said to regress
on the inputs x1,...,xn plus a bias parameter b.

Using the Neural Networks package, the linear model in Figure 2.2 can be obtained as a feedforward network
with one linear output neuron. Section 5.1.1, InitializeFeedForwardNet describes how this is done.

A linear model may have several outputs. Such a model can be described as a network consisting of a bank
of linear neurons, as illustrated in Figure 2.3.

12 Neural Networks

Figure 2.3. A multi-output linear model.

2.4 The Perceptron

After the linear networks, the perceptron is the simplest type of neural network and it is typically used for
classification. In the one-output case it consists of a neuron with a step function. Figure 2.4 is a graphical
illustration of a perceptron with inputs x1, ..., xn and output ỳ.

Figure 2.4. A perceptron classifier.

Chapter 2: Neural Network Theory—A Short Tutorial 13

As indicated, the weighted sum of the inputs and the unity bias are first summed and then processed by a
step function to yield the output

(4)ŷ Hx, w, bL = UnitStep@w1 x1 + w2 x2 + ... + wn xn + bD
where {w1, ..., wn} are the weights applied to the input vector and b is the bias weight. Each weight is indi-
cated with an arrow in Figure 2.4. Also, the UnitStep function is 0 for arguments less than 0 and 1 else-
where. So, the output ỳ can take values of 0 or 1, depending on the value of the weighted sum. Conse-
quently, the perceptron can indicate two classes corresponding to these two output values. In the training
process, the weights (input and bias) are adjusted so that input data is mapped correctly to one of the two
classes. An example can be found in Section 4.2.1, Two Classes in Two Dimensions.

The perceptron can be trained to solve any two-class classification problem where the classes are linearly
separable. In two-dimensional problems (where x is a two-component row vector), the classes may be sepa-
rated by a straight line, and in higher-dimensional problems, it means that the classes are separable by a
hyperplane.

If the classification problem is not linearly separable, then it is impossible to obtain a perceptron that cor-
rectly classifies all training data. If some misclassifications can be accepted, then a perceptron could still
constitute a good classifier.

Because of its simplicity, the perceptron is often inadequate as a model for many problems. Nevertheless,
many classification problems have simple solutions for which it may apply. Also, important insights may be
gained from using the perceptron, which may shed some light when considering more complicated neural
network models.

Perceptron classifiers are trained with a supervised training algorithm. This presupposes that the true
classes of the training data are available and incorporated in the training process. More specifically, as
individual inputs are presented to the perceptron, its weights are adjusted iteratively by the training algo-
rithm so as to produce the correct class mapping at the output. This training process continues until the
perceptron correctly classifies all the training data or when a maximum number of iterations has been
reached. It is possible to choose a judicious initialization of the weight values, which in many cases makes
the iterative learning unnecessary. This is described in Section 4.1.1, InitializePerceptron.

Classification problems involving a number of classes greater than two can be handled by a multi-output
perceptron that is defined as a number of perceptrons in parallel. It contains one perceptron, as shown in
Figure 2.4, for each output, and each output corresponds to a class.

14 Neural Networks

The training process of such a multi-output perceptron structure attempts to map each input of the training
data to the correct class by iteratively adjusting the weights to produce 1 at the output of the corresponding
perceptron and 0 at the outputs of all the remaining outputs. However, it is quite possible that a number of
input vectors may map to multiple classes, indicating that these vectors could belong to several classes. Such
cases may require special handling. It may also be that the perceptron classifier cannot make a decision for a
subset of input vectors because of the nature of the data or insufficient complexity of the network structure
itself. An example with several classes can be found in Section 4.2.2, Several Classes in Two Dimensions.

Training Algorithm

The training of a one-output perceptron will be described in the following section. In the case of a multi-out-
put perceptron, each of the outputs may be described similarly.

A perceptron is defined parametrically by its weights 8w, b<, where w is a column vector of length equal to
the dimension of the input vector x and b is a scalar. Given the input, a row vector, x = 8x1, ..., xn<, the
output of a perceptron is described in compact form by

(5)ŷ Hx, w, bL = UnitStep@x w + bD
This description can also be used when a set of input vectors is considered. Let x be a matrix with one input
vector in each row. Then ỳ in Equation 2.5 becomes a column vector with the corresponding output in its
rows.

The weights 8w, b< are obtained by iteratively training the perceptron with a known data set containing
input-output pairs, one input vector in each row of a matrix x, and one output in each row of a matrix y, as
described in Section 3.2.1, Data Format. Given N such pairs in the data set, the training algorithm is defined
by

(6)

wi+1 = wi + η xT εi

bi+1 = bi + η ‚
j=1

N

εi@@jDD
where i is the iteration number, h is a scalar step size, and ei = y - ỳ Hx, wi, biL is a column vector with N-com-
ponents of classification errors corresponding to the N data samples of the training set. The components of
the error vector can only take three values, namely, 0, 1, and –1. At any iteration i, values of 0 indicate that
the corresponding data samples have been classified correctly, while all the others have been classified
incorrectly.

Chapter 2: Neural Network Theory—A Short Tutorial 15

The training algorithm Equation 2.5 begins with initial values for the weights 8w, b< and i = 0, and iteratively
updates these weights until all data samples have been classified correctly or the iteration number has
reached a maximum value, imax.

The step size h, or learning rate as it is often called, has the following default value

(7)η =
HMax@xD − Min@xDL
cc

N

By compensating for the range of the input data, x, and for the number of data samples, N, this default value
of h should be good for many classification problems independent of the number of data samples and their
numerical range. It is also possible to use a step size of choice rather than using the default value. However,
although larger values of h might accelerate the training process, they may induce oscillations that may slow
down the convergence.

2.5 Feedforward and Radial Basis Function Networks

This section describes feedforward and radial basis function networks, both of which are useful for function
approximation. Mathematically, these networks may be viewed as parametric functions, and their training
constituting a parameter estimation or fitting process. The Neural Networks package provides a common
built-in function, NeuralFit, for training these networks.

2.5.1 Feedforward Neural Networks

Feedforward neural networks (FF networks) are the most popular and most widely used models in many
practical applications. They are known by many different names, including “multi-layer perceptrons.”

Figure 2.5 illustrates a one-hidden-layer FF network with inputs x1, …, xn and output ỳ. Each arrow in the
figure symbolizes a parameter in the network. The network is divided into layers. The input layer consists of
just the inputs to the network. Then follows a hidden layer, which consists of any number of neurons, or hidden
units placed in parallel. Each neuron performs a weighted summation of the inputs, which then passes a
nonlinear activation function s, also called the neuron function.

16 Neural Networks

Figure 2.5. A feedforward network with one hidden layer and one output.

Mathematically the functionality of a hidden neuron is described by

σ
ikjjjjjj‚j=1

n

 wj xj + bj
y{zzzzzz

where the weights 8wj, bj< are symbolized with the arrows feeding into the neuron.

The network output is formed by another weighted summation of the outputs of the neurons in the hidden
layer. This summation on the output is called the output layer. In Figure 2.5 there is only one output in the
output layer since it is a single-output problem. Generally, the number of output neurons equals the number
of outputs of the approximation problem.

The neurons in the hidden layer of the network in Figure 2.5 are similar in structure to those of the percep-
tron, with the exception that their activation functions can be any differential function. The output of this
network is given by

(8)ŷ HθL = g Hθ, xL = „
i=1

nh

 wi
2 σ

ikjjjjj‚j=1

n

 wi,j
1 xj + bj,i

1
y{zzzzz + b2

where n is the number of inputs and nh is the number of neurons in the hidden layer. The variables9wi,j
1 , bj,i

1 , wi
2, b2= are the parameters of the network model that are represented collectively by the parameter

vector q. In general, the neural network model will be represented by the compact notation gHq, xL whenever
the exact structure of the neural network is not necessary in the context of a discussion.

Chapter 2: Neural Network Theory—A Short Tutorial 17

Some small function approximation examples using an FF network can be found in Section 5.2, Examples.

Note that the size of the input and output layers are defined by the number of inputs and outputs of the
network and, therefore, only the number of hidden neurons has to be specified when the network is defined.
The network in Figure 2.5 is sometimes referred to as a three-layer network, with input, hidden, and output
layers. However, since no processing takes place in the input layer, it is also sometimes called a two-layer
network. To avoid confusion this network is called a one-hidden-layer FF network throughout this
documentation.

In training the network, its parameters are adjusted incrementally until the training data satisfy the desired
mapping as well as possible; that is, until ỳ(q) matches the desired output y as closely as possible up to a
maximum number of iterations. The training process is described in Section 2.5.3, Training Feedforward and
Radial Basis Function Networks.

The nonlinear activation function in the neuron is usually chosen to be a smooth step function. The default is
the standard sigmoid

(9)Sigmoid@xD =
1

cccccccccccccccc
1 + e−x

that looks like this.

In[1]:= << NeuralNetworks`
Plot@Sigmoid@xD, 8x, −8, 8<D

-7.5 -5 -2.5 2.5 5 7.5

0.2

0.4

0.6

0.8

1

The FF network in Figure 2.5 is just one possible architecture of an FF network. You can modify the architec-
ture in various ways by changing the options. For example, you can change the activation function to any
differentiable function you want. This is illustrated in Section 13.3.2, The Neuron Function in a Feedforward
Network.

18 Neural Networks

Multilayer Networks

The package supports FF neural networks with any number of hidden layers and any number of neurons
(hidden neurons) in each layer. In Figure 2.6 a multi-output FF network with two hidden layers is shown.

Figure 2.6. A multi-output feedforward network with two hidden layers.

The number of layers and the number of hidden neurons in each hidden layer are user design parameters.
The general rule is to choose these design parameters so that the best possible model, with as few parame-
ters as possible, is obtained. This is, of course, not a very useful rule, and in practice you have to experiment
with different designs and compare the results, to find the most suitable neural network model for the
problem at hand.

For many practical applications, one or two hidden layers will suffice. The recommendation is to start with a
linear model; that is, neural networks with no hidden layers, and then go over to networks with one hidden
layer but with no more than five to ten neurons. As a last step you should try two hidden layers.

The output neurons in the FF networks in Figures 2.5 and 2.6 are linear; that is, they do not have any nonlin-
ear activation function after the weighted sum. This is normally the best choice if you have a general func-
tion, a time series or a dynamical system that you want to model. However, if you are using the FF network
for classification, then it is generally advantageous to use nonlinear output neurons. You can do this by
using the option OutputNonlinearity when using the built-in functions provided with the Neural Net-
works package, as illustrated in the examples offered in Section 5.3, Classification with Feedforward Net-
works, and Section 12.1, Classification of Paper Quality.

Chapter 2: Neural Network Theory—A Short Tutorial 19

2.5.2 Radial Basis Function Networks

After the FF networks, the radial basis function (RBF) network comprises one of the most used network
models.

Figure 2.7 illustrates an RBF network with inputs x1, …, xn and output ỳ. The arrows in the figure symbolize
parameters in the network. The RBF network consists of one hidden layer of basis functions, or neurons. At
the input of each neuron, the distance between the neuron center and the input vector is calculated. The
output of the neuron is then formed by applying the basis function to this distance. The RBF network output
is formed by a weighted sum of the neuron outputs and the unity bias shown.

Figure 2.7. An RBF network with one output.

The RBF network in Figure 2.7 is often complemented with a linear part. This corresponds to additional
direct connections from the inputs to the output neuron. Mathematically, the RBF network, including a
linear part, produces an output given by

(10)

ŷ HθL =

g Hθ, xL = ‚
i=1

nb

wi
2 e−λi

2 Hx−wi1L2 + wnb+1
2 + χ1 x1 + ... + χn xn

where nb is the number of neurons, each containing a basis function. The parameters of the RBF network
consist of the positions of the basis functions wi

1, the inverse of the width of the basis functions li, the
weights in output sum wi

2, and the parameters of the linear part c1, …, cn. In most cases of function approxi-
mation, it is advantageous to have the additional linear part, but it can be excluded by using the options.

20 Neural Networks

The parameters are often lumped together in a common variable q to make the notation compact. Then you
can use the generic description gHq, xL of the neural network model, where g is the network function and x is
the input to the network.

In training the network, the parameters are tuned so that the training data fits the network model Equation
2.10 as well as possible. This is described in Section 2.5.3, Training Feedforward and Radial Basis Function
Networks.

In Equation 2.10 the basis function is chosen to be the Gaussian bell function. Although this function is the
most commonly used basis function, other basis functions may be chosen. This is described in Section 13.3,
Select Your Own Neuron Function.

Also, RBF networks may be multi-output as illustrated in Figure 2.8.

Figure 2.8. A multi-output RBF network.

FF networks and RBF networks can be used to solve a common set of problems. The built-in commands
provided by the package and the associated options are very similar. Problems where these networks are
useful include:

 è Function approximation

 è Classification

 è Modeling of dynamic systems and time series

Chapter 2: Neural Network Theory—A Short Tutorial 21

2.5.3 Training Feedforward and Radial Basis Function Networks

Suppose you have chosen an FF or RBF network and you have already decided on the exact structure, the
number of layers, and the number of neurons in the different layers. Denote this network with ỳ = gHq, xL
where q is a parameter vector containing all the parametric weights of the network and x is the input. Then it
is time to train the network. This means that q will be tuned so that the network approximates the unknown
function producing your data. The training is done with the command NeuralFit, described in Chapter 7,
Training Feedforward and Radial Basis Function Networks. Here is a tutorial on the available training
algorithms.

Given a fully specified network, it can now be trained using a set of data containing N input-output pairs,8xi, yi<i=1
N . With this data the mean square error (MSE) is defined by

(11)VN HθL =
1
cccc
N

 ‚
i=1

N Hyi − g Hθ, xiLL2
Then, a good estimate for the parameter q is one that minimizes the MSE; that is,

(12)θ
ˆ

= argmin
θ

 VN HθL
Often it is more convenient to use the root-mean-square error (RMSE)

(13)RMSE HθL = è!!!!!!!!!!!!!!!VN HθL
when evaluating the quality of a model during and after training, because it can be compared with the
output signal directly. It is the RMSE value that is logged and written out during the training and plotted
when the training terminates.

The various training algorithms that apply to FF and RBF networks have one thing in common: they are
iterative. They both start with an initial parameter vector q0, which you set with the command Initializeg
FeedForwardNet or InitializeRBFNet. Starting at q0, the training algorithm iteratively decreases the
MSE in Equation 2.11 by incrementally updating q along the negative gradient of the MSE, as follows

(14)θi+1 = θi − µ R ∇θVN HθL
Here, the matrix R may change the search direction from the negative gradient direction to a more favorable
one. The purpose of parameter m is to control the size of the update increment in q with each iteration i,
while decreasing the value of the MSE. It is in the choice of R and m that the various training algorithms
differ in the Neural Networks package.

22 Neural Networks

If R is chosen to be the inverse of the Hessian of the MSE function, that is, the inverse of

(15)

d2 VN HθL
ccccccccccccccccccccccc

dθ2
= ∇θ

2 VN HθL =

2
cccc
N

 ‚
i=1

N

∇θg Hθ, xiL ∇θg Hθ, xiLT − 2
cccc
N

 ‚
i=1

N Hyi − g Hθ, xiLL ∇θ
2 g Hθ, xiL

then Equation 2.14 assumes the form of the Newton algorithm. This search scheme can be motivated by a
second-order Taylor expansion of the MSE function at the current parameter estimate qi. There are several
drawbacks to using Newton’s algorithm. For example, if the Hessian is not positive definite, the q updates
will be in the positive gradient direction, which will increase the MSE value. This possibility may be avoided
with a commonly used alternative for R, the first part of the Hessian in Equation 2.15:

(16)H =
2
cccc
N

 ‚
i=1

N

∇θg Hθ, xiL ∇θg Hθ, xiLT
With H defined, the option Method may be used to choose from the following algorithms:

 è Levenberg-Marquardt

 è Gauss-Newton

 è Steepest descent

 è Backpropagation

 è FindMinimum

Levenberg-Marquardt

Neural network minimization problems are often very ill-conditioned; that is, the Hessian in Equation 2.15 is
often ill-conditioned. This makes the minimization problem harder to solve, and for such problems, the
Levenberg-Marquardt algorithm is often a good choice. For this reason, the Levenberg-Marquardt algorithm
method is the default training algorithm of the package.

Instead of adapting the step length m to guarantee a downhill step in each iteration of Equation 2.14, a
diagonal matrix is added to H in Equation 2.16; in other words, R is chosen to be

(17)R = HH + eλ IL−1
and m = 1.

Chapter 2: Neural Network Theory—A Short Tutorial 23

The value of l is chosen automatically so that a downhill step is produced. At each iteration, the algorithm
tries to decrease the value of l by some increment Dl. If the current value of l does not decrease the MSE in
Equation 2.14, then l is increased in steps of Dl until it does produce a decrease.

The training is terminated prior to the specified number of iterations if any of the following conditions are
satisfied:

 è λ>10∆λ+Max[s]

è
VN HθiL − VN Hθi+1L
cc

VN HθiL < 10−PrecisionGoal

Here PrecisionGoal is an option of NeuralFit and s is the largest eigenvalue of H.

Large values of l produce parameter update increments primarily along the negative gradient direction,
while small values result in updates governed by the Gauss-Newton method. Accordingly, the Levenberg-
Marquardt algorithm is a hybrid of the two relaxation methods, which are explained next.

Gauss-Newton

The Gauss-Newton method is a fast and reliable algorithm that may be used for a large variety of minimiza-
tion problems. However, this algorithm may not be a good choice for neural network problems if the Hes-
sian is ill-conditioned; that is, if its eigenvalues span a large numerical range. If so, the algorithm will con-
verge poorly, slowing down the training process.

The training algorithm uses the Gauss-Newton method when matrix R is chosen to be the inverse of H in
Equation 2.16; that is,

(18)R = H−1

At each iteration, the step length parameter is set to unity, m = 1. This allows the full Gauss-Newton step,
which is accepted only if the MSE in Equation 2.11 decreases in value. Otherwise m is halved again and again
until a downhill step is affected. Then, the algorithm continues with a new iteration.

The training terminates prior to the specified number of iterations if any of the following conditions are
satisfied:

Ë
VN HθiL − VN Hθi+1L
cc

VN HθiL < 10−PrecisionGoal

è µ < 10−15

24 Neural Networks

Here PrecisionGoal is an option of NeuralFit.

Steepest Descent

The training algorithm in Equation 2.14 reduces to the steepest descent form when

(19)R = I

This means that the parameter vector q is updated along the negative gradient direction of the MSE in
Equation 2.13 with respect to q.

The step length parameter m in Equation 2.14 is adaptable. At each iteration the value of m is doubled. This
gives a preliminary parameter update. If the criterion is not decreased by the preliminary parameter update,
m is halved until a decrease is obtained. The default initial value of the step length is m = 20, but you can
choose another value with the StepLength option.

The training with the steepest descent method will stop prior to the given number of iterations under the
same conditions as the Gauss-Newton method.

Compared to the Levenberg-Marquardt and the Gauss-Newton algorithms, the steepest descent algorithm
needs fewer computations in each iteration, because there is no matrix to be inverted. However, the steepest
descent method is typically much less efficient than the other two methods, so that it is often worth the extra
computational load to use the Levenberg-Marquardt or the Gauss-Newton algorithm.

Backpropagation

The backpropagation algorithm is similar to the steepest descent algorithm, with the difference that the step
length m is kept fixed during the training. Therefore the backpropagation algorithm is obtained by choosing
R=I in the parameter update in Equation 2.14. The step length m is set with the option StepLength, which
has default m = 0.1.

The training algorithm in Equation 2.14 may be augmented by using a momentum parameter a, which may
be set with the Momentum option. The new algorithm is

(20)∆θi+1 = −µ
dVN HθL
ccccccccccccccccccc

dθ
+ α∆θi

(21)θi+1 = θi + ∆θi+1

Note that the default value of a is 0.

Chapter 2: Neural Network Theory—A Short Tutorial 25

The idea of using momentum is motivated by the need to escape from local minima, which may be effective
in certain problems. In general, however, the recommendation is to use one of the other, better, training
algorithms and repeat the training a couple of times from different initial parameter initializations.

FindMinimum

If you prefer, you can use the built-in Mathematica minimization command FindMinimum to train FF and
RBF networks. This is done by setting the option Method→FindMinimum in NeuralFit. All other choices
for Method are algorithms specially written for neural network minimization, which should be superior to
FindMinimum in most neural network problems. See the documentation on FindMinimum for further
details.

Examples comparing the performance of the various algorithms discussed here may be found in Chapter 7,
Training Feedforward and Radial Basis Function Networks.

2.6 Dynamic Neural Networks

Techniques to estimate a system process from observed data fall under the general category of system identifi-
cation. Figure 2.9 illustrates the concept of a system.

Figure 2.9. A system with input signal u, disturbance signal e, and output signal y.

Loosely speaking, a system is an object in which different kinds of signals interact and produce an observable
output signal. A system may be a real physical entity, such as an engine, or entirely abstract, such as the
stock market.

There are three types of signals that characterize a system, as indicated in Figure 2.9. The output signal y(t) of
the system is an observable/measurable signal, which you want to understand and describe. The input signal

26 Neural Networks

u(t) is an external measurable signal, which influences the system. The disturbance signal e(t) also influences
the system but, in contrast to the input signal, it is not measurable. All these signals are time dependent.

In a single-input, single-output (SISO) system, these signals are time-dependent scalars. In the multi-input,
multi-output (MIMO) systems, they are represented by time-dependent vectors. When the input signal is
absent, the system corresponds to a time-series prediction problem. This system is then said to be noise driven,
since the output signal is only influenced by the disturbance e(t).

The Neural Networks package supports identification of systems with any number of input and output
signals.

A system may be modeled by a dynamic neural network that consists of a combination of neural networks
of FF or RBF types, and a specification of the input vector to the network. Both of these two parts have to be
specified by the user. The input vector, or regressor vector, which it is often called in connection with
dynamic systems, contains lagged input and output values of the system specified by three indices: na, nb,
and nk. For a SISO model the input vector looks like this:

(22)
x HtL = @y Ht − 1L ... y Ht − naL

u Ht − nkL ... u Ht − nk − nb + 1LDT
Index na represents the number of lagged output values; it is often referred to as the order of the model. Index
nk is the input delay relative to the output. Index nb represents the number of lagged input values. In a
MIMO case, each individual lagged signal value is a vector of appropriate length. For example, a problem
with three outputs and two inputs na = 81, 2, 1<, nb = 82, 1<, and nk = 81, 0< gives the following regressor:

x HtL = @y1 Ht − 1L y2 Ht − 1L y2 Ht − 2L
y3 Ht − 1L u1 Ht − 1L u1 Ht − 2L u2 HtLD

For time-series problems, only na has to be chosen.

The dynamic part of the neural network defines a mapping from the regressor space to the output space.
Denote the neural network model by gHq, xHtLL where q is the parameter vector to be estimated using
observed data. Then the prediction ỳ(t) can be expressed as

(23)ŷ HtL = g Hθ, x HtLL
Models with a regressor like Equation 2.22 are called ARX models, which stands for AutoRegressive with eXtra
input signal. When there is no input signal u(t), its lagged valued may be eliminated from Equation 2.22,
reducing it to an AR model. Because the mapping gHq, xHtLL is based on neural networks, the dynamic models

Chapter 2: Neural Network Theory—A Short Tutorial 27

are called neural ARX and neural AR models, or neural AR(X) as the short form for both of them. Figure 2.10
shows a neural ARX model, based on a one-hidden-layer FF network.

Figure 2.10. A neural ARX model.

The special case of an ARX model, where no lagged outputs are present in the regressor (that is, when na=0
in Equation 2.22), is often called a Finite Impulse Response (FIR) model.

Depending on the choice of the mapping gHq, xHtLL you obtain a linear or a nonlinear model using an FF
network or an RBF network.

Although the disturbance signal e(t) is not measurable, it can be estimated once the model has been trained.
This estimate is called the prediction error and is defined by

(24)ê HtL = y HtL − ŷ HtL
A good model that explains the data well should yield small prediction errors. Therefore, a measure of è HtL
may be used as a model-quality index.

System identification and time-series prediction examples can be found in Section 8.2, Examples, and Sec-
tion 12.2, Prediction of Currency Exchange Rate.

28 Neural Networks

2.7 Hopfield Network

In the beginning of the 1980s, Hopfield published two scientific papers that attracted much interest. This
was the beginning of the new era of neural networks, which continues today.

Hopfield showed that models of physical systems could be used to solve computational problems. Such
systems could be implemented in hardware by combining standard components such as capacitors and
resistors.

The importance of the different Hopfield networks in practical application is limited due to theoretical
limitations of the network structure, but, in certain situations, they may form interesting models. Hopfield
networks are typically used for classification problems with binary pattern vectors.

The Hopfield network is created by supplying input data vectors, or pattern vectors, corresponding to the
different classes. These patterns are called class patterns. In an n-dimensional data space the class patterns
should have n binary components 81, -1<; that is, each class pattern corresponds to a corner of a cube in an
n-dimensional space. The network is then used to classify distorted patterns into these classes. When a
distorted pattern is presented to the network, then it is associated with another pattern. If the network
works properly, this associated pattern is one of the class patterns. In some cases (when the different class
patterns are correlated), spurious minima can also appear. This means that some patterns are associated
with patterns that are not among the pattern vectors.

Hopfield networks are sometimes called associative networks because they associate a class pattern to each
input pattern.

The Neural Networks package supports two types of Hopfield networks, a continuous-time version and a
discrete-time version. Both network types have a matrix of weights W defined as

(25)W =
1
cccc
n

 ‚
i=1

D

ξi
T ξi

where D is the number of class patterns 8x1, x2, ..., xD<, vectors consisting of + ê-1 elements, to be stored in
the network, and n is the number of components, the dimension, of the class pattern vectors.

Discrete-time Hopfield networks have the following dynamics:

(26)x Ht + 1L = Sign@W x HtLD

Chapter 2: Neural Network Theory—A Short Tutorial 29

Equation 2.26 is applied to one state, xHtL, at a time. At each iteration the state to be updated is chosen ran-
domly. This asynchronous update process is necessary for the network to converge, which means that
xHtL = Sign@W xHtLD.
A distorted pattern, xH0L, is used as initial state for the Equation 2.26, and the associated pattern is the state
toward which the difference equation converges. That is, starting with xH0L and then iterating Equation 2.26
gives the associated pattern when the equation converges.

For a discrete-time Hopfield network, the energy of a certain vector x is given by

(27)E HxL = −xWxT

It can be shown that, given an initial state vector xH0L, xHtL in Equation 2.26 will converge to a value having
minimum energy. Therefore, the minima of Equation 2.27 constitute possible convergence points of the
Hopfield network. Ideally, these minima are identical to the class patterns 8x1, x2, ..., xD<. Therefore, you can
guarantee that the Hopfield network will converge to some pattern, but you cannot guarantee that it will
converge to the correct pattern.

Note that the energy function can take negative values; this is, however, just a matter of scaling. Adding a
sufficiently large constant to the energy expression it can be made positive.

 The continuous-time Hopfield network is described by the following differential equation

(28)
dx HtL
ccccccccccccccccc
dt

= −x HtL + Wσ@x HtLD
where xHtL is the state vector of the network, W represents the parametric weights, and s is a nonlinearity
acting on the states xHtL. The weights W are defined in Equation 2.25. The differential equation, Equation
2.28, is solved using an Euler simulation.

To define a continuous-time Hopfield network, you have to choose the nonlinear function s. There are two
choices supported by the package: SaturatedLinear and the default nonlinearity of Tanh.

For a continuous-time Hopfield network, defined by the parameters given in Equation 2.25, you can define
the energy of a particular state vector x as

(29)E HxL = −
1
cccc
2

 xWxT + ‚
i=1

m ‡
0

xi

σ−1 HtL Åt

30 Neural Networks

As for the discrete-time network, it can be shown that given an initial state vector xH0L, the state vector xHtL in
Equation 2.28 converges to a local energy minimum. Therefore, the minima of Equation 2.29 constitute the
possible convergence points of the Hopfield network. Ideally these minima are identical to the class patterns8x1, x2, ..., xD<. However, there is no guarantee that the minima will coincide with this set of class patterns.

Examples with Hopfield nets can be found in Section 9.2, Examples.

2.8 Unsupervised and Vector Quantization Networks

Unsupervised algorithms are used to find structures in the data. They can, for instance, be used to find
clusters of data points, or to find a one-dimensional relation in the data. If such a structure exists, it can be
used to describe the data in a more compact way.

Most network models in the package are trained with supervised training algorithms. This means that the
desired output must be available for each input vector used in the training. Unsupervised networks, or
self-organizing networks, rely only on input data and try to find structures in the input data space. The train-
ing algorithms are therefore called unsupervised.

Since there is no “correct” output, there will also not be any “incorrect” outputs. This fact leaves a lot of
responsibility to the user. After an unsupervised network has been trained, it must be tested to show that it
makes sense, that is, if the obtained structure is really representing the data. This validation can be very
tricky, especially if you work in a high-dimensional space. In two- or three-dimensional problems, you can
always plot the data and the obtained structure and simply examine them. Another test that can be applied
in any number of dimensions is to check for the mean distance between the data points and the obtained
cluster centers. A small mean distance means that the data is well represented by the clusters.

An unsupervised network consists of a number of codebook vectors, which constitute cluster centers. The
codebook vectors are of the same dimension as the input space, and their components are the parameters of
the unsupervised network. The codebook vectors are called the neurons of the unsupervised network.

When an unsupervised network is trained, the locations of the codebook vectors are adapted so that the
mean Euclidian distance between each data point and its closest codebook vector is minimized. The algo-
rithm, called competitive learning, is described in Section 10.1.2, UnsupervisedNetFit.

An unsupervised network can employ a neighbor feature. This gives rise to a self-organizing map (SOM). For
SOM networks, not only is the mean distance between the data and nearest codebook vector minimized, but
also the distance between the codebook vectors. In this way it is possible to define one- or two-dimensional
relations among the codebook vectors, and the obtained SOM unsupervised network becomes a nonlinear

Chapter 2: Neural Network Theory—A Short Tutorial 31

mapping from the original data space to the one- or two-dimensional feature space defined by the codebook
vectors. Self-organizing maps are often called self-organizing feature maps, or Kohonen networks.

When the data set has been mapped by a SOM to a one- or two-dimensional space, it can be plotted and
investigated visually.

The training algorithm using the neighbor feature is described in Section 10.1.2, UnsupervisedNetFit.

Another neural network type that has some similarities to the unsupervised one is the Vector Quantization
(VQ) network, whose intended use is classification. Like unsupervised networks, the VQ network is based
on a set of codebook vectors. Each class has a subset of the codebook vectors associated to it, and a data
vector is classified to be in the class to which the closest codebook vector belongs. In the neural network
literature, the codebook vectors are often called the neurons of the VQ network.

Each of the codebook vectors has a part of the space “belonging” to it. These subsets form polygons and are
called Voronoi cells. In two-dimensional problems you can plot these Voronoi cells.

The positions of the codebook vectors are obtained with a supervised training algorithm, and you have two
different ones to choose from. The default one is called Learning Vector Quantization (LVQ) and it adjusts the
positions of the codebook vectors using both the correct and incorrect classified data. The second training
algorithm is the competitive training algorithm, which is also used for unsupervised networks. For VQ
networks this training algorithm can be used by considering the data and the codebook vectors of a specific
class independently of the rest of the data and the rest of the codebook vectors. In contrast to the unsuper-
vised networks, the output data indicating the correct class is also necessary. They are used to divide the
input data among the different classes.

2.9 Further Reading

Many fundamental books on neural networks cover neural network structures of interest. Some examples
are the following:

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

32 Neural Networks

The following book concerns neural network simulation in Mathematica. It does not give very much back-
ground information on neural networks and their algorithms, but it contains programs and simulation
examples. The book is not based on the Neural Networks package. Instead, the book contains the code for
some neural network models.

J. A. Freeman, Simulating Neural Networks with Mathematica, Reading, MA, Addison-Wesley, 1994.

System identification and time-series prediction are broad and diverse fields, and there are many general
and specialized books on these topics. The following list contains just some samples of the vast literature.

The following are good introductory books:

R. Johansson, System Modeling and Identification, Englewood Cliffs, NJ, Prentice Hall, 1993.

L. Ljung and T. Glad, Modeling of Dynamic Systems, Englewood Cliffs, NJ, Prentice Hall, 1994.

The following books are more thorough, and they are used in graduate courses at several universities:

L. Ljung, System Identification: Theory for the User, 2nd ed., Englewood Cliffs, NJ, Prentice Hall, 1999.

T. Söderström and P. Stoica, System Identification, Englewood Cliffs, NJ, Prentice Hall, 1989.

The following article discusses possibilities and problems using nonlinear identification methods from a
user’s perspective:

J. Sjöberg et al., “Non-Linear Black-Box Modeling in System Identification: A Unified Overview”, Automat-
ica, 31 (12), 1995, pp. 1691–1724.

This book is a standard reference for time-series problems:

G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, Oakland, CA, Holden-Day, 1976.

Many modern approaches to time-series prediction can be found in this book and in the references therein:

A. S. Weigend and N. A. Gershenfeld, “Time Series Prediction: Forecasting the Future and Understanding
the Past”, in Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis held in
Santa Fe, New Mexico, May 14–17, 1992, Reading, MA, Addison-Wesley, 1994.

Chapter 2: Neural Network Theory—A Short Tutorial 33

In most cases the neural network training is nothing other than minimization. It is, therefore, a good idea to
consult standard books on minimization, such as:

R. Fletcher, Practical Methods of Optimization, Chippenham, Great Britain, John Wiley & Sons, 1987.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
Englewood Cliffs, NJ, Prentice Hall, 1983.

34 Neural Networks

3 Getting Started and Basic Examples

The basic steps and conventions common to all neural network models contained in the Neural Networks
package are explained in this chapter. You will also find some introductory examples.

3.1 Palettes and Loading the Package

The Neural Networks palettes contain sets of buttons that insert command templates for each type of neural
network into a notebook. Section 3.1.2, Palettes, explains the general format of the palettes. Most of the
commands described in the documentation can be inserted using a Neural Networks palette. To evaluate
commands, the package must be loaded, as explained in Section 3.1.1, Loading the Package and Data.

3.1.1 Loading the Package and Data

The Neural Networks package is one of many available Mathematica applications, and it should be installed to
the $BaseDirectory/Applications or $UserBaseDirectory/Applications directory. If this has
been done at the installation stage, Mathematica should be able to find the application package without
further effort on your part. To make all the functionality of the application package available at once, you
simply load the package with the Get, <<, or Needs command.

Load the package and make all the functionality of the application available.

In[1]:= << NeuralNetworks`

If you get a failure message at this stage, it is probably due to a nonstandard location of the application
package on your system. You will have to check that the directory enclosing the NeuralNetworks direc-
tory is included in your $Path variable. Commands such as AppendTo[$Path, TheDirectoryNeuralNetworks-
IsIn] can be used to inform Mathematica how to find the application. You may want to add this command to
your Init.m file so it will execute automatically at the outset of any of your Mathematica sessions.

All commands in Neural Networks manipulate data in one way or another. If you work on data that was not
artificially generated using Mathematica, then you have to load the data into Mathematica. For all illustrations
in the documentation, the data is stored as Mathematica expressions and is loaded in the following way. Here
twoclasses.dat is the name of a data file that comes with the Neural Networks package.

Load a data file.

In[2]:= << twoclasses.dat;

3.1.2 Palettes

The Neural Networks package contains several palettes. As with the standard palettes that come with Mathe-
matica, the palettes are available from the front end menu via the File @ Palettes command. These palettes
provide you with an overview of the available commands, and their options and an easy method for insert-
ing a function template into a notebook.

The main palette, shown in the following screen shot, is called the Neural Networks palette. This palette
contains one button for each neural network type supported by the package.

The Neural Networks palette.

Clicking a button for a network type opens a subpalette that contains buttons for all functions of the chosen
network. Function buttons on a subpalette are accompanied by buttons that open palettes of function
options. Clicking a question-mark button opens online documentation. The following is a screen shot of the
Perceptron palette.

The Perceptron palette.

You can also access the palettes from the online documentation in the Palettes subcategory.

36 Neural Networks

3.2 Package Conventions

This section describes conventions common to all neural network types supported by Neural Networks. These
conventions for function names, data format, and trained neural network storage make it easy to work with
new types of networks once you have learned how to use one network type.

3.2.1 Data Format

To train a network, you need a set of data 8xi, yi<i=1
N containing N input-output pairs. All of the functions in

the package require the same data format. The input and output data are each arranged in the form of a
Mathematica matrix. Each individual input vector, xi, is a vector on row i of the input data matrix, and each yi

is a vector on row i of the output data matrix. An exception to this rule is when a neural network is applied
to a single data item, in which case the data can be written as a vector rather than as a matrix.

Consider the sample data file one2twodimfunc.dat that is packaged with Neural Networks. This data item
has N = 20 input-output pairs. Each xi is a vector of length 1, and each output item is a vector of length 2. To
view the data, first load the package and then load the data file.

Load the Neural Networks package and the data file.

In[1]:= << NeuralNetworks`

In[2]:= << one2twodimfunc.dat;

In this data file, the input and output matrices are assigned to the variable names x and y, respectively.
Once the data set has been loaded, you can query the data using Mathematica commands. To better under-
stand the data format and variable name assignment, you may also want to open the data file itself.

Show the contents of the input and output matrices.

In[3]:= x

Out[3]= 880.<, 80.5<, 81.<, 81.5<, 82.<, 82.5<, 83.<, 83.5<, 84.<, 84.5<,85.<, 85.5<, 86.<, 86.5<, 87.<, 87.5<, 88.<, 88.5<, 89.<, 89.5<<

Chapter 3: Getting Started and Basic Examples 37

In[4]:= y

Out[4]= 880., 1.<, 80.479426, 0.877583<, 80.841471, 0.540302<, 80.997495, 0.0707372<,80.909297, −0.416147<, 80.598472, −0.801144<, 80.14112, −0.989992<,8−0.350783, −0.936457<, 8−0.756802, −0.653644<, 8−0.97753, −0.210796<,8−0.958924, 0.283662<, 8−0.70554, 0.70867<, 8−0.279415, 0.96017<,80.21512, 0.976588<, 80.656987, 0.753902<, 80.938, 0.346635<, 80.989358, −0.1455<,80.798487, −0.602012<, 80.412118, −0.91113<, 8−0.0751511, −0.997172<<
Check the number of data items and the number of inputs and outputs for each data item.

In[5]:= Dimensions@xD
Dimensions@yD

Out[5]= 820, 1<
Out[6]= 820, 2<
The data set contains 20 data items with one input and two outputs per item.

Look at input and output of data item 14.

In[7]:= x@@14DD
y@@14DD

Out[7]= 86.5<
Out[8]= 80.21512, 0.976588<
The next example demonstrates the data format for a classification problem. A classification problem is a
special type of function approximation: the output of the classifier has discrete values corresponding to the
different classes. You can work with classification as you would with any other function approximation, but
it is recommended that you follow the standard described here so that you can use the special command
options specifically designed for classification problems.

In classification problems input data is often called pattern vectors. Each row of the input data x contains one
pattern vector, and the corresponding row in the output data y specifies the correct class of that pattern
vector. The output data matrix y should have one column for each class. On each row the correct class is
indicated with a 1 in the correct class position, with the rest of the positions containing 0. If the classification
problem has only two classes, then you can choose to have only one column in y and indicate the classes
with 1 or 0.

38 Neural Networks

Consider the following example with three classes. The data is stored in threeclasses.dat in which the
input matrix has been named x and the output data is assigned to matrix y. Although this is an artificially
generated data set, imagine that the input data contains the age and weight of several children, and that
these children are in three different school classes.

Load a data set.

In[9]:= << threeclasses.dat;

Look at the 25th input data sample.

In[10]:= x@@25DD
Out[10]= 82.23524, 2.15257<
The children are from three different groups. The group is indicated by the position of the 1 in each row of
the output y.

Verify in which class child 25 belongs.

In[11]:= y@@25DD
Out[11]= 80, 1, 0<
Since there is a 1 in the second column, the 25th child belongs to the second class.

Examples of classification problems can be found in Chapter 4, The Perceptron; Chapter 11, Vector Quantiza-
tion; Section 12.1, Classification of Paper Quality; and Chapter 9, Hopfield Networks.

Chapter 3: Getting Started and Basic Examples 39

3.2.2 Function Names

Most neural network types rely on the following five commands, in which * is replaced by the name of the
network type.

Initialize∗ initializes a neural network of indicated type

∗Fit trains a neural network of indicated type

NetPlot illustrates a neural network
in a way that depends on the options

NetInformation gives a string of information about the neural network

NeuronDelete deletes a neuron from an existing network

Common command structures used in the Neural Networks package.

Initialize* creates a neural network object with head equal to the name of the network type. The output
of the training commands, *Fit, is a list with two elements. The first element is a trained version of the
network, and the second is an object with head *Record containing logged information about the training.
NetPlot can take *Record or the trained version of the network as an argument to return illustrations of
the training process or the trained network. If NetInformation is applied to the network, a string of
information about the network is given. These commands are illustrated in the examples in Section 3.4.1,
Classification Problem Example and Section 3.4.2, Function Approximation Example. More examples can
also be found in the sections describing the different neural network types.

In addition to these four commands, special commands for each neural network type are discussed in the
chapter that focuses on the particular network.

3.2.3 Network Format

A trained network is identified by its head and list elements in the following manner.

 è The head of the list identifies the type of network.

 è The first component of the list contains the parameters, or weights, of the network.

 è The second component of the list contains a list of rules indicating different network properties.

Consider this structure in a simple example.

40 Neural Networks

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Create a perceptron network.

In[2]:= net = InitializePerceptron@881., −1.<, 8−1., 1.<<, 81, 0<D
Out[2]= Perceptron@8w, b<,8CreationDate → 82002, 4, 3, 13, 13, 5<, AccumulatedIterations → 0<D
The head is Perceptron. The first component contains the parameters of the neural network model,
indicated by the symbol {w, b} for perceptrons. You obtain the parameters of a network by extracting the
first element.

There are two replacement rules in the perceptron object. The one with left side CreationDate indicates
when the network was created, and the other one, AccumulatedIterations, indicates the number of
training iterations that have been applied to the network. In this case it is zero; that is, the network has not
been trained at all.

Look at the parameters.

In[3]:= net@@1DD
Out[3]= 8880.958944<, 80.313997<<, 8−0.816685<<
You can store more information about a network model by adding more rules to the second component. The
following example inserts the rule NetworkName → JimsFavoriteModel as the first element of the list
in the second component of the neural network model.

Add a name to the network.

In[4]:= Insert@net, HNetworkName → JimsFavoriteModelL, 82, 1<D
Out[4]= Perceptron@8w, b<, 8NetworkName → JimsFavoriteModel,

CreationDate → 82002, 4, 3, 13, 13, 5<, AccumulatedIterations → 0<D

Chapter 3: Getting Started and Basic Examples 41

3.3 NetClassificationPlot

The command NetClassificationPlot displays classification data in a plot. The format of the input
data x and the output data y must follow the general format described in Section 3.2.1, Data Format.

NetClassificationPlot@x, yD plots data vectors x with the correct class indicated in y

NetClassificationPlot@xD plots data vectors x without any information about class

Display of classification data in a plot.

NetClassificationPlot has one option, which influences the way the data is plotted.

option default value

DataFormat Automatic indicates how data should be plotted

Option of NetClassificationPlot.

DataFormat can have one of the following two values:

 è DataMap produces a two-dimensional plot based on MultipleListPlot. If the class information
is submitted, different plot symbols will indicate the class to which the input belongs. This option is
the default for two-dimensional data.

 è BarChart produces a bar chart illustrating the distribution of the data over the different classes
using the command BarChart. If the dimension of the input data is larger than two, then the
default DataFormat is a bar chart. This type of plot allows you to see how the data is distributed
over the classes.

You can influence the style of the plotting with any options of the commands MultipleListPlot and
BarChart.

The next set of examples shows typical plots using two-dimensional data.

Load the Neural Networks package and demonstration data.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;

42 Neural Networks

The input data is stored in x and the output data in y.

Make a two-dimensional plot of the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@0.5D, Hue@0.8D<D

0 2 4 6

0

2

4

6

The color of the data was changed using the option SymbolStyle of MultipleListPlot.

Illustrate the distribution of the data over the classes in a bar chart.

In[4]:= NetClassificationPlot@x, y, DataFormat → BarChart, BarStyle → 8Hue@0.7D, Hue@0.5D<D

1 2
Class

5

10

15

20

Samples

There are, therefore, 20 data samples in each of the two classes. The data is distributed evenly between the
classes. The option BarStyle was used to change the colors of the bars.

Chapter 3: Getting Started and Basic Examples 43

For higher-dimensional data, you can also try to plot projections of the data. The next data set has three
classes, but there are also three input dimensions.

Load new data.

In[5]:= << vqthreeclasses3D.dat;

Check the dimensionality of the input space.

In[6]:= Dimensions@xD
Out[6]= 860, 3<
Three input dimensions cannot be plotted in a two-dimensional plot. Instead take the scalar product of x
with a 3 × 2 matrix and then plot the resulting two-dimensional projection of the input data. In the following
example, the first two dimensions of the input data are plotted. The plot symbols indicate the class y.

Project and plot the data.

In[7]:= NetClassificationPlot@x . 881, 0<, 80, 1<, 80, 0<<, yD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

44 Neural Networks

3.4 Basic Examples

Each neural network problem follows the same basic steps: (1) load the data set; (2) initialize the network; (3)
train the network; and (4) validate the model. Here the basic steps common to all neural network problems
are elucidated with two examples: a classification problem and a function approximation problem. The
options that alter or go beyond the basic steps are particular to the neural network model and so are dis-
cussed in later chapters. A detailed discussion of the meaning and manipulation of NeuralFit output can
be found in the chapters that discuss individual network types.

3.4.1 Classification Problem Example

This subsection describes a small classification problem. This two-dimensional example is instructive
because the data and the classifier can be visualized very easily. The data used in this example is stored in
the file twoclasses.dat in which the input is stored in the matrix x and the output in y. To help under-
stand the problem, assume that the input data is the age and weight of several children, and the output data
represents the class to which each child belongs. There are two possible classes in this example.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;

Because there are two possible classes, the output can be stored in one column, with a 1 or 0 indicating the
class to which a child belongs. For a general discussion of data format, see Section 3.2.1, Data Format.

View the output data.

In[3]:= y

Out[3]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0<

Chapter 3: Getting Started and Basic Examples 45

Plot the data, setting the axes labels according to the names of the measured values.

In[4]:= NetClassificationPlot[x,y,FrameLabel→{"Age","Weight"},SymbolStyle→
{Hue[0.6],Hue[0.8]},RotateLabel→False]

0 2 4 6
Age

0

2

4

6

Weight

The plot clearly shows that the data is divided into two classes, and that it should be possible to divide the
groups with a curve found during the training process. The successfully trained neural network classifier
will return the correct group to which a child belongs, given the child’s weight and age.

A measure of fit, or performance index, to be minimized by the training algorithm, must be chosen for the
training to proceed. For classification problems, the criterion is set to the number of incorrectly classified
data samples. The classifier has correctly classified all data when the criterion is zero.

A perceptron is the simplest type of neural network classifier. It is used to illustrate the training in this
example. You can initialize a perceptron with InitializePerceptron and then use PerceptronFit to
train the perceptron. However, perceptron initialization will take place automatically if you start with
PerceptronFit.

46 Neural Networks

Initialize and train a perceptron classifier using the data.

In[5]:= 8per, fitrecord< = PerceptronFit@x, yD;

0 1 2 3 4 5 6 7 8 9 10111213
Iterations

0

5

10

15

20
SSE

Note that you will usually obtain slightly different results if you repeat the training command. This is due to
the random initialization of the perceptron, which is described in Section 4.1.1, InitializePerceptron. As a
result of this, the parametric weights of the perceptron will also be different for each evaluation, and you
will obtain different classifiers.

During the evaluation of PerceptronFit, a separate notebook opens and displays the progress of the
training. At the end of the training, a summary of the training process is shown in the plot of summed
squared error (SSE) versus iteration number. The preceding plot is the summary of the training process for
this example. You can see that the SSE tends toward 0 as the training goes through more iterations.

The first output argument of PerceptronFit is the trained perceptron per in this case. The second output
argument, equal to fitrecord in this example, is a training record that contains information about the
training procedure. See Section 7.8, The Training Record, for a description of how the training record can be
used to analyze the quality of training. See Chapter 4, The Perceptron, for options that change the training
parameters and plot.

The perceptron’s training was successful, and it can now be used to classify new input data.

Classify a child of age six and weight seven.

In[6]:= per@86., 7.<D
Out[6]= 81<

Chapter 3: Getting Started and Basic Examples 47

You can also evaluate the perceptron on symbolic inputs to obtain a Mathematica expression describing the
perceptron function. Then you can combine the perceptron function with any Mathematica commands to
illustrate the classification and the classifier.

Obtain a Mathematica expression describing the perceptron.

In[7]:= Clear@a, bD;
per@8a, b<D

Out[8]= 8UnitStep@−168.948 + 63.7735 a + 64.0374 bD<
Note that the numerical values of the parameter weights will be different when you repeat the example.

NetPlot can be used to illustrate the trained network in various ways, depending on the options given. The
trained classifier can, for example, be visualized together with the data. This type of plot is illustrated using
the results from the two-dimensional classifier problem. For this example, a successful classifier divides the
two classes with a line. The exact position of this line depends on what particular solution was found in the
training. All lines that separate the two clusters are possible results in the training.

In[9]:= NetPlot@per, x, yD

0 2 4 6

0

2

4

6

Classifier

NetPlot can also be used to illustrate the training process by applying it to the training record, the second
argument of PerceptronFit.

48 Neural Networks

Illustrate the training of the perceptron.

In[10]:= NetPlot@fitrecord, x, yD

0 2 4 6

0

2

4

6

Progress of a Classifier

The plot shows the classification of the initial perceptron and its improvement during the training.

The perceptron is described further in Chapter 4, The Perceptron, and you can find a list of neural networks
that can be used for classification problems in Section 2.1, Introduction to Neural Networks.

3.4.2 Function Approximation Example

This subsection contains a one-dimensional approximation problem solved with a FF network. Higher-di-
mensional problems, except for the data plots, can be handled in a similar manner.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Load data and Mathematica’s matrix add-on package.

In[2]:= <<onedimfunc.dat;
<< LinearAlgebra`MatrixManipulation`

Chapter 3: Getting Started and Basic Examples 49

The file onedimfunc.dat contains the input and output data in the matrices defined as x and y, respec-
tively. It is assumed that the input-output pairs are related by y = f HxL, where f is an unspecified function.
The data will be used to train a feedforward network that will be an approximation to the actual function f.

To motivate the use of a neural network, imagine that both x and y are measured values of some product in
a factory, but y can be measured only by destroying the product. Several samples of the product were
destroyed to obtain the data set. If a neural network model can find a relationship between x and y based on
this data, then future values of y could be computed from a measurement of x without destroying the
product.

Plot the data.

In[4]:= ListPlot@AppendRows@x, yD, PlotStyle → PointSize@0.03DD
2 4 6 8

-1

-0.5

0.5

1

This is a very trivial example; the data was generated with a sinusoid. A feedforward network will be
trained to find such an approximation. More information on this kind of neural network can be found in
Chapter 5, The Feedforward Neural Network.

Initialize a feedforward network with three neurons.

In[5]:= fdfrwrd = InitializeFeedForwardNet@x, y, 83<D
Out[5]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 16, 51<,
OutputNonlinearity → None, NumberOfInputs → 1<D

50 Neural Networks

Train the initialized network.

In[6]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, yD;

0 1 2 3 4 5 6 7 8 9 10111213
Iterations

0.2

0.22

0.24

0.26

0.28

RMSE

Note that you will usually obtain slightly different results if you repeat the initialization and the training
command. This is due to the partly random initialization of the feedforward network, which is described in
Section 5.1.1, InitializeFeedForwardNet.

As with the previous example, the improvement of the fit is displayed in a separate notebook during the
training process. At the end of the training, the fit improvement is summarized in a plot of the RMSE in the
neural network prediction versus iterations. NeuralFit options allow you to change the training and plot
features. At the end of the training, you will often receive a warning that the training did not converge. It is
usually best to visually inspect the RMSE decrease in the plot to decide if more training iterations are
needed. How this can be done is illustrated in Section 5.2.1, Function Approximation in One Dimension. For
now, assume that the network has been successfully trained, though later you can plot the model to compare
it to the data.

The first output argument of NeuralFit is the trained feedforward network. The second argument is a
training record containing information about the training procedure. See Section 7.8, The Training Record,
for a discussion of how to use the training record to analyze the quality of training.

The trained neural network can now be applied to a value x to estimate y = f(x).

Produce an estimate for y when x=3.

In[7]:= fdfrwrd2@83<D
Out[7]= 80.241326<

Chapter 3: Getting Started and Basic Examples 51

To obtain a Mathematica expression describing the network, apply the network to symbolic input. Then you
can use Mathematica commands to plot and manipulate the network function.

Obtain a Mathematica expression describing the network.

In[8]:= Clear@aD;
fdfrwrd2@8a<D

Out[9]= 90.648702 − 1.7225
cc
1 + Æ10.3493−3.06279 a

−
1.77352

cc
1 + Æ21.1303−2.31796 a

+
2.26213

cc
1 + Æ12.3109−1.93971 a

=
The special command NetPlot illustrates the trained neural network in a way indicated with the option
DataFormat. For one- and two-dimensional problems you can use it to plot the neural network function.

Plot the function estimate together with the data.

In[10]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlot,
PlotStyle → 8Hue@0.9D, PointSize@0.03D<D

2 4 6 8

-1

-0.5

0.5

1

Depending on the option DataFormat, NetPlot uses different Mathematica plot commands, and you may
submit any options of these commands to change the way the result is displayed. For example, in the illus-
trated plot the color was changed.

52 Neural Networks

4 The Perceptron

The perceptron is the simplest type of neural network, and it is typically used for classification.

Perceptron classifiers are trained with a supervised training algorithm. This means that the true class of the
training data must be available so that they can be submitted to the training function. If a data sample is
incorrectly classified then the algorithm modifies the network weights so that performance improves. This is
an iterative training process that continues until the perceptron correctly classifies all data or the upper limit
of training iterations is reached.

It is often possible to use a smart initialization of the weights of the perceptron so that the extent of the
iterative training may be minimized or entirely circumvented.

A short tutorial about the perceptron is given in Section 2.4, The Perceptron. Section 4.1, Perceptron Net-
work Functions and Options, defines the commands and the options to work with perceptron networks, and
in Section 4.2, Examples, you can find examples illustrating the commands. A small introductory example
also appears in Section 3.4.1, Classification Problem Example.

4.1 Perceptron Network Functions and Options

This section describes the functions to initialize, train, and use perceptrons. Examples can be found in
Section 4.2, Examples.

4.1.1 InitializePerceptron

A perceptron model can be initialized with InitializePerceptron and then trained, or fitted, to the
data with PerceptronFit. You can also call PerceptronFit without an initialized perceptron model. In
this case, the initialization is done internally.

InitializePerceptron is called in the following way.

InitializePerceptron@x, yD
initializes a perceptron of the appropriate
dimensionality according to the supplied data,
x-input data vectors, and y-outputs

Initializing a perceptron network.

The result is placed in an object of type Perceptron. In the first position, you find the parametric weights8w, b<, as described in Section 2.4, The Perceptron. In the multi-output case, there is one column in w and one
component in b for each of the outputs.

The perceptron automatically assumes as many inputs as the dimensionality of the input data x, and as
many outputs as the dimensionality of the output data y.

InitializePerceptron takes one option.

options default value

RandomInitialization True indicates random initialization

Option of InitializePerceptron.

If the option is set to False, a smart initialization is used, which sets the parametric weights so that the
initial classifier is placed between the data clusters. In the multi-output case, the weights of each output are
initialized in this way. This often gives such a good initial perceptron model that no training is necessary.

4.1.2 PerceptronFit

The command PerceptronFit is used to train a perceptron. It can be called with an already-existing
perceptron model that is then trained, or it can be called with only data, in which case a perceptron will first
be initialized. If the number of iterations is not specified, it will assume a default value of 100 or stop sooner
when all patterns are correctly classified.

54 Neural Networks

PerceptronFit@x, yD initializes and trains a perceptron
with the default number of iterations

PerceptronFit@x, y, iterationsD initializes and trains a perceptron
with the indicated number of iterations

PerceptronFit@x, y, perceptronD trains the submitted perceptron
with the default number of iterations

PerceptronFit@x, y, perceptron, iterationsD trains the submitted perceptron
with the indicated number of iterations

Training a perceptron network.

PerceptronFit returns a list containing two elements. The first element is the trained perceptron and the
second is an object of type PerceptronRecord, which contains information of the training session. It can
be used to evaluate the quality of the training using the command NetPlot. The structure of the training
record is explained in Section 7.8, The Training Record.

An existing perceptron can be submitted for more training by setting perceptron equal to the perceptron or its
training record. The advantage of submitting the training record is that the information about the earlier
training is combined with the additional training.

During the training, intermediate results are displayed in a separate notebook, which is created automati-
cally. After each training iteration the number of misclassified training patterns is displayed together with
the iteration number. At the end of the training, this information is shown in a plot. By changing the options,
as described in Section 7.7, Options Controlling Training Results Presentation, you can change or switch off
this information about the training.

PerceptronFit takes the following options.

options default values

RandomInitialization True indicates that random
initialization should be used

StepLength Automatic sets the step length h for the training
algorithm to any nonnegative numerical value

CriterionPlot True plots the improvement of the classifier as a
function of iteration number after the training

Chapter 4: The Perceptron 55

CriterionLog True writes out the intermediate
classification result during training

CriterionLogExtN True writes out the intermediate
classification result in an external notebook

ReportFrequency 1 logs the intermediate
results with the indicated interval

MoreTrainingPrompt False prompts for more
training iterations if set to True

Options of PerceptronFit.

If StepLength→Automatic then it is set according to Equation 2.6 in Section 2.4, The Perceptron. That
default value is good for a large variety of problems. You can, however, supply any other positive numerical
value.

The options CriterionPlot, CriterionLog, CriterionLogExtN, ReportFrequency, and Moreg
TrainingPrompt influence the way the results of PerceptronFit are presented and they are similar to
the other training commands in the Neural Networks package. They are described in Section 7.7, Options
Controlling Training Results Presentation.

A derived perceptron can be applied to new input vectors using function evaluation.

per@xD evaluates the perceptron per on the input vector x

Function evaluation of a perceptron network.

The input argument x can be a vector containing one input vector or a matrix containing one input vector on
each row.

4.1.3 NetInformation

Some information about a perceptron is presented in a string by the function NetInformation.

NetInformation@perD writes out information about a perceptron

The NetInformation function.

56 Neural Networks

 4.1.4 NetPlot

NetPlot can be used to illustrate a perceptron, its classification, and its training. Depending on how the
option DataFormat is set, you can illustrate the classification and the training in different ways.

NetPlot@per, x, yD illustrates the classification result for the given
perceptron model with the submitted x input y output data

NetPlot@per, xD illustrates the classification result for the
given perceptron model with only input data

NetPlot@fitrecord, x, yD illustrates the classifier during training

NetPlot@fitrecord, xD illustrates the classifier during training with only input data

Display of perceptrons and training of perceptrons.

If the output data y is submitted then the correct class and the class according to the perceptron model can
be indicated. For two-dimensional problems the default is to plot the data and the border line(s) of the
classifier. For higher-dimensional data the result is represented with bar charts.

NetPlot takes the following options when it is applied to a perceptron network.

options default values

DataFormat Automatic indicates the way in which the data should be illustrated;
the default depends on the dimension of the dataHpossibilities are described in the following paragraphsL

Intervals 5 number of iterations between displayed plots

BoundaryDash True specifies if the boundaries at different stages of the training
should be illustrated with longer dashes as training proceeds

Compiled True use compiled version

Options of NetPlot.

Chapter 4: The Perceptron 57

The option DataFormat takes the following values:

 è DataMap is the default for two-dimensional problems, producing a plot of data along with the class
discriminant. If a training record is submitted, then the class discriminant for the intermediate
classifiers during training are also plotted. The option Intervals can be used to set the frequency
of the intermediate classifiers.

 è BarChart illustrates the classification result with a bar chart.

 è ClassPerformance is the default if a training record is supplied instead of a perceptron and when
the input dimension is larger than two. The classification performance is plotted against training
iterations with one plot for each class. Each plot indicates the classification performance versus
training iterations for one specific class. The solid line indicates the number of correctly classified
data samples to that class, and the dashed line indicates the number of incorrectly classified data
samples to that class.

 è DataMapArray gives a graphics array of the progress of the classification during training. This
applies only to two-dimensional problems and when a training record is submitted.

The last two possibilities are encountered only when NetPlot is applied to a training record. The option
BoundaryDash is active only when DataFormat→DataMap and when NetPlot is applied to a training
record.

Depending on the value of DataFormat, NetPlot uses the Mathematica command MultipleListPlot,
BarChart, or BarChart3D, and you can modify the plot by submitting the related options.

With DataFormat→BarChart the classification result is illustrated with a three-dimensional bar chart
indicating class according to output data and class according to the perceptron model. The height of the bar
at position 8n, m< illustrates the number of data objects belonging to class n according to the supplied output,
and classified to class m by the perceptron. Therefore, the bars on the diagonal correspond to correctly
classified data.

If no output is submitted, then only the classification according to the model can be given, and the plot
illustrates how the input data is distributed over the classes according to the classification of the perceptron.

58 Neural Networks

4.2 Examples

This subsection gives some simple examples where perceptrons are used to classify data from different
classes. Remember that the perceptron is a very simple type of classifier and in most real problems you
might need more advanced models.

The first two examples use two-dimensional input data. This is helpful because the data and the classifier
can be depicted graphically. In the first example there are only two classes, which can be separated using a
perceptron with one output. The second example handles three classes, and you need a perceptron with
three outputs. This is equivalent to three single-output perceptrons in parallel.

The third example considers classification in a three-dimensional space. The main difference from the
two-dimensional classification is that you cannot properly plot the data.

Notice that if you re-evaluate the examples you will not receive exactly the same results due to the random
initialization used in training perceptron networks. See Section 4.1.1, InitializePerceptron.

4.2.1 Two Classes in Two Dimensions

Consider a two-dimensional classification problem. First the package and a data set are loaded.

Load the Neural Networks package and a data set.

In[1]:= <<NeuralNetworks`

In[2]:= << twoclasses.dat;

The input data is stored in x and the output in y. The data format follows the standard form of the package
as described in Section 3.2, Package Conventions. The data set is the same as the one described in Section
3.4.1, Classification Problem Example.

The starting point should always be to look at the data.

Chapter 4: The Perceptron 59

Look at the data.

In[3]:= NetClassificationPlot[x,y,SymbolStyle→{Hue[.5],Hue[.9]}]

0 2 4 6

0

2

4

6

The two classes are distinguished by different labels according to the information in the output y. The
positions of the different patterns are given by the input x.

You can now fit a perceptron classifier to the data. In other words, you train a perceptron to divide the data
in the correct manner.

Initialize and train a perceptron using five iterations.

In[4]:= 8per, fitrecord< = PerceptronFit@x, y, 5D;

0 1 2 3 4 5
Iterations

10

12

14

16

18

20

SSE

PerceptronFit::NotConverged :

No solution found. The problem might not be linearly
separable or you may need more iterations.

60 Neural Networks

Since the perceptron did not learn to classify all the training data correctly, a warning is given at the end of
the training. The cause of the failure might be that the perceptron is too simple a classifier for the problem at
hand, or that it needs more training iterations. You can repeat the previous command with an increased
number of iterations, or you can submit the trained perceptron for more training.

More training can be applied to an existing perceptron in two ways: by submitting the perceptron or by
submitting its training record. The advantage of submitting the training record is that the information about
the new training will be combined with the earlier training and added in the new training record. In this
way it is possible to examine all the training more easily. This is illustrated here.

Train the perceptron with another 10 iterations.

In[5]:= 8per, fitrecord2< = PerceptronFit@x, y, fitrecord, 10D;

0 1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

5

10

15

20

SSE

Now the perceptron has learned to classify all of the training data. Not all of the specified training iterations
were necessary (in addition to the first five iterations). Notice that these results may turn out differently if
you re-evaluate the commands due to the random initialization. You may need more iterations.

The SSE is computed at each iteration and displayed in a separate notebook. At the end of the training, a
plot is produced in the main notebook showing the SSE reduction as a function of iteration number. These
features may be changed by setting different options in the call to PerceptronFit. This is described in
Section 7.7, Options Controlling Training Results Presentation.

Provide some information about the perceptron.

In[6]:= NetInformation[per]

Out[6]= Perceptron model with 2 inputs and 1 output. Created 2002−4−3 at 13:19.

Chapter 4: The Perceptron 61

The trained perceptron can be used to classify data input vectors by just applying the perceptron object to
these vectors. The output is 0 or 1, depending on the class to which the input vectors belong.

Classify two new input vectors.

In[7]:= per@881., 1.2<, 85.1, 5.3<<D
Out[7]= 880<, 81<<
The training progress of the perceptron can be illustrated with the command NetPlot in different ways,
depending on the option DataFormat. The default for two-dimensional problems is to plot the data
together with the classification boundary. The length of the dashes illustrates the stage of the training. The
final classification boundary is indicated with a solid line.

Display the training progress of the classification.

In[8]:= NetPlot@fitrecord2, x, y, Intervals → 3, SymbolStyle → 8Hue@.5D, Hue@.9D<D

0 2 4 6

0

2

4

6

Progress of a Classifier

It is only in two-dimensional problems that the classifier can be illustrated with plots showing the data
points and the class boundary. In higher-dimensional problems you can instead plot the number of correctly
and incorrectly classified data samples over all the classes as a function of the number of training iterations.
Of course, this can also be done in two-dimensional problems.

Notice that the final classification boundary barely cleared the last element of the star class displayed in the
plot. Intuitively it seems better to have the classification boundary in the middle between the classes. It is,
however, a feature of the perceptron training algorithm that the training terminates as soon as all the train-

62 Neural Networks

ing data is classified correctly, and the classification boundary may then be anywhere in the gap between the
classes.

Look at the number of correctly and incorrectly classified data objects to each class versus training iterations.

In[9]:= NetPlot@fitrecord2, x, y, DataFormat → ClassPerformanceD
Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8 9 101112
Iterations

5

10

15

20
Samples Class: 2

0 1 2 3 4 5 6 7 8 9 101112
Iterations

5

10

15

20
Samples Class: 1

Each plot indicates the classification performance versus training iterations for one specific class. The solid
line indicates the number of correctly classified data objects assigned to that class, and the dashed line
indicates the number of samples from other classes that are incorrectly classified to the class.

Chapter 4: The Perceptron 63

The classification result can also be illustrated with bar charts. On the x and y axes you have the class of the
samples according to the output data and according to the perceptron classifier, and on the z axis you have
the number of samples. For example, in the bin H2, 1L is the number of data samples from the second class,
according to the supplied output data, that were classified into the first class by the network. Therefore, the
diagonal represents correctly classified data and the off-diagonal bars represent incorrectly classified data.

Display the classification of the trained perceptron with bar charts.

In[10]:= NetPlot@per, x, y, DataFormat → BarChartD
1

2Data

1

2 Model

0

5

10

15

20

Samples

1

2 Model

The success of the classifier depends on the data and on the random initialization of the perceptron. Each
time PerceptronFit is called, without an already-initialized perceptron, a new random initialization is
obtained. Repeat the last command a couple of times to see how the training will evolve differently because
of the different initial weights.

You can change the step length, described in Equation 2.6 in Section 2.4, The Perceptron, by setting the
option StepLength to any positive value.

64 Neural Networks

Train a new perceptron with a different step length.

In[11]:= 8per, fitrecord< = PerceptronFit@x, y, StepLength → 2.D;

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

5

10

15

20

25

30

35

SSE

The warning message at the end of the training informs you that the perceptron did not succeed to learn to
classify the training data correctly. You could continue with more training iterations, change the step length,
or just repeat the command, which then gives a new initialization from which the training might be more
successful.

It is easy to extract the weights of a perceptron since they are stored in the first element. In the same manner
you can insert new values of the weights. This is further described in Section 13.1, Change the Parameter
Values of an Existing Network.

Extract the perceptron weights.

In[12]:= w = MatrixForm@per@@1, 1DDD
b = MatrixForm@per@@1, 2DDD

Out[12]//MatrixForm=J 1.27812
0.963722

N
Out[13]//MatrixForm=H −3.2454 L

Intelligent Initialization

The classification problem considered in this example is not very hard. Actually, most problems where the
perceptron can be used are fairly easy “toy” problems. To illustrate this, the data can be used for the initializa-
tion of the perceptron as described in connection with Section 4.1.1, InitializePerceptron. You can use the

Chapter 4: The Perceptron 65

smart initialization by setting the option RandomInitialization→False, and often there is no need for
any additional training when this initialization is used.

Initialize and train a perceptron using the smart initialization.

In[14]:= 8per, fitrecord< =

PerceptronFit@x, y, 5, CriterionLog → False, RandomInitialization→ FalseD;
PerceptronFit::InitialPerfect : The initialized perceptron

classifies all data correctly, no iterative learning is necessary.

The message given tells you that the initialized perceptron correctly classifies all training data and, there-
fore, no iterative training is necessary. This can also be seen clearly if you plot the result.

Plot the perceptron classifier together with the data.

In[15]:= NetPlot[per,x,y,SymbolStyle→{Hue[.5],Hue[.9]}]

0 2 4 6

0

2

4

6

Classifier

You can also check the performance by evaluating the perceptron on the training data and comparing the
output with the true output. If you subtract the classification result from the true output, the correctly
classified data samples are indicated with zeros.

Check the performance of the initialized perceptron.

In[16]:= Flatten@per@xDD − y
Out[16]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0<
Are there any incorrect ones?

66 Neural Networks

4.2.2 Several Classes in Two Dimensions

There were only two classes in the previous example. Therefore, one output was sufficient to classify an
input pattern vector to one of two classes, identified by 0 and 1. Consider now an example with more than
two classes. To keep things simple a problem with three classes is chosen. A perceptron needs one output
for each class, that is, you need a perceptron with three outputs. This is equivalent to having three single-out-
put perceptrons in parallel. Each output indicates by taking the value 1 or 0 whether a pattern belongs to
that class or not. Notice that there is no a priori problem for a pattern to belong to no class at all or to several
classes simultaneously. It is up to you as a user to decide what to do in such cases.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << threeclasses.dat;

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 860, 2<
Out[4]= 860, 3<
There are 60 data samples, two inputs, and three outputs.

Look at the data.

In[5]:= NetClassificationPlot[x,y,SymbolStyle→{Hue[.5],Hue[.7],Hue[.9]}]

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

Chapter 4: The Perceptron 67

By analogy to the data in Section 3.4.1, Classification Problem Example, this data could correspond to scaled
values of age and weight for children from three different groups.

Check the age, weight, and class of the 25th child.

In[6]:= x@@25DD
y@@25DD

Out[6]= 82.23524, 2.15257<
Out[7]= 80, 1, 0<
It belongs to the second class since there is a 1 in the second column of y.

The number of perceptron inputs and outputs do not have to be specified in the function call. They are
implied by the number of columns in x and y. Therefore, the command to initialize and train the perceptron
is given as before.

Initialize and train a perceptron.

In[8]:= 8per, fitrecord< = PerceptronFit@x, yD;

0 5 10 15 20
Iterations

0

20

40

60

80

SSE

The perceptron can be used to classify any input vector by using the evaluation rule of the perceptron object.

68 Neural Networks

Classify some data vectors using the trained perceptron.

In[9]:= per[x[[{1,5,10,15,20,30,40,50,60}]]]

Out[9]= 881, 0, 0<, 81, 0, 0<, 81, 0, 0<, 81, 0, 0<,81, 0, 0<, 80, 1, 0<, 80, 1, 0<, 80, 0, 1<, 80, 0, 1<<
Check how the perceptron performs on the data.

In[10]:= NetPlot[per,x,y,SymbolStyle→{Hue[.5],Hue[.7],Hue[.9]},ContourStyle→
{Hue[.5],Hue[.7],Hue[.9]}]

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

Classifier

Notice that each output of the perceptron gives a boundary line, indicating one class. There are some areas
in the plot that belong to two classes, and the area in the center does not belong to any of the classes. There is
no a priori way to handle these ambiguities. Instead, they are artifacts of the perceptron classifier, and it is
up to you as a user to decide how to handle these areas. However, it does not necessarily have to be a big
problem. On this data, for example, there are no data items in the ambiguous areas where no clear decision
can be taken.

As in the previous example, if you want to see how the perceptron classifier evolved during the training,
you submit the training record instead of the trained perceptron in the call to NetPlot.

Chapter 4: The Perceptron 69

Display the training progress of the classification.

In[11]:= NetPlot@fitrecord, x, y, Intervals → 3, SymbolStyle → 8Hue@.5D, Hue@.7D, Hue@.9D<,
ContourStyle → 8Hue@.5D, Hue@.7D, Hue@.9D<D

-0.5 0 0.5 1 1.5 2 2.5

-0.5

0

0.5

1

1.5

2

2.5

Progress of a Classifier

The plot shows the classification lines between the classes at different stages of the training. Since the plot is
quite messy, it might be more interesting to look at the development of the classification result for each class.

70 Neural Networks

Look at the number of correctly and incorrectly classified samples assigned to each class versus training iteration.

In[12]:= NetPlot@fitrecord, x, y, DataFormat → ClassPerformanceD
Correctlyêincorrectly classified data

0 5 10 15 20
Iterations

10

20

30

Samples Class: 3

0 5 10 15 20
Iterations

10

20

30

40
Samples Class: 2

0 5 10 15 20
Iterations

10

20

30

40
Samples Class: 1

You have one plot for each class. In each plot, a solid line indicates the number of samples of this class that
are correctly classified, and a dashed line indicates the number of samples incorrectly classified to this class.

Chapter 4: The Perceptron 71

4.2.3 Higher-Dimensional Classification

Classification in higher-dimensional problems, that is, when the dimension of the input pattern x is higher
than two, can be done in the same way as the two-dimensional problems. The main difference is that you
can no longer illustrate the result with nice plots. Instead, you can view the data at various two-dimensional
projections. It is also possible to look at how the data is distributed among the classes. This may be done
using the commands in the Neural Networks package as illustrated next.

Load the Neural Networks package and the data.

In[1]:= <<NeuralNetworks`

In[2]:= << threeclasses3D.dat;

The input patterns are placed in the matrix x and the output in y.

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 840, 3<
Out[4]= 840, 3<
There are 40 data samples. The input matrix x has three columns, which means that the data is in a three-
dimensional space. The output y also consists of three columns, which means that the perceptron should
have three outputs, one for each class.

By analogy to the data in Section 3.4.1, Classification Problem Example, this data could correspond to (scaled
values of) the age, weight, and height of children from three different groups.

The main difference compared to two-dimensional problems is that you cannot look at the data in the same
way. It is, however, possible to look at projections of the data. To do that, you need a projection matrix of
dimensions #inputs × 2.

72 Neural Networks

Look at a projection of the data.

In[5]:= NetClassificationPlot[x . {{1,0},{0,1},{0,0}},y,SymbolStyle→
{Hue[.5],Hue[.7],Hue[.9]}]

0 0.5 1 1.5 2 2.5

-0.5

0

0.5

1

1.5

2

2.5

There are obviously 20 data samples of class two and ten of classes one and three.

You can now train a perceptron with this data set.

Train the perceptron.

In[6]:= 8per, fitrecord< = PerceptronFit@x, yD;

0 1 2 3 4 5 6 7 8
Iterations

0

10

20

30

40

50

60

SSE

Success of the training depends on the initial weights of the perceptron. If you repeat the command, you will
likely obtain slightly different results.

Chapter 4: The Perceptron 73

You can use the training record to investigate the training process.

Plot the number of correctly and incorrectly classified data vectors of each class.

In[7]:= NetPlot@fitrecord, x, y, Intervals → 3D
Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8
Iterations

5
10
15
20
25
30

Samples Class: 3

0 1 2 3 4 5 6 7 8
Iterations

5

10

15

20
Samples Class: 2

0 1 2 3 4 5 6 7 8
Iterations

5
10
15
20
25
30

Samples Class: 1

You can also illustrate the classification during training with a bar chart. The result is a graphics array.

74 Neural Networks

Check the evolvement of the classifier during the training.

In[8]:= NetPlot@fitrecord, x, y, Intervals → 5, DataFormat → BarChartD
Classification after

Iteration: 0

1

2
3Data

1

2
3 Model

0

5

10

15

20

Samples

1

2
3 Model

Iteration: 5

1

2
3Data

1

2
3 Model

0

5

10

15

20

Samples

1

2
3 Model

Chapter 4: The Perceptron 75

Iteration: 8

1

2
3Data

1

2
3 Model

0

5

10

15

20

Samples

1

2
3 Model

If you prefer an animation of the training progress, you can load <<Graphics`Animation` and then
change the command to Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1, Datag
Format→BarChart,DisplayFunction→Identity]].

If you are interested only in the end result, you submit the perceptron instead of the training record.

Look at only the end result.

In[9]:= NetPlot[per,x,y]

1

2

3Data

1

2

3 Model

0

5

10

15

20

Samples

1

2

3 Model

76 Neural Networks

If the classification is perfect, then all samples should be on the diagonal of the three-dimensional bar chart.
The size of the off-diagonal bars corresponds to the number of misclassified samples.

If you cannot see all the bars properly, you can repeat the command and change the viewpoint. This is most
easily done by using the menu command 3D ViewPoint Selector.

Change the viewpoint.

In[10]:= NetPlot[per,x,y,ViewPoint→{2.354, -4.532, 6.530}]

1
2

3

Data

1

2

3

Model

0

5

10

15

20

Samples

1

2

3

del

0

5

1

If the output y is not supplied, the distribution between the classes according to the perceptron model is
given.

Chapter 4: The Perceptron 77

Illustrate the classification without any output.

In[11]:= NetPlot@per, x, DataFormat → BarChartD

1 2 3
Class

5

10

15

20

Samples

However, if you do not supply any output data, the graph cannot indicate which data samples are correctly
and incorrectly classified. Instead, you can see only the distribution over the classes according to the
perceptron.

4.3 Further Reading

The perceptron is covered in most books on neural networks, especially the following:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

78 Neural Networks

5 The Feedforward Neural Network

This chapter describes FF neural networks, also known as backpropagation networks and multilayer percep-
trons. Definitions, commands, and options are discussed in Section 5.1, Feedforward Network Functions
and Options, and examples may be found in Section 5.2, Examples. A short tutorial introducing FF networks
can be found in Section 2.5.1, Feedforward Neural Networks. Chapter 13, Changing the Neural Network
Structure, describes how you can use the options and other ways to define more advanced network
structures.

FF networks have a lot in common with those in Chapter 6, The Radial Basis Function Network. They are
used for the same types of problems, and they use the same training algorithms (see Section 2.5.3, Training
Feedforward and Radial Basis Function Networks).

The Neural Networks package supports the use of FF networks in three special types of problems, as follows:

 è Function approximation

 è Classification

 è Modeling of dynamic systems and time series

This section illustrates the first two applications. Dynamic neural network models are described in Chapter
8, Dynamic Neural Networks. However, because the dynamic neural network models are based on FF
networks, they will also be examined here.

The Neural Networks package offers several important features for FF networks, most of which are uncom-
mon in other neural network software products. These features are listed here with links to places where
more detailed descriptions are given.

Initialization: There are special initialization algorithms that give well-initialized neural networks. You can
obtain an initialization with better performance from these than from one derived from a linear model. After
initialization the performance is improved by the training.

Fixed parameters: You do not have to train all parameters. By keeping some of them fixed to values of your
choice, you can obtain special model structures that are, for example, linear in some parameters. This is
described in Section 13.2, Fixed Parameters.

Different neuron activation function: You can specify any nonlinear activation function for the neuron.
This is described in Section 13.3, Select Your Own Neuron Function.

Regularization and stopped search: These techniques help you to obtain models that generalize better on
new data. This is covered in Section 7.5, Regularization and Stopped Search.

Linear models: You can obtain linear models by specifying an FF network without hidden layers. The
subsection Section 2.5.1, Feedforward Neural Networks, discusses why this might be a good choice.

Linear model in parallel to the network: You can choose to have a linear model in parallel to the neural
network by setting the option LinearPart to True in InitializeFeedForwardNet of the FF network.

Several of these features make use of a combination of numeric and symbolic capabilities of Mathematica.

5.1 Feedforward Network Functions and Options

This subsection introduces the different commands to initialize, train, and evaluate FF networks. Examples
using the commands can be found in Section 5.2, Examples.

5.1.1 InitializeFeedForwardNet

You initialize an FF network with InitializeFeedForwardNet.

InitializeFeedForwardNet@x, y, nh, optsD
initializes an FF network based on the
input data x and the output data y with the
number of hidden neurons given by the list nh

Initializing an FF network.

The returned network is an object with head FeedForwardNet, following the general format described in
Section 3.2.3, Network Format. FeedForwardNet and RBFNet have one more replacement rule than the
other network models. Its name is NumberOfInputs and it indicates how many inputs the network takes.

The number of inputs and outputs of the network do not need to be specified explicitly. They are instead
extracted from the number of columns in the input and output data.

80 Neural Networks

The argument nh should be a list of integers. The length of the list indicates the number of hidden layers in
the network, and the integers indicate the number of neurons in each hidden layer. A linear model is
obtained by setting it to an empty list, nh={}.

InitializeFeedForwardNet takes the following options.

option default value

LinearPart False indicates if a linear model should
be placed in parallel to the network

Neuron Sigmoid activation function in the neurons

BiasParameters True indicates if bias parameters should be included

RandomInitialization False indicates if the parameters
should be randomly initialized;
the default is to use a smart initialization

Regularization None indicates regularization in the
least-squares fit of the linear parameters

FixedParameters None indicates if some parameters
should be fixed and, therefore,
excluded from the training

InitialRange 1 range of the uniform probability function
if the parameters are initialized randomly

OutputNonlinearity None indicates if the output neuron should
be nonlinear; for classification problems,
OutputNonlinearityØ
Sigmoid is recommended

Compiled True use compiled version

Options of InitializeFeedForwardNet.

These are almost the same options for InitializationRBFNet, which is used to initialize RBF networks.
The difference is the option BiasParameters with which you can obtain an FF network without the bias
parameters indicated by b in Equation 2.7 in Section 2.5.1, Feedforward Neural Networks. Normally, you
should include these parameters.

Chapter 5: The Feedforward Neural Network 81

Another difference compared to InitializationRBFNet is that some of the default values of the options
are different.

The parameters of the network can be initialized in three different ways, depending on the option Randomg
Initialization:

 è False, which is the default. Then the parameters are initialized so that the slopes of neurons are
placed within the domain of the input data. The exact initialization is still random, but the input
data is used to choose a good range from which the parameters are chosen randomly. If there is no
neuron in the output layer, then the linear parameters of the network are fitted to the output data
using the least-squares algorithm. For most problems this gives a good initialization. If the model is
overparameterized, that is, if it has more parameters than necessary, the least-squares step may give
very large parameter values, which can give problems in the training. In such cases LinearParameg
ters is an alternative to False.

 è True, by which the parameters are initialized randomly from a uniform distribution. The range of
the distribution can be set using the option InitialRange.

 è LinearParameters, by which the positions of the neurons are initialized in the same way as if
False is used. The linear parameters are randomly chosen. This can be a good alternative if the
model is overparameterized and if you intend to use regularization or stopped search in the
training.

The options Regularization and FixedParameters can be set at the initialization of the network or
when the network is trained with NeuralFit. In Section 7.5, Regularization and Stopped Search, and
Section 13.2, Fixed Parameters, you can learn how to use these options.

The default neuron function is Sigmoid, but you can use the option Neuron to change it to any other
differentiable function. How this is done is shown in Section 13.3, Select Your Own Neuron Function.

Depending on the initial parameter values of the FF network, it will converge to different local minima in
the training. Therefore, it is best to repeat the training a couple of times with the same neural network type
but with different initializations. You get a new parameter initialization by repeating the command Initialg
izeFeedForwardNet. Also, it should be noted that if you use the default option RandomInitializag
tion→False, you get a partly random initialization.

82 Neural Networks

5.1.2 NeuralFit

The initialized FF network is trained with NeuralFit. This command, which is also used for RBF networks
and for dynamic networks, is described here with all its variants. Section 2.5.3, Training Feedforward and
Radial Basis Function Networks, describes the algorithms in some detail.

NeuralFit@net, x, yD trains the model net using input data x and output
data y with a default number of training iterations H30L

NeuralFit@net, x, y, xv, yvD
trains the model net using input data x and
output data y with validation data xv, yv submitted

NeuralFit@net, x, y, iterationsD
normal training but with the
number of training iterations indicated

NeuralFit@net, x, y, xv, yv, iterationsD
normal training but with the number of training
iterations indicated and with submitted validation data

Training an FF network.

NeuralFit returns a list of two variables. The first one is the trained FF network, and the second is a record
containing information about the training.

An existing network can be submitted for more training by setting net equal to the network or its training
record. The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.

During the training, intermediate results are displayed in an automatically created notebook. After each
training iteration the following information is displayed:

 è Training iteration number

 è The value of the RMSE

 è For validation data submitted in the call, the RMSE value for this second data set is also displayed

 è The step length control parameter of the minimization algorithm (l or m), which is described in
Section 2.5.3, Training Feedforward and Radial Basis Function Networks

Chapter 5: The Feedforward Neural Network 83

At the end of the training, a plot is displayed with RMSE as a function of iteration.

Using the options of NeuralFit, as described in Section 7.7, Options Controlling Training Results Presenta-
tion, you can change the way the training results are presented.

At the end of the training you often receive different warning messages. These give you information on how
the training performed. By looking at the performance plot, you can usually tell whether more training is
required. If the plot has not flattened out toward the end of the training, then you should consider applying
more training iterations. This can be done by resubmitting the trained network to NeuralFit so that you
do not have to initiate training anew.

There are many options to NeuralFit that can be used to modify its behavior. They are described in
Section 7.1, NeuralFit.

A derived FF network can be applied to new inputs using function evaluation. The result given by the
network is its estimate of the output.

net@xD evaluates net on the input vector x

Function evaluation of a feedforward network.

The input argument x can be a vector containing one input sample, or a matrix containing one input sample
on each row.

The function evaluation has one option.

option default value

Compiled True indicates that a compiled version
of the evaluation rule should be used

Option of the network evaluation rule.

5.1.3 NetInformation

Information about an FF network is presented in a string by the function NetInformation.

84 Neural Networks

NetInformation@fdfrwrdD gives information about an FF network

The NetInformation function.

5.1.4 NetPlot

The command NetPlot can be used to illustrate the derived FF network or the evolution of the training.
Depending on how the option DataFormat is set, the command can be used in very different ways.

NetPlot@fdfrwrd,x,yD evaluates the network on the supplied data

NetPlot@fitrecord,x,yD evaluates the training of a net using supplied data

Illustrate models and training of models.

If the input dimension is one or two, the default is to plot the estimated function in the range of the supplied
data. In the one-dimensional case, the data is also shown.

When NetPlot is applied to an FF network, it takes the following options.

option default value

OutputNonlinearity Automatic this option only takes effect when DataFormatØ
BarChart; it can be used to change
the nonlinearity in the output layer;
for classification problems
OutputNonlinearityØ
UnitStep is recommended

DataFormat Automatic if a model is submitted,
gives the values of the hidden neurons
when the model is evaluated on the data;
if a training record is submitted,
gives a plot of the parameters of
the network versus training iterations

Intervals 5 intervals between plots
if a training record is submitted

Compiled True use compiled version

Chapter 5: The Feedforward Neural Network 85

Options of NetPlot.

In addition to these, you can submit options to modify the graphical output. Depending on the chosen
option for DataFormat, the graphic is created by BarChart, BarChart3D, MultipleListPlot, Listg
Plot, Plot3D, or Histogram.

If the input dimension is higher than two, then the default is to plot the numerical values of the hidden
neurons versus the data. This can be obtained also in one- and two-dimensional problems by choosing
DataFormat→HiddenNeurons. Notice, however, that plotting the neurons versus data only makes sense if
the input signal vectors are placed in some kind of order.

 The option DataFormat takes any of the following values:

 è FunctionPlot: plots the mapping using the range of the supplied data. It can only be used if the
model has one or two inputs.

 è NetOutput: plots the network output versus the given output. A perfect fit corresponds to a
straight line with slope 1 through the origin.

 è ErrorDistribution: gives a histogram of the errors when the model is applied to submitted data.
You can modify the presentation of the result using any of the options applicable to Histogram.

 è HiddenNeurons: gives the values of the hidden neurons when the model is evaluated on the data.
This function makes most sense when it is applied to dynamic models.

 è ParameterValues: plots the parameters versus the training iterations. This is only possible for the
training record.

 è LinearParameters: plots the parameters of the linearization versus data. This function makes
most sense when it is applied to dynamic models.

The following three possibilities are primarily intended for classification models:

 è Classifier: shows the borders between different classes. It can only be used with two-input
models.

 è BarChart: illustrates the classification result with bar charts.

 è ClassPerformance: plots the improvement of the classification for each class versus the number
of training iterations. Correctly classified samples are marked with diamonds and solid lines, while
incorrectly classified samples are indicated with stars and dashed lines. This is only possible for the
training record.

86 Neural Networks

If you submit a training record instead of an FF network, then depending on which option is given, you
obtain a graphic array of the corresponding results as a function of the number of training iterations. For a
large number of iterations, it is advisable to set the option Intervals to a larger integer, thus controlling
the size of the length of the graphic array.

Examples where NetPlot is used to evaluate FF networks are given in Section 5.3, Classification with
Feedforward Networks and Section 5.2, Examples.

5.1.5 LinearizeNet and NeuronDelete

The commands LinearizeNet and NeuronDelete modify the structure of an existing network.

In many situations, it is interesting to linearize a nonlinear function at some point. FF networks can be
linearized using LinearizeNet.

LinearizeNet@fdfrwrd, xD linearizes the FF network at x

Linearizing a feedforward network.

LinearizeNet returns a linear model in the form of an FF network without any hidden neurons as
described in Section 2.5.1, Feedforward Neural Networks.

The point of the linearization, x, should be a list of real numbers of length equal to the number of inputs of
the neural network.

The linear network corresponds to a first-order Taylor expansion of the original network in the linearization
point.

Sometimes it might be of interest to remove parts of an existing network. NeuronDelete can be used to
remove outputs, inputs, hidden neurons, or a linear submodel.

You can also remove individual parameters by setting their numerical values to zero and excluding them
from the training, as described in Section 13.2, Fixed Parameters.

Chapter 5: The Feedforward Neural Network 87

NeuronDelete@net, posD deletes the neurons indicated
with pos in an existing network net

NeuronDelete@net, pos, xD deletes the neurons indicated with pos in an
existing network net where input data is supplied
and the remaining network parameters are adjusted

Deleting neurons from an existing network.

The argument pos indicates which part of the network should be deleted in the following way:80, 0<: removes the linear submodel.80, m<: removes input m.8n, m<: removes neuron m in hidden layer n.8n, m<: removes output m if n == number of hidden layers + 1.

The argument pos can also be a list where each element follows these rules.

NeuronDelete can be used to obtain the values of the hidden neurons of a network; if all outputs are
removed, then a network is returned with outputs equal to the last hidden layer of the initial network. The
output nonlinearity is set to the neuron function used in the initial network.

If input data is submitted, then the parameters of the layer following the removed neuron are adjusted so
that the new network approximates the original one as well as possible. The least-squares algorithm is used
for this.

There is no adjustment of the parameters if an output is removed.

If a neuron in the last hidden layer is removed, then the parameters in the linear submodel are also included
in the parameter adjustment. If the linear submodel is removed, then the parameters in the last layer are
adjusted.

5.1.6 SetNeuralD, NeuralD, and NNModelInfo

The commands SetNeuralD, NeuralD, and NNModelInfo are intended primarily for internal use in the
package, but they might be useful if you want to perform more special operations.

88 Neural Networks

SetNeuralD and NeuralD help you to compute the derivative of an FF or RBF network and they might be
useful if you write your own training algorithm. SetNeuralD does not return any object but produces
optimal code for the specific network structure, which then is used by NeuralD. Therefore, each time the
network structure is changed, SetNeuralD has to be called prior to NeuralD.

SetNeuralD@net, optsD sets NeuralD to a function to compute
the derivative of net with respect to its parameters

Generating optimal code for NeuralD, which is used to compute the derivative of a network.

option default

Compiled True indicates if NeuralD should be compiled

FixedParameters None points out parameters to be excluded
in the same way as for NeuralFit

Options of SetNeuralD.

The numerical derivative of a network is obtained using NeuralD.

NeuralD@net, xD computes the derivative of net at the input vectors x

Computation of the derivative of a network.

NeuralD can be applied to a matrix with one numerical input vector on each row. The output is a three-di-
mensional list: the first level indicates the data, the second level has one component for each network out-
put, and the third level has one component for each parameter.

Notice that you only have to call SetNeuralD once for a specific network. The current parameter values,
submitted in the argument net, are used each time NeuralD is called.

You may use SetNeuralD and NeuralD in any of your own training algorithms in the following way. First
the network structure is determined. Then SetNeuralD is called to obtain the optimized code. The actual
training often consists of a loop containing the computation of the derivative and a parameter update. You
use NeuralD to obtain the derivative at the parameter values given in the network in the call. Section 7.9,
Writing Your Own Training Algorithms, illustrates the use of SetNeuralD and NeuralD.

Chapter 5: The Feedforward Neural Network 89

To save computer time, and since NeuralD is intended to be used inside a loop, there is no security check of
the input arguments. Therefore, you have to include these yourself, preferably outside the loop.

NNModelInfo gives you exactly the specification needed to create a new neural network with the same
structure. This specifies the network with the exception of the parameter values.

NNModelInfo@fdfrwrdD extracts the specification of the FF network

Structure specification about an FF network.

NNModelInfo returns a list of four variables that contains the following: number of inputs, number of
outputs, number of hidden neurons, and a list of options used when the model was defined.

5.2 Examples

This section contains some simple examples that illustrate the use of FF networks. Since many commands
and options are identical for FF and RBF networks, more advanced examples that illustrate common fea-
tures are found in Chapter 7, Training Feedforward and Radial Basis Function Networks; Chapter 8,
Dynamic Neural Networks; and Chapter 12, Application Examples.

5.2.1 Function Approximation in One Dimension

Consider a function with one input and one output. First, output data is generated by evaluating the given
function for a given set of input data. Then, the FF network will be trained with the input-output data set to
approximate the given function. You can run the example on different data sets by modifying the com-
mands generating the data.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

This example will involve an input-output one-dimensional data set of a sinusoidal function. The variable
Ndata indicates the number of training data generated. Change the following data generating commands if
you want to rerun the example on other data. It is always a good idea to look at the data. This is especially
easy for one-dimensional problems.

90 Neural Networks

Generate and look at the data.

In[3]:= Ndata = 20;
x = Table@10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@xD;
ListPlot@AppendRows@x, yDD

2 4 6 8

-1

-0.5

0.5

1

The training data consist of the input data x and the output y.

Consider first a randomly initialized FF network, with four hidden neurons in one hidden layer. Although
random initialization is not generally recommended, it is used here only for purposes of illustration.

Initialize an FF network with four neurons.

In[7]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<, RandomInitialization→ TrueD
Out[7]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 25, 46<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Find some information about the network.

In[8]:= NetInformation@fdfrwrdD
Out[8]= FeedForward network created 2002−4−3 at 13:25.

The network has 1 input and 1 output. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

Chapter 5: The Feedforward Neural Network 91

The randomly initialized network is a description of a function, and you can look at it before it is trained.
This can be done using NetPlot.

Look at the initialized FF network.

In[9]:= NetPlot@fdfrwrd, x, yD

2 4 6 8

-1

-0.5

0.5

1

Fit the network to the data.

In[10]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 3D;

0 1 2 3
Iterations

0.4

0.5

0.6

0.7

0.8

RMSE

Often, a warning appears stating that training was not completed for the iterations specified. This is equiva-
lent to saying that the parametric weights did not converge to a point minimizing the performance index,
RMSE. This is not an uncommon occurrence, especially for network models involving a large number of
parameters. In such situations, by looking at the performance plot you can decide whether additional
training would improve performance.

92 Neural Networks

The trained FF network can now be used in any way you would like. For example, you can apply it to new
input data.

Evaluate the FF model at a new input value.

In[11]:= fdfrwrd2@81.5<D
Out[11]= 81.21137<

Evaluate the FF model at several new input values.

In[12]:= fdfrwrd2@881.5<, 80.3<, 82.5<<D
Out[12]= 881.21137<, 80.0976301<, 80.478028<<
You can also obtain a Mathematica expression of the FF network by applying the network to a list of symbols.
The list should have one component for each input of the network.

Obtain an expression for the FF network in the symbol xx.

In[13]:= Clear@xxD
fdfrwrd2@8xx<D

Out[14]= 9−412.23 +
162.243

cc
1 + Æ0.693347−0.954841 xx

+

250.898
cc
1 + Æ0.722195−0.737868 xx

+
82.5833

cc
1 + Æ0.80038+0.780475 xx +

356.662
cc
1 + Æ−0.860144+0.831306 xx =

You can plot the function of the FF network on any interval of your choice.

Chapter 5: The Feedforward Neural Network 93

Plot the FF network on the interval 8-2, 4<.
In[15]:= Plot@fdfrwrd2@8x<D, 8x, −2, 4<D

-2 -1 1 2 3 4
-0.5

0.5

1

1.5

2

2.5

3

If you use NetPlot then you automatically get the plot in the range of your training data. The command
relies on the Mathematica command Plot, and any supported option may be used.

Plot the estimated function and pass on some options to Plot.

In[16]:= NetPlot@fdfrwrd2, x, y, PlotPoints → 5, PlotDivision → 20D

2 4 6 8

-1

-0.5

0.5

1

By giving the option DataFormat→NetOutput you obtain a plot of the model output as a function of the
given output. If the network fits the data exactly, then this plot shows a straight line with unit slope through
the origin. In real applications you always have noise on your measurement, and you can only expect an
approximate straight line if the model is good.

94 Neural Networks

Plot the model output versus the data output.

In[17]:= NetPlot@fdfrwrd2, x, y, DataFormat → NetOutputD

-1 -0.5 0.5 1
Data

-0.5

0.5

1

Model

By giving the option DataFormat→HiddenNeurons in the call to NetPlot, you obtain a plot of the values
of the hidden neurons versus the data. Such a plot may indicate if the applied network is unnecessarily
large. If some hidden neurons have very similar responses, then it is likely that the network may be reduced
to a smaller one with fewer neurons.

Look at the values of the hidden neurons and specify colors.

In[18]:= NetPlot@fdfrwrd2, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.0D, Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@fdfrwrd2@@1, 1, 1, 1DDDDDD

2.5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1
Layer: 1 versus data

Nr 4

Nr 3

Nr 2

Nr 1

If some hidden neurons give similar outputs, or if there is a linear relation between them, then you may
remove some of them, keeping the approximation quality at the same level. The number of any such

Chapter 5: The Feedforward Neural Network 95

neurons can be identified using the legend. This might be of interest in a bias-variance perspective as
described in Section 7.5, Regularization and Stopped Search.

Remove the second hidden neuron, and look at the neurons and the approximation of the function.

In[19]:= fdfrwrd3 = NeuronDelete@fdfrwrd2, 81, 2<, xD;
In[20]:= NetPlot@fdfrwrd3, x, y, DataFormat → HiddenNeurons,

PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@fdfrwrd3@@1, 1, 1, 1DDDDDD

2.5 7.5 1012.51517.520

0.2

0.4

0.6

0.8

1
Layer: 1 versus data

Nr 3

Nr 2

Nr 1

In[21]:= NetPlot@fdfrwrd3, x, yD

2 4 6 8

-1

-0.5

0.5

1

Note that if you re-evaluate the example, then you may have to delete a different neuron due to the random-
ness in the initialization.

By removing the output of the network you obtain a new network with outputs equal to the hidden neurons
of the original network.

96 Neural Networks

In[22]:= NeuronDelete@fdfrwrd2, 82, 1<D
NeuronDelete::NewOutputLayer :

All outputs have been deleted. The second−to−last layer becomes the new output.

Out[22]= FeedForwardNet@88w1<<, 8AccumulatedIterations → 3,
CreationDate → 82002, 4, 3, 13, 25, 46<, Neuron → Sigmoid,
FixedParameters → None, OutputNonlinearity → Sigmoid, NumberOfInputs → 1<D

You can use NetPlot to evaluate the training of the network. This is done by applying it to the training
record, which was the second argument of NeuralFit. Depending on the option DataFormat, the result is
presented differently.

Look at how the parameter values change during the training.

In[23]:= NetPlot@fitrecord, x, y, PlotStyle → 8Hue@.0D, Hue@.2D, Hue@.4D, Hue@.6D<D

0.5 1 1.5 2 2.5 3

-400

-200

200

Parameter values versus iterations

Often the parameter values increase during the training. From such a plot you may get some insights about
why the parameter values did not converge in the training, although the derived network performs well.

Chapter 5: The Feedforward Neural Network 97

Look at the function approximation after each training iteration.

In[24]:= NetPlot@fitrecord, x, y, Intervals → 1, DataFormat → FunctionPlotD
Function estimate after

2 4 6 8

-1

-0.5

0.5

1
Iteration: 2

2 4 6 8

-1

-0.5

0.5

1
Iteration: 1

2 4 6 8

-1

-0.5

0.5

1
Iteration: 0

98 Neural Networks

2 4 6 8

-1

-0.5

0.5

1

Iteration: 3

If you prefer an animation of the training progress, you can load <<Graphics`Animation` and then
change the command to Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1, Datag
Format→FunctionPlot,DisplayFunction→Identity]].

5.2.2 Function Approximation from One to Two Dimensions

In this example a function with one input and two outputs will be considered. The only difference from the
previous example is that there are two outputs instead of one.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Load the data.

In[3]:= << one2twodimfunc.dat;

The input is placed in x and the output in y.

Check the dimensions of the data.

In[4]:= Dimensions@xD
Dimensions@yD

Out[4]= 820, 1<
Out[5]= 820, 2<

Chapter 5: The Feedforward Neural Network 99

There are 20 data samples, one input, and two outputs.

Look at the data; some transformation is necessary.

In[6]:= << Graphics`MultipleListPlot ;̀
temp = Map@AppendRows@x, Transpose@8#<DD &, Transpose@yDD;
Apply@MultipleListPlot, Flatten@8temp, PlotJoined → True<, 1DD

2 4 6 8

-1

-0.5

0.5

1

The plot shows the two outputs versus the input.

The origin of this data is artificial; however, you can imagine a problem setting like in Section 3.4.2, Function
Approximation Example, with the change that two variables (the outputs) depend on the variable x (the
input).

Initialize and train an FF network with two outputs to approximate the two-dimensional output. The num-
ber of inputs and outputs does not need to be specified, since this information is extracted from the dimen-
sions of the supplied data matrices.

Initialize an FF network with four neurons.

In[9]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[9]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 27, 25<,
OutputNonlinearity → None, NumberOfInputs → 1<D

100 Neural Networks

Find some information about the network.

In[10]:= NetInformation@fdfrwrdD
Out[10]= FeedForward network created 2002−4−3 at 13:27. The

network has 1 input and 2 outputs. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

So far, the network has only been initialized. It can be interesting to look at the initialization before the
training.

Look at the initialized FF network.

In[11]:= NetPlot@fdfrwrd, x, yD
2 4 6 8

-1
-0.5

0.5
1

Output: 1

2 4 6 8

-1

-0.5

0.5

1
Output: 2

Notice that already the initialization is quite good, something not too unusual for a default initialization.
You can repeat the initialization setting RandomInitialization→True to see the difference.

Now train the initialized FF network.

Fit the network to the data.

In[12]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 20D;

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.1

0.2

0.3

0.4

0.5

RMSE

Chapter 5: The Feedforward Neural Network 101

The FF network with two outputs can be evaluated on data in the same way as a network with only one
output. The difference is that you obtain two output values now.

Evaluate the FF network on one input data sample.

In[13]:= fdfrwrd2@82.<D
Out[13]= 80.920756, −0.369678<

Look at the result with the fitted FF network.

In[14]:= NetPlot@fdfrwrd2, x, yD
2 4 6 8

-1

-0.5

0.5

1
Output: 1

2 4 6 8

-1

-0.5

0.5

1
Output: 2

5.2.3 Function Approximation in Two Dimensions

An FF network can have any number of inputs and outputs. In the previous two examples there was only
one input. Here is an example with two inputs.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the function.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
ListPlot3D@y, MeshRange → 880, 0.9<, 80, 0.9<<D;
x = Flatten@x, 1D;
y = Transpose@8Flatten@yD<D;

102 Neural Networks

0

0.2

0.4

0.6

0.8 0

0.2

0.4

0.6

0.8

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0 8

The training data is placed in x and y, where x is the input data and y is the output data.

You can modify the example by changing the function generating the data and by changing the number of
neuron basis functions in the following initialization. Notice that you will obtain slightly different results
even if you repeat the example without any changes at all. This is due to the randomness in the initialization
algorithm of the FF network.

Check the dimensions of the data.

In[8]:= Dimensions@xD
Dimensions@yD

Out[8]= 8100, 2<
Out[9]= 8100, 1<
There are 100 input-output data pairs with two-dimensional inputs and one-dimensional outputs.

Initialize an FF network with four neurons.

In[10]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[10]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 27, 54<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Chapter 5: The Feedforward Neural Network 103

You can apply the initialized network to the input data and plot the network output. Compare the result
with the true function in the previous plot.

Look at the initialized FF network.

In[11]:= y2 = fdfrwrd@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-0.5

0

0.5

0
0.2

0.4
0.6

0 8

So far the network has only been initialized. Now it is time to train it.

Fit the FF network to the data.

In[13]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 20D;

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.2

0.25

0.3

0.35

0.4

0.45

RMSE

You can look at the result by evaluating the trained network at the input data points as follows.

104 Neural Networks

Look at the result with the fitted FF network.

In[14]:= y2 = fdfrwrd2@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

Notice that there are usually several local minima. If you repeat the initialization and the training, you
obtain different results.

The plot does not, however, show how the function looks in between the data points. By using NetPlot,
which gives a plot based on the Mathematica command, Plot3D, you obtain a plot with any number of
evaluation points. If you apply NetPlot to the training record, you obtain a graphics array showing the
evolution of the function approximation during the training.

In[16]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlotD
Function estimate after

Iteration: 0

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-0.5

0

0.5

0
0.2

0.4
0.6

0 8

Chapter 5: The Feedforward Neural Network 105

Iteration: 20

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

Iteration: 15

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

Iteration: 10

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

Iteration: 5

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

106 Neural Networks

If you prefer an animation of the training progress, you can load <<Graphics`Animation` and then
change the command to Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1, Datag
Format→FunctionPlot,DisplayFunction→Identity]].

You can obtain a histogram of the errors between the network output and the true output with NetPlot by
choosing DataFormat→ErrorDistribution. This might help you to find outliers in the data and to
explain if something goes wrong.

In[17]:= NetPlot@fdfrwrd2, x, y, DataFormat → ErrorDistributionD

-0.6 -0.4 -0.2 0. 0.2 0.4

5

10

15

20

25
Distribution of Errors

Each bar shows the number of samples given an estimation error within the borders of the bars.

Of course, you can also obtain the previous plot by using the command Histogram in the following way.

In[18]:= Histogram@Flatten@y − fdfrwrd2@xDDD

-0.6 -0.4 -0.2 0. 0.2 0.4

5

10

15

20

25

Chapter 5: The Feedforward Neural Network 107

5.3 Classification with Feedforward Networks

In this section a small example is given that shows how FF networks can be used for classification.

Read the Neural Networks package.

In[1]:= << NeuralNetworks`

Load the data consisting of three classes divided into two clusters each. The data distribution is contained in
x (input data), and the class indication is in y (output data). The data format is described in Section 3.2,
Package Conventions.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

Look at the data.

In[3]:= NetClassificationPlot@x, yD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

In classification problems it is important to have a differentiable nonlinearity at the output of the FF network
model. The purpose of the nonlinearity is to ensure that the output values stay within the range of the
different classes. That is done using the option OutputNonlinearity. Its default is None. Set it to Sigg
moid so that its saturating values are 0 and 1, exactly as the output data of the classes. Note that the sigmoid
never reaches exactly 0 and 1; this is in most problems of no practical importance.

108 Neural Networks

Initialize an FF network.

In[4]:= fdfrwrd = InitializeFeedForwardNet@x, y, 86<, OutputNonlinearity→ SigmoidD
Out[4]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 28, 54<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 2<D

Train the initialized FF network.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 8D;

0 1 2 3 4 5 6 7 8
Iterations

0.1

0.2

0.3

0.4

RMSE

The trained classifier can now be used on the input data vectors.

Classify two data vectors.

In[6]:= fdfrwrd2@880, 0.1<, 82, 1<<D
Out[6]= 880.975454, 0.0430855, 0.0193727<, 80.958409, 0.0196418, 0.0360199<<
The data vectors are assigned to the class with the largest output value. If several outputs give large values,
or if none of them do, then the classifier is considered to be highly unreliable for the data used.

The performance of the derived classifier can be illustrated in different ways using NetPlot. By the choice
of the option DataFormat, you can indicate the type of plot you want. If the data vectors are of dimension
two, as in this example, nice plots of the classification boundaries can be obtained.

Chapter 5: The Feedforward Neural Network 109

Plot classification borders together with the data.

In[7]:= NetPlot@fdfrwrd2, x, y, DataFormat → Classifier,
ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

The previous plot showed the classification boundary for each class. It is also possible to look at the classifica-
tion function as a function plot. Since there are three outputs of the network, you obtain three plots. The
boundaries indicated in the previous plot are the level curves where the function output equals 0.5 in the
function plot shown here.

110 Neural Networks

Look at the function.

In[8]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlot,
Ticks → 880, 1, 2<, 80, 1, 2<, 80, 0.5, 1<<D

Output: 1

0
1

2
0

1

2
0

0.5
1

0
1

Output: 2

0
1

2
0

1

2
0

0.5
1

0
1

Output: 3

0
1

2
0

1

2
0

0.5
1

0
1

This option can be used for problems with one or two input signals.

By giving the option BarChart, you obtain bar charts showing the classification performance. Correctly
classified data is found on the diagonal and the misclassified data corresponds to the off-diagonal bars.
Notice that, since the outputs of the FF network take values in the range 80, 1<, you do not obtain precise
classifications but, rather, a “degree” of membership. This situation may be corrected by using a UnitStep
output neuron with the option setting OutputNonlinearity→UnitStep. Then the outputs will be either
0 or 1, as desired.

In[9]:= NetPlot@fdfrwrd2, x, y, DataFormat → BarChart, OutputNonlinearity→ UnitStepD
1

2

3Data

1

2

3 Model

0

5

10

15

20

Samples

1

2

3 Model

Chapter 5: The Feedforward Neural Network 111

On the x and y axes, you have the class of the samples according to the output data and according to the
network classifier. On the z axis is the number of samples. For example, in the bin H2, 3L is the number of
data samples from the second class, according to the supplied output data, but classified into the third class
by the network. Therefore, the diagonal bins correspond to correctly classified samples, that is, the network
assigns these samples to the same class as indicated in the output data.

In contrast to FunctionPlot and Classifier, the BarChart option can be used to visualize the perfor-
mance of classifiers of any input dimensions.

So far you have evaluated the end result of the training—the derived FF network. It is also possible to
display the same plots but as a function of the training iterations. Consider the training record.

In[10]:= fitrecord

Out[10]= NeuralFitRecord@FeedForwardNet,
ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The first component is just a copy of the FF network model. The second component contains several informa-
tion items about the training. Section 7.8, The Training Record, shows you how to extract the information
from the training record. Here, you will see how this information can be illustrated in different ways by
using NetPlot and by choosing a different DataFormat option.

Look at the classification performance for each class during training. Correctly classified samples are
marked with diamonds and a solid line, incorrectly assigned samples are indicated with stars and a dashed
line.

112 Neural Networks

In[11]:= NetPlot@fitrecord, x, y,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD

Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8
Iterations

5
10
15
20
25
30

Samples Class: 2

0 1 2 3 4 5 6 7 8
Iterations

5

10

15

20
Samples Class: 1

0 1 2 3 4 5 6 7 8
Iterations

5
10
15
20
25

Samples Class: 3

The training progress of the classifier may be viewed as a function of iteration using the option setting
DataFormat→Classifier. By default, the display shows the evolving boundaries at every (5 × report
frequency) iterations, where the report frequency is determined by the option ReportFrequency of
NeuralFit. The display frequency may be changed from 5 to any other positive integer by explicitly
setting Intervals to a desired value, such as 4 in the present example.

Chapter 5: The Feedforward Neural Network 113

Plot the classifier at every four training iterations.

In[12]:= NetPlot@fitrecord, x, y, DataFormat → Classifier,
Intervals → 4, ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D
Classification Boundaries

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 4

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 0

114 Neural Networks

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 8

If you prefer, the progress can be animated as described in Section 5.2.1, Function Approximation in One
Dimension, instead of being given in a graphics array.

Also the BarChart option can be used to evaluate the progress of the training. Changing the nonlinearity at
the output from the smooth sigmoid to a discrete step makes the output take only the values 0 and 1.

Illustrate the classification result every four iterations of the training.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → BarChart,
OutputNonlinearity → UnitStep, Intervals → 4D

Classification after

Iteration: 0

1

2

3Data

1

2

3 Model

0

5

10

15

20

Samples

1

2

3 Model

Chapter 5: The Feedforward Neural Network 115

Iteration: 8

1

2

3Data

1

2

3 Model

0

5

10

15

20

Samples

1

2

3 Model

Iteration: 4

1

2

3Data

1

2

3 Model

0

5

10

15

20

Samples

1

2

3 Model

As seen in the plots, in the beginning of the training the network model classifies a lot of samples incor-
rectly. These incorrectly classified samples are illustrated with the non-diagonal bins. As the training pro-
ceeds, more of the samples are classified correctly; at the end you can see all of the samples are correctly
classified because all samples are at the diagonal.

This result can easily be animated as described in Section 5.2.1, Function Approximation in One Dimension.

116 Neural Networks

5.4 Further Reading

FF neural networks are covered in the following textbooks, among others:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Redwood City, CA, Addi-
son-Wesley, 1991.

Chapter 5: The Feedforward Neural Network 117

6 The Radial Basis Function Network

Compared to the FF network, the RBF network is the next-most-used network model. As the name implies,
this network makes use of radial functions. Section 2.5.2, Radial Basis Function Networks, gives a tutorial
introduction to this network model.

FF and RBF networks can be used for the same types of problems, and the commands and their options are
very similar. Therefore, instead of repeating a lot of information, the presentation here will be brief, giving
references to the corresponding place in the section on FF networks where possible.

Using the symbolic computing capability of Mathematica, the structure of the RBF network may be modified
much more naturally than is possible in other neural network software tools. Some of the features are listed
in Chapter 5, The Feedforward Neural Network.

6.1 RBF Network Functions and Options

This section introduces the commands to initialize, train, and use RBF networks. Since most of these com-
mands are the same as those used for FF models, references will be given to the chapter on FF networks
instead of repeating the material here. Examples using the commands can be found in Section 6.2, Examples.

6.1.1 InitializeRBFNet

RBF networks are initialized with InitializeRBFNet.

InitializeRBFNet@x, y, nb, optsD
initializes an RBF network based on
the input data x and the output data y with
the number of neurons given by the integer nb

Initializing an RBF network.

The returned network is an object with head RBFNet, following the general format described in Section
3.2.3, Network Format. FeedForwardNet and RBFNet have one replacement rule more then the other
network models. Its name is NumberOfInputs, and it indicates how many inputs the network takes.

The number of inputs and outputs in the network are extracted from the number of columns in the input
and output data, so only the number of neurons needs to be specified.

InitializeRBFNet takes almost the same options as InitializationFeedforwardNet. However,
some of the default values for the options are different, as indicated in the table that follows.

option default value

LinearPart True indicates whether a linear model
should be placed in parallel to the net

Neuron Exp neuron activation function

RandomInitialization False indicates whether the parameters
should be randomly initialized;
the default is to use a smart initialization

Regularization None indicates regularization in the
least-squares fit of the linear parameters

FixedParameters None indicates whether some
parameters should be fixed and,
therefore, excluded from the training

InitialRange 1 indicates the range of the
uniform probability function if the
parameters are initialized randomly

OutputNonlinearity None indicates whether the output neuron
should be nonlinear; for classification
problems OutputNonlinearityØ
Sigmoid is recommended

Compiled True uses the compiled version

Options of InitializeRBFNet.

The parameters of the network can be initialized in three different ways depending on the option Randomg
Initialization: False, which is the default; True; and LinearParameters. The default initialization
is usually the best. It gives a random distribution of the basis centers over the input data range. This makes
sense since only basis functions that cover the data range can be used in the function approximation. Also
the widths of the basis functions are scaled using the input data range. The linear parameters are fitted with

120 Neural Networks

the least-squares algorithm to the output data. The meanings of the options are the same as for FF networks,
and they are further described in Section 5.1.1, InitializeFeedForwardNet. You can also define your own
initialization algorithm and insert the parameters in an RBFNet object as described in Section 13.1, Change
the Parameter Values of an Existing Network.

The options Regularization and FixedParameters can be set at the initialization of the network or
when the network is trained with NeuralFit. You can learn how to use these options in Section 7.5, Regular-
ization and Stopped Search, and Section 13.2, Fixed Parameters.

The default value of the option Neuron is Exp. You then obtain an RBF network with the Gaussian bell
function as the basis function, which is the most commonly used choice. Section 13.3, Select Your Own
Neuron Function, describes how you can use other basis functions.

6.1.2 NeuralFit

The initialized RBF network is trained with NeuralFit. This command is also used for FF networks and for
dynamic networks. An introduction to using it is given in Section 5.1.2, NeuralFit. Chapter 7, Training
Feedforward and Radial Basis Function Networks, describes the command and its options in detail.

A derived RBF network can be applied to new inputs using function evaluation. The result given by the
network is its estimate of the output.

net@xD evaluates net on the input vector x

Function evaluation of an RBF network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

The function evaluation has one option.

option default value

Compiled True indicates that a compiled version
of the evaluation rule should be used

Option of the network evaluation rule.

Chapter 6: The Radial Basis Function Network 121

6.1.3 NetInformation

Information about an RBF network is presented in a string by the function NetInformation.

NetInformation@rbfD writes out information about an RBF network

The NetInformation function.

6.1.4 NetPlot

The command NetPlot can be used to evaluate the obtained RBF network and the training. It is used in the
same way as it was used for the FF networks described in Section 5.1.4, NetPlot.

6.1.5 LinearizeNet and NeuronDelete

The commands LinearizeNet and NeuronDelete modify the structure of an existing network.

You can linearize an RBF network at any input signal point using LinearizeNet.

LinearizeNet@rbf, xD linearizes the RBF network at x

Linearize an RBF network.

LinearizeNet returns a linear model in the form of an FF network without any hidden neurons as
described in Section 2.5.1, Feedforward Neural Networks.

The point of the linearization x should be a list of real numbers of length equal to the number of inputs of
the neural network.

Sometimes it may be of interest to remove parts of an existing network. NeuronDelete can be used to
remove outputs, inputs, hidden neurons, or a linear submodel.

You can also remove individual parameters by setting their numerical values to zero and excluding them
from the training, as described in Section 13.2, Fixed Parameters.

122 Neural Networks

NeuronDelete@net,posD deletes the neurons indicated
with pos in an existing network net

NeuronDelete@net,pos,xD deletes the neurons indicated with pos in an
existing network net with the input data supplied
and the remaining network parameters adjusted

Deleting the neurons from an existing network.

The argument pos indicates which part of the network should be deleted in the following ways:80, 0<: removes the linear submodel80, m<: removes input m81, m<: removes neuron m82, m<: removes output m

The argument pos can also be a list where each element follows these rules.

If input data is submitted, then the parameters of the output layer and the linear submodel are adjusted so
that the new network approximates the original one as well as possible. The least-squares algorithm is used
for this.

There is no adjustment of the parameters if an input or an output is removed.

6.1.6 SetNeuralD, NeuralD, and NNModelInfo

The commands SetNeuralD, NeuralD, and NNModelInfo are primarily for internal use in the Neural
Networks package, but they may be useful if you want to perform more special operations. They are used in
the same way for RBF as for FF networks and an explanation can be found in Section 5.1.6, SetNeuralD,
NeuralD, and NNModelInfo.

Chapter 6: The Radial Basis Function Network 123

6.2 Examples

This section gives some simple function approximation examples with one and two input variables and one
and two output variables. The examples are analogous to the examples given on FF networks in Section 5.2,
Examples. The reason for this similarity is that RBF networks and FF networks are used for the same type of
problems. The best choice between these two alternative models depends on the specific problem. You can
seldom tell which one is best without trying them both.

Notice that if you re-evaluate the examples, you will not receive exactly the same results. The reason for this
indeterminacy is that the initial network parameters are partly random. See Section 6.1.1, InitializeRBFNet.

6.2.1 Function Approximation in One Dimension

The following example illustrates a one-dimensional approximation problem. You can change the example
by modifying the function that generates the data and then re-evaluating the entire example. The result
depends not only on the data and the number of chosen neuron basis functions, but also on the initialization
of the parameters of the RBF network. Since the initialization is partly random, you should expect that the
answers will differ each time the network is trained.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`

In[2]:= << LinearAlgebra`MatrixManipulation`

It is always a good idea to look at the data. In one-dimensional problems this is especially easy. Here you
can also modify the number of data samples and the function that generates the data.

124 Neural Networks

Generate and look at data.

In[3]:= Ndata = 20;
x = Table@10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@0.1 x2D;
ListPlot@AppendRows@x, yDD

2 4 6 8

-1

-0.5

0.5

1

The training data consists of the input data x and the output y.

Initialize an RBF network with four neurons.

In[7]:= rbf = InitializeRBFNet@x, y, 4D
Out[7]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 36, 27<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Find some information about the network.

In[8]:= NetInformation@rbfD
Out[8]= Radial Basis Function network. Created 2002−4−3 at

13:36. The network has 1 input and 1 output. It consists of 4
basis functions of Exp type. The network has a linear submodel.

You can check the performance of the RBF network before the training. Often the initialization gives a fairly
good result.

Chapter 6: The Radial Basis Function Network 125

Look at the initialized RBF network on the data domain.

In[9]:= NetPlot@rbf, x, yD

2 4 6 8

-1

-0.5

0.5

1

Fit the network to the data applying three iterations.

In[10]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 3D;

0 1 2 3
Iterations

0.05

0.06

0.07

0.08

0.09

0.1

RMSE

Often a warning is given at the end of the training that indicates that the training was not complete. This is
quite common in connection with neural network models, especially when they involve a large number of
parameters. Usually, the best thing to do is to look at the decrease in the performance index to decide
whether more training iterations are necessary. In this example where only three iterations were applied,
you normally would apply more so that you see that the criterion flattened out.

The trained RBF network can now be used to process new input data. The output is the approximation of
the unknown true function at the point corresponding to the input.

126 Neural Networks

Evaluate the RBF model at a new input value.

In[11]:= rbf2@81.5<D
Out[11]= 80.222969<

Evaluate the RBF model at several new input values.

In[12]:= rbf2@881.5<, 80.3<, 82.5<<D
Out[12]= 880.222969<, 80.0298877<, 80.52558<<
By applying the network to a list of symbols you obtain a Mathematica expression describing the network.

In[13]:= rbf2@8a<D
Out[13]= 9−81.4446 − 14.1937 a + 940.804 Æ−0.0194935 H−7.77038+aL2 − 755.36 Æ−0.0242975 H−7.28812+aL2 +

9.54363 Æ−0.146868 H−4.84531+aL2 − 1.55335 Æ−0.0308604 H−3.54432+aL2=
You can then go on and manipulate this expression as you would any other Mathematica expression.

You can plot the function of the RBF network on any interval of your choice.

Plot the RBF network on the interval 8-2, 4<.
In[14]:= Plot@rbf2@8x<D, 8x, −2, 4<D

-2 -1 1 2 3 4
-0.2

0.2

0.4

0.6

0.8

1

Usually, a function estimate cannot be used outside the domain of the training data. In this case, this means
that the RBF network can only be used on the interval 80, 10<. Go back and check that this was the interval of
the training data.

Chapter 6: The Radial Basis Function Network 127

You can also use the command NetPlot to plot the function approximation together with the data. The
range of the plot is set to the range of the supplied input data.

Plot the estimated function.

In[15]:= NetPlot@rbf2, x, yD

2 4 6 8

-1

-0.5

0.5

1

NetPlot can be used in many ways to illustrate the quality of the trained neural network. For example, by
giving the option DataFormat→NetOutput, you obtain a plot of the model output as a function of the
given output. If the network fits the data exactly, then this plot shows a straight line with unit slope through
the origin. In real applications you always have noise on your measurement, and you can only expect an
approximate straight line if the model is good.

Plot the model output versus the data output.

In[16]:= NetPlot@rbf2, x, y, DataFormat → NetOutputD

-1 -0.5 0.5 1
Data

-0.5

0.5

1

Model

It might be interesting to look at the position of the basis functions. If several of them are placed on the same
position or close to one another, this indicates that the number of neurons was higher than necessary, or that

128 Neural Networks

the initial parameters were unfavorable. In that case you can go back and initialize a new RBF network with
fewer neurons. By giving the option DataFormat→HiddenNeurons, you display the output values of the
individual neurons versus the data.

Look at the basis functions.

In[17]:= NetPlot@rbf2, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D, Hue@.8D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@rbf2@@1, 1, 1, 1DDDDDD

2.5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1
Layer: 1 versus data

Nr 4

Nr 3

Nr 2

Nr 1

If you see fewer than four basis functions in the plot, then two or more of the basis functions are identical
and placed on top of each other. These functions can be identified using the legend. Remember that the
result will be slightly different each time you evaluate the example. If some basis functions are identical,
then one of them may actually be removed without compromising the approximation quality. Assume that
you want to delete the second basis function.

Remove the second neuron, plot the basis function, and plot the approximation of the new network.

In[18]:= rbf3 = NeuronDelete@rbf2, 81, 2<, xD
Out[18]= RBFNet@88w1, λ, w2<, χ<, 8AccumulatedIterations → 3,

CreationDate → 82002, 4, 3, 13, 36, 27<, Neuron → Exp,
FixedParameters → None, OutputNonlinearity → None, NumberOfInputs → 1<D

Chapter 6: The Radial Basis Function Network 129

In[19]:= NetPlot@rbf3, x, y, DataFormat → HiddenNeurons,
PlotStyle → 8Hue@.2D, Hue@.4D, Hue@.6D<,
PlotLegend → Map@"Nr " <> ToString@#D &, Range@Length@rbf2@@1, 1, 1, 1DDDDDD

2.5 7.5 1012.51517.520

0.2

0.4

0.6

0.8

1
Layer: 1 versus data

Nr 3

Nr 2

Nr 1

In[20]:= NetPlot@rbf3, x, yD

2 4 6 8

-1

-0.5

0.5

1

By giving the option DataFormat→ErrorDistribution, you obtain a histogram showing the distribu-
tion of the error of the fit. This plot may indicate if you have problems with outliers.

130 Neural Networks

In[21]:= NetPlot@rbf2, x, y, DataFormat → ErrorDistributionD

-0.05 0. 0.05 0.1

1

2

3

4

5
Distribution of Errors

The training record can be used to evaluate the training. Section 7.8, The Training Record, shows you how to
extract various kinds of information from the training record. You can also use NetPlot to plot some
information.

Look at how the parameter values change during the training.

In[22]:= NetPlot@fitrecord, x, yD

0.5 1 1.5 2 2.5 3

-2000

-1000

1000

2000

Parameter values versus iterations

Often, depending on the realization, you can see two parameters becoming very large, but with opposite
signs. If this happens, then these two parameters are probably in w2 belonging to two identical neuron basis
functions. Since the basis functions are nearly identical, the effects of the huge parameters cancel each other.

Chapter 6: The Radial Basis Function Network 131

Check how the parameters are stored in the RBF network.

In[23]:= rbf2

Out[23]= RBFNet@88w1, λ, w2<, χ<, 8AccumulatedIterations → 3,
CreationDate → 82002, 4, 3, 13, 36, 27<, Neuron → Exp,
FixedParameters → None, OutputNonlinearity → None, NumberOfInputs → 1<D

Extract matrix w2 to check which basis function has large parameter values.

In[24]:= MatrixForm@rbf2@@1, 1, 3DDD
Out[24]//MatrixForm=i

k
jjjjjjjjjjjjjjjj
9.54363
−755.36
−1.55335
940.804
−81.4446

y
{
zzzzzzzzzzzzzzzz

By choosing DataFormat→FunctionPlot, you can see how the approximation improves during the
training.

Look at the function approximation after every training iteration.

In[25]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlot,
PlotStyle → PointSize@0.02D, Intervals → 1D
Function estimate after

2 4 6 8

-1

-0.5

0.5

1

Iteration: 0

132 Neural Networks

2 4 6 8

-1

-0.5

0.5

1

Iteration: 3

2 4 6 8

-1

-0.5

0.5

1

Iteration: 2

2 4 6 8

-1

-0.5

0.5

1

Iteration: 1

If you prefer, the progress can be animated as described in Section 5.2.1, Function Approximation in One
Dimension, instead of being given in a graphics array.

You can also look at how the basis functions move during the training by giving the option DataFormat→
HiddenNeurons.

Chapter 6: The Radial Basis Function Network 133

Look at the basis functions during training.

In[26]:= NetPlot@fitrecord, x, y, DataFormat → HiddenNeurons, Intervals → 2D
Values of hidden neurons after

Iteration: 3

2.5 7.5 1012.51517.520

0.2

0.4

0.6

0.8

Layer: 1 versus data

Iteration: 1

2.5 7.5 1012.51517.520

0.2

0.4

0.6

0.8

Layer: 1 versus data

Iteration: 4

2.5 7.51012.51517.520

0.2

0.4

0.6

0.8

1
Layer: 1 versus data

From the series of neuron plots, you may see if two basis functions become equal.

134 Neural Networks

6.2.2 Function Approximation from One to Two Dimensions

You can approximate functions with several outputs in the same way as with one output. Thus, you can
proceed as in the previous example with the only difference being that the output data y should contain one
output in each column. The basic approach is illustrated in Section 5.2.2, Function Approximation from One
to Two Dimensions. To obtain an RBF example, you only have to change the initialization of the network to
an RBF network and to re-evaluate the whole example.

6.2.3 Function Approximation in Two Dimensions

It is easy to approximate functions with several inputs in the same way as with single input functions. A
simple example with two inputs is shown here.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the function.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
ListPlot3D@y, MeshRange → 880, 0.9<, 80, 0.9<<D;
x = Flatten@x, 1D;
y = Transpose@8Flatten@yD<D;

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6
0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

You can modify the example by changing the function generating the data and by changing the number of
neuron basis functions in the following initialization. Notice that you will obtain slightly different results if

Chapter 6: The Radial Basis Function Network 135

you repeat the example without any changes at all. This is due to the randomness in the RBF initialization,
described in the algorithm for RBF network initialization.

Initialize an RBF network with two neurons.

In[8]:= rbf = InitializeRBFNet@x, y, 2D
Out[8]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 38, 31<,
OutputNonlinearity → None, NumberOfInputs → 2<D

You can apply the initialized network to the input data and plot the network output. Compare the result
with the true function in the previous plot.

Look at the initialized RBF network.

In[9]:= y2 = rbf@xD;
ListPlot3D@Partition@Flatten@y2D, NdataD, MeshRange → 880, 0.9<, 80, 0.9<<D

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6
0.8

-0.5
-0.25

0
0.25
0.5

0
0.2

0.4
0.6

0 8

So far the network has only been initialized. Now it is time to train it.

136 Neural Networks

Fit the RBF network to the data.

In[11]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 8D;

0 1 2 3 4 5 6 7 8
Iterations

0.35

0.375

0.4

0.425

0.45

0.475

0.5

0.525

RMSE

Normally, there are several local minima; therefore, if you repeat the initialization and the training, you can
expect to obtain different results.

You can use NetPlot to illustrate the trained RBF network over the data range.

Look at the result with the fitted RBF network.

In[12]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlotD

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-1
-0.5

0
0.5

0
0.2

0.4
0.6

0 8

Chapter 6: The Radial Basis Function Network 137

This plot shows the function approximation after the eight iterations of training. NetPlot may also be
applied to the training record to obtain a graphics array of function estimates at specified iteration intervals,
as shown here.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → FunctionPlot, Intervals → 3D
Function estimate after

Iteration: 6

0
0.2

0.4
0.6

0.8 0

0.2

0.4
0.6
0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

Iteration: 3

0
0.2

0.4
0.6

0.8 0

0.2

0.4
0.6
0.8

-0.5
0

0.5

0
0.2

0.4
0.6

0 8

Iteration: 0

0
0.2

0.4
0.6

0.8 0

0.2

0.4
0.6
0.8

-0.5
-0.25

0
0.25
0.5

0
0.2

0.4
0.6

0 8

138 Neural Networks

Iteration: 8

0
0.2

0.4
0.6

0.8 0

0.2

0.4
0.6
0.8

-1
-0.5

0
0.5

0
0.2

0.4
0.6

0 8

If you prefer, the progress can be animated as described in Section 5.2.1, Function Approximation in One
Dimension, instead of being given in a graphics array.

With the option DataFormat→ErrorDistribution, you can obtain a histogram showing the distribution
of the approximation errors.

In[14]:= NetPlot@rbf2, x, y, DataFormat → ErrorDistributionD

-1.-0.75-0.5-0.25 0. 0.25 0.5 0.75

5

10

15

20

Distribution of Errors

6.3 Classification with RBF Networks

If you have not done so already, load the Neural Networks package.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Load data consisting of three classes divided into two clusters each. The data is represented by inputs x and
their individual classifications by output y. The data format is described in Section 3.2, Package Conventions.

Chapter 6: The Radial Basis Function Network 139

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

Look at the data.

In[3]:= NetClassificationPlot@x, yD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

In classification problems it is important to have a nonlinearity at the output of the RBF network model. The
purpose of the nonlinearity is to ensure that the output value stays within the range indicating the different
classes. This is done by using the option OutputNonlinearity. Its default is None. Set it to Sigmoid so
that its saturating values are 0 and 1, exactly as the output data indicating the classes.

Initialize an RBF network with eight basis functions.

In[4]:= rbf = InitializeRBFNet@x, y, 8, OutputNonlinearity → SigmoidD
Out[4]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 39, 18<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 2<D

The initialized network can now be trained by using NeuralFit.

140 Neural Networks

Train the initialized RBF network.

In[5]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 7D;

0 1 2 3 4 5 6 7
Iterations

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
RMSE

As usual, the reduction in RMSE over the seven iterations is displayed in a plot. Often, you will also get a
warning from the program that the minimum was not reached. It is quite normal not to reach the minimum
in neural network training. Neural network models often contain so many parameters that it is extremely
difficult to determine them precisely. Instead you should inspect the RMSE plot to determine whether more
training is needed to converge to a reliable minimum. If more training is needed, you can use NeuralFit to
continue the training from where you left off. Since the result also depends on the randomness of the initial-
ization, it might be worthwhile to repeat the training with different initial models.

Obtain some information about the RBF network model.

In[6]:= NetInformation@rbf2D
Out[6]= Radial Basis Function network. Created 2002−4−3 at

13:39. The network has 2 inputs and 3 outputs. It consists
of 8 basis functions of Exp type. The network has a linear
submodel. There is a nonlinearity at the output of type Sigmoid.

The trained RBF network classifier may now be used to classify new input vectors.

Classify two data vectors.

In[7]:= rbf2@880, 0.5<, 82, 1<<D
Out[7]= 880.503741, 0.988144, 0.000395902<, 80.91636, 0.0118067, 0.083243<<

Chapter 6: The Radial Basis Function Network 141

The data vectors are classified to the class with the largest output value. If several outputs give large values,
or if none of them do, then the classifier is highly unreliable for this data.

The result can be illustrated in several ways using NetPlot.

Plot the classification borders together with the data.

In[8]:= NetPlot@rbf2, x, y, DataFormat → Classifier,
ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

This option can, of course, only be used in two-dimensional classification problems.

142 Neural Networks

Look at the functions.

In[9]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlot,
Ticks → 880, 1, 2<, 80, 1, 2<, 80, 0.4, 0.8<<D

Output: 1

0
1

2
0

1

2
0

0.4
0.8

0
1

Output: 2

0
1

2
0

1

2
0

0.4
0.8

0
1

Output: 3

0
1

2
0

1

2
0

0.4
0.8

0
1

This option can be used for problems with one or two input signals. The result is given as a graphics array.
The classification boundaries are defined where the functions take the value 0.5.

By giving the option BarChart, you can obtain bar charts showing the classification performance. Correctly
classified data is found on the diagonal, and the misclassified data corresponds to the off-diagonal bars.
Notice that a data vector may be assigned to several classes or to no class at all.

In[10]:= NetPlot@rbf2, x, y, DataFormat → BarChartD
1

2

3Data

1

2

3 Model

0

5

10

15

Samples

1

2

3 Model

The RBF classifier with a sigmoid on the output gives outputs in the open interval 80, 1<. This can be inter-
preted as the “degree” of membership or probability of membership. However, it is often interesting to have
a discrete answer of 0 or 1. This can be obtained in NetPlot, by specifying the option OutputNonlinearg

Chapter 6: The Radial Basis Function Network 143

ity→UnitStep, which will replace the output sigmoid with a discrete unit step. Compare the resulting
plot of the classifier function with the preceding one.

In[11]:= NetPlot@rbf2, x, y, DataFormat → BarChart, OutputNonlinearity → UnitStepD
1

2
3Data

1

2
3 Model

0
5

10

15

20

Samples

1

2
3 Model

In contrast to FunctionPlot and Classifier, the BarChart option can be used for classifiers of any
dimensions.

So far you have evaluated the end result of the training: the obtained RBF network. Now consider the
training record.

In[12]:= fitrecord

Out[12]= NeuralFitRecord@RBFNet, ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The first component is just a copy of the RBF network. The second component contains several items with
information about the training. Section 7.8, The Training Record, shows you how to extract the information
from the training record. Here you will see how this information can be illustrated in different ways using
NetPlot and depending on which DataFormat option is chosen.

144 Neural Networks

Look at how the parameters change during the training.

In[13]:= NetPlot@fitrecord, x, y, DataFormat → ParameterValuesD

1 2 3 4 5 6 7

-40

-20

20

40

Parameter values versus iterations

The evolution of the classifier as a function of training iterations can be displayed using the option Classig
fier. As before, you can display snapshots at prescribed iteration intervals using the option Intervals.

Plot a classifier with a frequency three times the value of ReportFrequency.

In[14]:= NetPlot@fitrecord, x, y, DataFormat → Classifier,
Intervals → 3, ContourStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<,
SymbolStyle → 8Hue@.4D, Hue@.6D, Hue@.8D<D

Classification Boundaries

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 0

Chapter 6: The Radial Basis Function Network 145

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 7

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 6

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 3

146 Neural Networks

6.4 Further Reading

RBF networks are covered in most textbooks on neural networks. Some examples are as follows:

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

Chapter 6: The Radial Basis Function Network 147

7 Training Feedforward and Radial Basis Function Networks

This section describes the training algorithms available for FF networks and RBF networks using the com-
mand NeuralFit. This command is also used for dynamic networks. First, a detailed description of the
command is given in Section 7.1, NeuralFit, followed by Section 7.2, Examples of Different Training Algo-
rithms. In Section 7.3, Train with FindMinimum, NeuralFit is used to call the built-in command FindMinig
mum. In Section 7.4, Troubleshooting, some possible remedies to frequent problems with the training are
presented. Sections 7.5 to 7.8 contain examples on how the options of NeuralFit can be used to change the
basic minimization algorithm. In Section 7.9, Writing Your Own Training Algorithms, the commands Setg
NeuralD and NeuralD are described; they may be useful if you want to develop your own training algo-
rithm for FF and RBF networks.

A short tutorial on the training (or, equivalently, minimization) can be found in Section 2.5.3, Training
Feedforward and Radial Basis Function Networks. For a more thorough background on minimization, you
can consult the references at the end of the chapter.

7.1 NeuralFit

NeuralFit is used to train FF and RBF networks. Prior to the training you need to initialize the network, as
described in Section 5.1.1, InitializeFeedForwardNet, and Section 6.1.1, InitializeRBFNet. In the following,
net indicates either of the two possible network types.

Indirectly NeuralFit is also used to train dynamic networks, since NeuralARXFit and NeuralARFit
actually call NeuralFit. Therefore, the description given here also applies to these two commands.

To train the network you need a set of training data 8xi, yi<i=1
N containing N input-output pairs.

NeuralFit@net, x, yD trains the model net using input data x and output
data y for a default number of training iterations H30L

NeuralFit@net, x, y, xv, yvD
trains the model net using input data x and
output data y for a default number of training
iterations with the validation data xv, yv submitted

NeuralFit@net, x, y, iterationsD
trains the model net using input data x and
output data y for a specified number of iterations

NeuralFit@net, x, y, xv, yv, iterationsD
trains the model net using training data x and y,
with submitted validation data xv and yv,
for a specified number of iterations

Training an FF, RBF, or dynamic network.

NeuralFit returns a list of two variables. The first one is the trained net and the second is an object with
head NeuralFitRecord containing information about the training.

An existing network can be submitted for more training by setting net equal to the network or its training
record. The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.

During the training, intermediate results are displayed in an automatically created notebook. After each
training iteration, the following information is displayed:

 è Training iteration number

 è The value of the RMSE

 è If validation data is submitted in the call, then also displayed is the RMSE value computed on this
second data set

 è The step-size control parameter of the minimization algorithm (l or m), which is described in Section
2.5.3, Training Feedforward and Radial Basis Function Networks

At the end of the training, the RMSE decrease is displayed in a plot as a function of iteration number.

Using the options of NeuralFit, as described in Section 7.7, Options Controlling Training Results Presenta-
tion, you can change the way the training results are presented.

At the end of the training process, you may receive different warning messages. Often, however, the RMSE
curve flattens out although no exact minimum is reached. Instead, by looking at the RMSE plot, you can
usually tell if more training iterations are necessary. If the RMSE curve has not flattened out toward the end
of the training, then you should consider continuing the training. This can be done by submitting the trained
network, or its training record, a second time to NeuralFit so that you do not have to restart the training
from the beginning.

150 Neural Networks

If you do not want the warnings, you can switch them off using the command Off.

All training algorithms may have problems with local minima. By repeating the training with different
initializations of the network, you decrease the risk of being caught in a minimum giving a bad performing
network model.

NeuralFit takes the following options.

option default values

Regularization None quadratic regularization of the criterion of fit

Method Automatic training algorithm

Momentum 0 momentum in backpropagation training

StepLength Automatic step size in steepest descent
and backpropagation training

FixedParameters None parameters excluded from training

Separable Automatic use the separable algorithm

PrecisionGoal 6 number of digits in the stop criterion

CriterionPlot Automatic criterion plot given at end of training

CriterionLog True intermediate results are logged during training

CriterionLogExtN True training progress is given in an external notebook

ReportFrequency 1 period of training log and training report

ToFindMinimum 8< list of options to be used if Method→FindMinimum

Compiled True use compiled version

MinIterations 3 minimum number of training iterations

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of NeuralFit.

The options CriterionPlot, CriterionLog, CriterionLogExtN, ReportFrequency, and Moreg
TrainingPrompt are common with the other training commands in the Neural Networks package, and they
are described in Section 7.7, Options Controlling Training Results Presentation. The rest of the options are
explained and illustrated with examples in the section that follows.

Chapter 7: Training Feedforward and Radial Basis Function Networks 151

7.2 Examples of Different Training Algorithms

This section includes a small example illustrating the different training algorithms used by NeuralFit. If
you want examples of different training algorithms of more realistic sizes, see the ones in Chapter 8,
Dynamic Neural Networks, or Chapter 12, Application Examples, and change the option Method in the calls
to NeuralFit.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Consider the following small example where the network only has two parameters. This makes it possible to
illustrate the RMSE being minimized as a surface. To do this, you need the following package.

Read in a standard package for graphics.

In[2]:= << Graphics`Graphics3D`

The “true” function is chosen to be an FF network with one input and one output, no hidden layer and with
a sigmoidal nonlinearity at the output. The true parameter values are 2 and -1.

Initialize a network of correct size and insert the true parameter values.

In[3]:= fdfrwrd = InitializeFeedForwardNet@881<<, 881<<,8<, RandomInitialization→ True, OutputNonlinearity→ SigmoidD;
fdfrwrd@@1DD = 88882.<, 8−1.<<<<;

Generate data with the true function.

In[5]:= Ndata = 50;
x = Table@8N@iD<, 8i, 0, 5, 10êHNdata − 1L<D;
y = fdfrwrd@xD;

A two-parameter function is defined to carry out the RMSE computation. Note that this function makes use
of the generated data 8x, y< and is needed to generate the plots.

Define the criterion function.

In[8]:= criterion@a_, b_D := Hfdfrwrd@@1DD = 8888a<, 8b<<<<;
Sqrt@HTranspose@#D.#L &@y − fdfrwrd@xDDêLength@xDDL@@1, 1DD

152 Neural Networks

The criterion function can be plotted in a neighborhood of the minimum H2, -1L using Plot3D.

Look at the criterion function.

In[9]:= surf = Plot3D@criterion@a, bD, 8a, −1, 5<, 8b, −5, 3<, PlotPoints → 20D

0

2

4
-4

-2

0

2

0
0.2
0.4
0.6
0.8

0

2

4

Now it is time to test the different training methods. The initial parameters are chosen to be H-0.5, -5L. You
can repeat the example with different initializations.

 Levenberg-Marquardt

Initialize the network and train with the Levenberg-Marquardt method.

In[10]:= fdfrwrd2 = fdfrwrd;
fdfrwrd2@@1DD = 8888−0.5<, 8−5<<<<;8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, yD;

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

0.2

0.4

0.6

0.8

RMSE

The parameter record and the criterion log are included as rules in the training record, constituting the
second output argument of NeuralFit. This information may be inserted into a list of three-element
sublists containing the two parameter values and the corresponding RMSE value for each iteration of the

Chapter 7: Training Feedforward and Radial Basis Function Networks 153

training process. Viewing this list as three-dimensional 8x, y, z< points, it can be used to illustrate the RMSE
surface as a function of parameters using Plot3D.

Form a list of the trajectory in the parameter space.

In[13]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[14]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

0

2

4
-4

-2

0

2

0
0.2
0.4
0.6
0.8

0

2

4

The 8x, y, z< iterates of the training process are marked with dots that are connected with straight lines to
show the trajectory. The training has converged after about five iterations.

154 Neural Networks

Gauss-Newton Algorithm

The training of the initial neural network is now repeated with the GaussNewton algorithm.

Train the same neural network with the Gauss-Newton algorithm.

In[17]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Method → GaussNewtonD;

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

0.2

0.4

0.6

0.8

RMSE

Form a list of the trajectory in the parameter space.

In[18]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[19]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

Chapter 7: Training Feedforward and Radial Basis Function Networks 155

0

2

4
-4

-2

0

2

0
0.2
0.4
0.6
0.8

0

2

4

The Gauss-Newton algorithm converges in seven iterations.

Steepest Descent Method

Train the same neural network with SteepestDescent.

In[22]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Method → SteepestDescentD;

0 5 10 15 20 25 30
Iterations

0

0.2

0.4

0.6

0.8

RMSE

The training did not converge within the 30 iterations. This is not necessarily a problem, since the parameter
values may still be close enough to the minimum.

Form a list of the trajectory in the parameter space.

In[23]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;

156 Neural Networks

Form plots of the trajectory and show it together with the criterion surface.

In[24]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

0

2

4
-4

-2

0

2

0
0.2
0.4
0.6
0.8

0

2

4

Toward the end of the training the convergence is particularly slow. There, the steepest descent method
exhibits much slower convergence than either the Levenberg-Marquardt or Gauss-Newton methods.

Backpropagation Algorithm

When you use the backpropagation algorithm, you have to choose the step size and the momentum. It may
not be an easy matter to choose judicious values for these parameters, something that is not an issue when
using the other methods since they automatically tune the step size. You can repeat the example with differ-
ent values of these parameters to see their influence.

Chapter 7: Training Feedforward and Radial Basis Function Networks 157

Train the same neural network with backpropagation.

In[27]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y,
200, Method → BackPropagation, StepLength → 0.1, Momentum → 0.9D;

0 20 40 60 80 100 120 140 160 180 200
Iterations

0.2

0.4

0.6

0.8

RMSE

Form a list of the trajectory in the parameter space.

In[28]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[29]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

0

5

10
-4

-2

0

2

0
0.2
0.4
0.6
0.8

0

5

10

158 Neural Networks

Due to the momentum term used in the training, the parameter estimate goes up on the slope adjacent to the
initial parameter values. You can repeat the training with different values of the StepLength and Momeng
tum options to see how they influence the minimization.

7.3 Train with FindMinimum

If you prefer, you can use the built-in Mathematica command FindMinimum to train FF, RBF, and dynamic
networks. This is done by giving the option Method→FindMinimum to NeuralFit. The other choices for
Method call algorithms especially written for neural network minimization and thus happen to be superior
to FindMinimum in most neural network problems.

You can submit any FindMinimum options by putting them in a list and using the option ToFindMinimum.

See the documentation on FindMinimum for further details.

Consider the following small example.

Read in the Neural Networks package and a standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Generate data and look at the function.

In[3]:= Ndata = 20;
x = Table@5. − 10 N@8iêNdata<D, 8i, 0, Ndata − 1<D;
y = Sin@xD;
ListPlot@AppendRows@x, yDD

-4 -2 2 4

-1

-0.5

0.5

1

Chapter 7: Training Feedforward and Radial Basis Function Networks 159

Initialize an RBF network randomly.

In[7]:= rbf = InitializeRBFNet@x, y, 4, RandomInitialization→ TrueD
Out[7]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 42, 32<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Train with FindMinimum and specify that the Levenberg-Marquardt algorithm of FindMinimum should be used.

In[8]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 50,
Method → FindMinimum, ToFindMinimum → 8Method → LevenbergMarquardt<D;

FindMinimum::fmlim : The minimum could not be bracketed in 50 iterations.

A main disadvantage with FindMinimum is that it is hard to say whether or not the training was in fact
successful. You have no intermediate results during training and no criterion plot given at the end of the
training. You almost always get the warning at the end of the training that the minimum was not reached.
However, the trained network might be a good description of the data anyway. You can visually inspect the
model with a plot.

Plot the approximation obtained with the network.

In[9]:= NetPlot@rbf2, x, yD

-4 -2 2 4

-1

-0.5

0.5

1

You can repeat the example changing the number of iterations and the algorithm used in FindMinimum.

160 Neural Networks

7.4 Troubleshooting

Sometimes, due to numerical problems, the training stops before reaching the minimum and without com-
pleting the iterations specified. Listed here are some measures you can take to possibly circumvent this
situation.

 è Re-initialize the network model and repeat the training.

 è Try a different training algorithm by changing the option Method. (See Section 7.1, NeuralFit.)

 è Exclude (or include if it is already excluded) a linear part in the network by setting the option
LinearPart→False. (See Section 5.1.1, InitializeFeedForwardNet, or Section 6.1.1, InitializeRBF-
Net.)

 è Decrease/increase the number of neurons in the network model.

 è Check that the data is reasonably scaled so that unnecessary numeric problems are avoided.

7.5 Regularization and Stopped Search

A central issue in choosing a neural network model for a given problem is selecting the level of its structural
complexity that best suits the data that it must accommodate. If the model contains too many parameters, it
will approximate not only the data but also the noise in the data. Then the model is overfitting the data. The
misfit induced by noise is called the variance contribution to the model misfit, which increases with the
number of parameters of the model. On the other hand, a model that contains too few parameters will not be
flexible enough to approximate important features in the data. This gives a bias contribution to the misfit due
to lack of flexibility. Since the flexibility increases with the number of parameters, the bias error decreases
when the model size increases. Deciding on the correct amount of flexibility in a neural network model is
therefore a tradeoff between these two sources of the misfit. This is called the bias-variance tradeoff.

Overfitting may be avoided by restricting the flexibility of the neural model in some way. For neural net-
works, flexibility is specified by the number of hidden neurons.

The Neural Networks package offers three ways to handle the bias-variance tradeoff and all three rely on the
use of a second, independent data set, the so-called validation data, which has not been used to train the
model.

 è The traditional way to carry out the bias-variance tradeoff is to try different candidate neural net-
works, with different numbers of hidden neurons. The performance of the trained networks can
then be computed on the validation data, and the best network is selected.

Chapter 7: Training Feedforward and Radial Basis Function Networks 161

 è By specifying a regularization parameter larger than zero, a regularized performance index is mini-
mized instead of the original MSE. This type of regularization is often called weight decay in connec-
tion with neural networks.

 è By submitting the validation data in the call to NeuralFit, you apply stopped search. The MSE is
minimized with respect to the training data, but the obtained parameter estimate is the one that
gave the best performance on the validation data at some intermediate iteration during the training.

The last two of these techniques make effective use of only a subset of the parameters in the network. There-
fore, the number of efficient parameters becomes lower then the nominal number of parameters. This is
described in the following two sections.

7.5.1 Regularization

You can apply regularization to the training by setting the option Regularization to a positive number.
Then the criterion function minimized in the training becomes

(1)WN
δ HθL = VN HθL + δ θT θ

instead of VN HqL, given in Section 2.5.3, Training Feedforward and Radial Basis Function Networks, where d
is the number you specify with the option. The second term in Equation 7.1 is called the regularization term,
which acts like a spring pulling the parameters toward the origin. The spring only marginally influences
those parameters that are important for the first term VN HqL, while parameters that do not have any large
impact on VN HqL will be pulled to the origin by the regularization. This second class of parameters is effec-
tively excluded from the fit, thus reducing the network’s flexibility or, equivalently, reducing the number of
efficient parameters. You use d to control the importance of a parameter to the training process.

The critical issue in using regularization is to choose a good value of d. This may be done by trial and error
using validation data. Typically, you try several different d values and compare the results.

7.5.2 Stopped Search

Stopped search refers to obtaining the network’s parameters at some intermediate iteration during the
training process and not at the final iteration as is normally done. Like the regularization, this is a way to
limit the number of used parameters in the network. During the training the efficient number of parameters
grows gradually and eventually becomes equal to the nominal number of parameters at the minimum of the
MSE. Using validation data, it is possible to identify an intermediate iteration where the parameter values
yield a minimum MSE. At the end of the training process the parameter values at this minimum are the ones
used in the delivered network model.

162 Neural Networks

In the following example, the performance of this stopped search technique is compared to that of a fully
trained model.

7.5.3 Example

In this small example, you will see how stopped search and regularization can be used to handle the bias-
variance tradeoff. The example is in a one-dimensional space so that you can look at the function. In Section
8.2.4, Bias-Variance Tradeoff—Avoiding Overfitting, a larger example is given.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Some additional standard add-on packages are needed in the example. Load them.

In[2]:= << Statistics`ContinuousDistributions`
<< Statistics`DataManipulation`

To generate data, the true function has to be defined. It is called trueFunction here and you can change it
and repeat the calculations to obtain several different examples. You can also modify the number of data
samples to be generated, the noise level on the data, and the number of hidden neurons in the model.

Generate noisy data and look at it.

In[4]:= Ndata = 30;

trueFunction@xx_D := If@xx < 0, 0.3 xx, Sin@xxDD
x = Table@8N@iD<, 8i, −5, 5, 10ê HNdata − 1L<D;
y = Map@trueFunction, x, 82<D + RandomArray@NormalDistribution@0, 0.4D, 8Ndata, 1<D;

Chapter 7: Training Feedforward and Radial Basis Function Networks 163

Look at the data and the true function.

In[8]:= Show@Plot@trueFunction@xD, 8x, −5, 5<, DisplayFunction → IdentityD,
ListPlot@RowJoin@x, yD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD

-4 -2 2 4

-2

-1.5

-1

-0.5

0.5

1

To apply stopped search, you need validation data. Thus the available data is divided into two sets: training
data and validation data.

Divide the data into training data and validation data.

In[9]:= xt = x@@Range@1, Ndata, 2DDD;
yt = y@@Range@1, Ndata, 2DDD;
xv = x@@Range@2, Ndata, 2DDD;
yv = y@@Range@2, Ndata, 2DDD;

The default initialization of FF and RBF networks fits the linear parameters of the network using the least-
squares algorithms, as described in Section 5.1.1, InitializeFeedForwardNet, and Section 6.1.1, InitializeRBF-
Net. If the network is overparameterized, this may lead to very large values of the linear parameters. The
large values of the linear parameters can then cause problems in the training, especially if you want to use
regularization and stopped search. There are two straightforward ways to handle this. The first one is to use
regularization in the initialization, which keeps the parameter values smaller. The second way, which is
used here, is to choose RandomInitialization→LinearParameters so that the least-squares step is
skipped and the linear parameters are chosen randomly.

164 Neural Networks

Initialize an FF network.

In[13]:= fdfrwrd =

InitializeFeedForwardNet@xt, yt, 84<, RandomInitialization→ LinearParametersD
Out[13]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82003, 7, 28, 21, 12, 35.4777536<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Look at the initialized network, the true function, and the training data.

In[14]:= Show@Plot@8fdfrwrd@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

It is now time to train the network. Validation data is submitted so that stopped search can be applied. If

you have not set CriterionLog to False, the value of the criterion "################WN
d HqL for training data and RMSEè!!!!!!!!!!!!!!!VN HqL for validation data are written out during the training process. At the end of the training process, a

message is given indicating at which iteration the RMSE reaches the minimum for the validation data used.
It is the parameters at that iteration that are returned and define the network model. If CriterionPlot is

not set to False, you also get a plot at the end of the training showing the decrease of "################WN
d HqL for training

data and RMSE è!!!!!!!!!!!!!!!VN HqL for validation data.

The separable algorithm, which is described in Section 7.6, Separable Training, fits the linear parameters in
each step of the iterative training with the least-squares algorithm. Hence, for a reason similar to that of
initializing the network without using least-squares for the linear parameters, it might be better to carry out

Chapter 7: Training Feedforward and Radial Basis Function Networks 165

the training without the separable algorithm. In this way, extremely large parameter values are avoided.
This is done by setting Separable→False.

Train the network.

In[15]:= 8fdfrwrd1, fitrecord< = NeuralFit@fdfrwrd, xt, yt, xv, yv, 50, Separable → FalseD;

0 5 10 15 20 25 30 35 40 45
Iterations

0.2

0.4

0.6

0.8

1

1.2
RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 5th training iteration.

The obtained function estimate using stopped search can now be plotted together with the true function and
the training data.

Plot the obtained estimate.

In[16]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

166 Neural Networks

If no validation data had been submitted, you would have received the parameters at the final iterations in
the model. These parameters can be extracted from the training record and put into the network model. In
that way, you can compare the result obtained with stopped search shown in the plot with the result you
would have received without stopped search.

Put in the parameters at the final iteration.

In[17]:= parameters = ParameterRecord ê. fitrecord@@2DD;
fdfrwrd1@@1DD = Last@parametersD;

Look at the estimate without using stopped search.

In[19]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

Compare this with the earlier plot where stopped search was used.

Now consider regularization instead of stopped search. As explained already, the linear parameters of an
initialized network might become very large when using the default initialization due to the least-squares
step. This may cause problems when regularization is applied, because the regularization term of the crite-
rion dominates if the parameters are extremely large. As mentioned, there are two ways to handle this:
using regularization also in the initialization, or skipping the least-square step.

For the same reason, problems may also arise when using the separable algorithm together with regulariza-
tion. To avoid that, you can set Separable→False in the training. You can supply validation data as
before. By inspecting the RMSE criterion on the validation data, you can see if the regularization parameter

Chapter 7: Training Feedforward and Radial Basis Function Networks 167

is of appropriate size. Too small of a value gives a validation error that increases toward the end of the
training.

Train the network using regularization.

In[20]:= 8fdfrwrd1, fitrecord< =

NeuralFit@fdfrwrd, xt, yt, xv, yv, 30, Regularization → 0.001, Separable → FalseD;

0 1 2 3 4 5 6 7 8 9
Iterations

0.4

0.6

0.8

1

1.2
RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 6th training iteration.

Look at the estimate obtained using regularization.

In[21]:= Show@Plot@8fdfrwrd1@8a<D, trueFunction@aD<, 8a, −5, 5<,
PlotStyle → 88<, 8Dashing@80.05, 0.05<D<<, DisplayFunction → IdentityD,

ListPlot@RowJoin@xt, ytD, DisplayFunction → IdentityD,
DisplayFunction → $DisplayFunctionD

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

168 Neural Networks

Compare the result with the ones obtained using stopped search and just normal learning.

You can modify the design parameters and repeat the example. Try networks of different sizes and with
several layers. Try an RBF network.

7.6 Separable Training

Separable training can be used when the neural network model is linear in some of the parameters. The
separable algorithm gives a numerically better-conditioned minimization problem that is easier to solve.
Therefore, by using a separable algorithm, the training is likely to converge to the solution in fewer training
iterations. If the neural network has several outputs, the computational burden per iteration will also be less,
which will speed up the training further.

You can indicate if the separable algorithm should be used with the option Separable. The default value is
Automatic, which means that the separable algorithm will be used whenever possible for all training
algorithms except the backpropagation algorithm. In the following cases, the separable algorithm cannot be
used:

 è If there is a nonlinearity at the output; that is, if OutputNonlinearity is set to anything else but
None

 è If some of the parameters are fixed in the training

The separable algorithm is illustrated with two examples. The first example is very simple: it has only two
parameters, so that the result can be illustrated in a surface plot. The second example is of a more realistic
size.

7.6.1 Small Example

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

The following standard package is needed for the surface plot of the criterion.

In[2]:= << Graphics`Graphics3D`

First, the “true” function has to be defined, which is then used to generate the data. To make the example
small, with one linear and one nonlinear parameter, a small FF network is chosen. It consists of one input

Chapter 7: Training Feedforward and Radial Basis Function Networks 169

and one output, without any hidden layers and it has no bias parameter. This small network has only two
parameters and these are chosen to be H2, 1L.

Define the “true” function.

In[3]:= fdfrwrd = InitializeFeedForwardNet@881<<, 881<<,81<, RandomInitialization→ True, BiasParameters → FalseD;
fdfrwrd@@1DD = 88882.<<, 881.<<<<;

Generate data with the true function.

In[5]:= Ndata = 50;
x = Table@8N@iD<, 8i, 0, 5, 10êHNdata − 1L<D;
y = fdfrwrd@xD;

To illustrate the result with plots you need the following function, which computes the criterion of fit,
described in Section 2.5.3, Training Feedforward and Radial Basis Function Networks.

In[8]:= criterion@a_, b_D := Hfdfrwrd@@1DD = 8888a<<, 88b<<<<;
Sqrt@HTranspose@#D.#L &@y − fdfrwrd@xDD@@1, 1DDêLength@xDDL

Look at the criterion as a function of the two parameters.

In[9]:= surf = Plot3D@criterion@a, bD, 8a, 1, 3<, 8b, 0, 2<, PlotPoints → 20D

1
1.5

2
2.5

3 0

0.5

1

1.5

2

0
0.25
0.5

0.75

1
1.5

2
2.5

The parameter that has the largest influence on the criterion is the linear parameter. The separable algorithm
minimizes the criterion in the direction of the linear parameter in each iteration of the algorithm so that the
iterative training follows the valley. This will be obvious from the following computations.

170 Neural Networks

The network is now initialized at the point H1.1, 2L in the parameter space, and separable training is com-
pared with the nonseparable training. This is done using the default Levenberg-Marquardt training algo-
rithm. You can repeat the example using the Gauss-Newton or the steepest descent training by changing the
option Method.

Initialize the network and insert the true parameter values.

In[10]:= fdfrwrd2 = fdfrwrd;
fdfrwrd2@@1DD = 88881.1<<, 882.<<<<;

Train with the separable algorithm.

In[12]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, yD;

0 1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

0.2

0.4

0.6

0.8

RMSE

Form a list of the trajectory in the parameter space.

In[13]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;

Chapter 7: Training Feedforward and Radial Basis Function Networks 171

Form plots of the trajectory and show it together with the criterion surface.

In[14]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

1
1.5

2
2.5

3
0

0.5

1

1.5

2

0
0.25
0.5

0.75

1
1.5

2
2.5

As you can see from the plot, the parameter estimate is at the bottom of the valley already at the first itera-
tion. The minimization problem has been reduced to a search in one dimension, along the valley, instead of
the original two-dimensional space. The training converged after approximately five iterations.

The calculations can now be repeated but without using the separable algorithm.

172 Neural Networks

Train without the separable algorithm.

In[17]:= 8fdfrwrd3, fitrecord< = NeuralFit@fdfrwrd2, x, y, Separable → FalseD;

0 2 4 6 8 10 12 14
Iterations

0

0.2

0.4

0.6

0.8

RMSE

Form a list of the trajectory in the parameter space.

In[18]:= trajectory =

Transpose@Append@Transpose@Map@Flatten, HParameterRecord ê. fitrecord@@2DDLDD,HCriterionValues ê. fitrecord@@2DDL + 0.05DD;
Form plots of the trajectory and show it together with the criterion surface.

In[19]:= trajectoryplot = ScatterPlot3D@trajectory,
PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;

trajectoryplot2 = ScatterPlot3D@trajectory, PlotJoined → True,
PlotStyle → Thickness@0.01D, DisplayFunction → IdentityD;

Show@surf, trajectoryplot, trajectoryplot2D

1
1.5

2
2.5

3
0

0.5

1

1.5

2

0
0.25
0.5

0.75

1
1.5

2
2.5

Chapter 7: Training Feedforward and Radial Basis Function Networks 173

Without the separable algorithm, the training is slowed down a little. Several iterations are necessary before
the bottom of the valley is reached. Also the convergence along the valley is somewhat slower: the algorithm
needs about eight iterations to converge.

7.6.2 Larger Example

In this example, a function with two outputs is approximated.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data and look at the two outputs.

In[2]:= Ndata = 10;
x = Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x, 82<D;
y2 = Map@Sin@10. H#@@1DD − 1L #@@2DDD &, x, 82<D;
Show@GraphicsArray@8ListPlot3D@y1, DisplayFunction → IdentityD,

ListPlot3D@y2, DisplayFunction → IdentityD<DD
x = Flatten@x, 1D;
y = Transpose@8Flatten@y1D, Flatten@y2D<D;

2 4
6

8
10

2
4
6
8
10

-1-0.50
0.5
1

2 4
6

8

2 4
6

8
10

2
4
6
8
10

-1-0.50
0.5
1

2 4
6

8

An RBF network containing four neurons is chosen. You can modify the structure and repeat the example.
You can also change it to an FF network.

174 Neural Networks

Initialize an RBF network.

In[9]:= rbf = InitializeRBFNet@x, y, 4, LinearPart → FalseD
Out[9]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 46, 0<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Different algorithms will be compared with respect to execution time and efficiency, that is, their RMSE rate
of decrease. The Levenberg-Marquardt algorithm is tested first using the separable algorithm.

Train 15 iterations and find the time used.

In[10]:= 8t, 8rbf2, fitrecord<< = Timing@NeuralFit@rbf, x, y, 15DD;
t

0 2 4 6 8 10 12 14
Iterations

0.34

0.36

0.38

0.4

0.42

0.44

RMSE

Out[11]= 0.971 Second

Now consider the case where the separable algorithm is not used.

Chapter 7: Training Feedforward and Radial Basis Function Networks 175

Train 15 iterations and find the time used.

In[12]:= 8t, 8rbf2, fitrecord<< = Timing@NeuralFit@rbf, x, y, 15, Separable → FalseDD;
t

0 2 4 6 8 10 12 14
Iterations

0.32

0.34

0.36

0.38

0.4

0.42

0.44

RMSE

Out[13]= 0.831 Second

Compare the obtained fit illustrated in the previous two plots. Normally, the separable algorithm is more
efficient, showing a larger rate of error decrease per iteration using approximately the same time.

You can repeat the example with the other training algorithms, such as Gauss-Newton and steepest descent,
by changing the option Method.

7.7 Options Controlling Training Results Presentation

The following options are the same for all training commands in the Neural Networks package, with the
exception of HopfieldFit.

 è CriterionLog indicates if intermediate results during training should be displayed and logged in
the training record.

 è CriterionLogExtN indicates whether the intermediate results during training should be dis-
played in a separate notebook, which is the default, or in the current notebook.

 è ReportFrequency indicates the interval of the intermediate results in the training record.

176 Neural Networks

 è CriterionPlot indicates whether the performance index should be shown at the end of the
training.

 è MoreTrainingPrompt indicates whether you want be asked if training should be continued at the
last iteration.

Here are some examples of how the information given during training can be influenced by using these
options.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

First some test data is loaded and an FF network is initialized.

Load some test data and initialize an FF network.

In[2]:= <<onedimfunc.dat;
fdfrwrd=InitializeFeedForwardNet[x,y,{4}]

Out[3]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,
AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 46, 53<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Using the default options gives a separate notebook where the criterion value and some control parameters
are written out after each iteration of the training algorithm. At the end of the training, the decrease of the
performance index is displayed in a plot in the current notebook. You only get the separate notebook if you
re-evaluate the commands.

Chapter 7: Training Feedforward and Radial Basis Function Networks 177

Train with the default options.

In[4]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 4D;

0 1 2 3 4
Iterations

0.175

0.18

0.185

0.19

0.195

0.2

0.205

RMSE

If you work with large neural networks, and if you are uncertain of how many training iterations you need,
it might be advantageous to set the MoreTrainingPrompt→True to avoid the initialization computation
when you call the training command several times. With MoreTrainingPrompt→True you receive a
question at the last iteration; you are asked to enter any number of additional training iterations before the
training terminates. You can give any positive integer; if you answer anything else the training terminates.

Prompt for more training iterations before exiting the training command.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 4, MoreTrainingPrompt → TrueD;

0 1 2 3 4 5 6 7
Iterations

0.15

0.16

0.17

0.18

0.19

0.2

RMSE

178 Neural Networks

If you do not want any plot at the end of the training, you set CriterionPlot→False. You can also have
the intermediate results in the current notebook instead. This is done by setting CriterionLogExtN→
False. The interval of the intermediate results can be set with ReportFrequency.

Train without the criterion plot and with the training result in the current notebook with interval 2.

In[6]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 4, CriterionLogExtN → False, ReportFrequency → 2D;
Iteration RMSE λ

==============================

0. 0.2052

2. 0.1872 3.72

4. 0.1749 0.782

0 1 2 3 4
Iterations

0.175

0.18

0.185

0.19

0.195

0.2

0.205
RMSE

ReportFrequency also indicates the iteration interval with which parameter values are logged in the
training record during the training. This is described in Section 7.8, The Training Record.

If you do not want any intermediate results at all during the training, you can switch them off by setting
CriterionLog→False.

In[7]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 4, CriterionPlot → False, CriterionLog → FalseD;

Chapter 7: Training Feedforward and Radial Basis Function Networks 179

The training process is speeded up a little by excluding the intermediate results or by setting the report
frequency to a higher value.

You can reset the default using SetOptions[function, option→value]. This will change the default value for
the entire Mathematica session.

Change the CriterionLog option so that no intermediate training results are displayed.

In[8]:= SetOptions@NeuralFit, CriterionLog → FalseD
Out[8]= 8Compiled → True, CriterionLog → False, CriterionLogExtN → True,

CriterionPlot → Automatic, FixedParameters → None, Method → Automatic,
MinIterations → 3, Momentum → 0, MoreTrainingPrompt→ False,
PrecisionGoal → 6, Regularization → None, ReportFrequency → 1,
Separable → Automatic, StepLength → Automatic, ToFindMinimum → 8<<

By using SetOptions, you do not have to supply CriterionLog→False each time NeuralFit is called.

7.8 The Training Record

All neural network training functions, with the exception of HopfieldFit, return lists with two compo-
nents. The first element is the trained network, and the second element is a training record, containing
information logged during the training. The training record can be used to graphically illustrate the training,
using the command NetPlot. The command works somewhat differently depending on which kind of
network it is applied to. See the description in connection to each type of neural network. This will show
how you can extract information directly from the training record.

First, some test data and a demonstration network are needed. Although an FF network is used in the
example, training records from all other neural network models can be handled in the same way.

Load the Neural Networks package and test the data, then initialize and train an FF network.

In[1]:= << NeuralNetworks`

In[2]:= <<onedimfunc.dat;
fdfrwrd=InitializeFeedForwardNet[x,y,{4}];
{fdfrwrd2,fitrecord}=NeuralFit[fdfrwrd,x,y,10, CriterionPlot→False];

180 Neural Networks

Look at the training record.

In[5]:= fitrecord

Out[5]= NeuralFitRecord@FeedForwardNet,
ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

The head of the training record depends on the type of neural network training it describes. For FF and RBF
networks, trained with NeuralFit, the head is NeuralFitRecord.

The first component of the training record contains a copy of the trained network. The second component is
a list of rules. The left sides of the rules are used as pointers indicating different information.

 è ReportFrequency indicates the value of this option when the network was trained. That is, it
indicates the interval of training iterations at which the information is logged in the rules that
follow.

 è CriterionValues points at a list containing the performance index after each iteration. It can
easily be extracted and plotted.

 è CriterionValidationValues contains a list of the performance index on validation data. Note
that this only holds if validation data was submitted in the call, and that can only be done with the
NeuralFit command. See Section 7.5, Regularization and Stopped Search for more information.

 è ParameterRecord contains a list of the parameters used during the training. The elements in the
list have the same structure as the first element of the neural network model.

With these specifications you can extract and use the intermediate results of the training in any way you like.

Chapter 7: Training Feedforward and Radial Basis Function Networks 181

Extract the criterion decrease and plot it.

In[6]:= ListPlot@CriterionValues ê. fitrecord@@2DD, PlotJoined → TrueD

4 6 8 10

0.1

0.2

0.3

0.4

Extract the list of parameters versus training iterations and check the length of the list.

In[7]:= par = ParameterRecord ê. fitrecord@@2DD;
Length@parD

Out[8]= 11

The elements in the parameter list have the same structure as the parameter structure in the network. This
means that the parameters at some stage of the training can be easily obtained by inserting the parameter
values in the network. Suppose you want to obtain the network model you had after five training iterations.
Then you have to extract the sixth element (recall that the initial parameters are at the first position of the
list) and put it at the first position of the network.

Find the model after the fifth iteration by putting in the parameters obtained using ParameterRecord.

In[9]:= fdfrwrd2@@1DD = par@@6DD
Out[9]= 8888−1.07433, 2.03512, 1.26074, 0.0173203<, 810.1864, −14.4612, −3.92809, 11.6643<<,888.16393<, 80.895992<, 8−7.00234<, 87.66623× 106<, 8−7.66617×106<<<<
The structure of the network is the same as before; only the values of the parameters have been changed.

182 Neural Networks

Check the structure of the network.

In[10]:= NetInformation@fdfrwrd2D
Out[10]= FeedForward network created 2002−4−3 at 13:48. The

network has 1 input and 1 output. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

7.9 Writing Your Own Training Algorithms

The different options of NeuralFit offer you several training algorithms for FF and RBF networks. Its
options give you further possibilities to modify the algorithms. Nevertheless, on occasion you may want to
develop your own training algorithm. As long as the network parameter weights are stored in the correct
way, as described in Section 13.1, Change the Parameter Values of an Existing Network, you may modify
their values in whatever way you want. This is, in fact, enough to let you use all the capabilities of Mathemat-
ica to develop new algorithms. The advantage of representing the network in the standard way is that you
can apply all other functions of the Neural Networks package to the trained network.

Many algorithms are based on the derivative of the network with respect to its parameters, and SetNeug
ralD and NeuralD help you compute it in a numerically efficient way. This command is described in the
following.

SetNeuralD produces the code for NeuralD. Therefore, SetNeuralD has to be called first, then NeuralD
is used to compute the derivative. The advantage of this procedure is that SetNeuralD optimizes the
symbolic expression for the derivative so that the numerical computation can be performed as fast as
possible.

Notice that SetNeuralD only has to be called once for a given network structure. It does not have to be
recalled if the parameters have changed; SetNeuralD only needs to be called if you change the network
structure. Typically, SetNeuralD is called at the beginning of a training algorithm and only NeuralD is
used inside the training loop.

Note also that NeuralD does not perform any tests of its input arguments. The reason for this is that it is
intended for internal use. Instead, you have to add the tests yourself in the beginning of the training
algorithm.

This use is illustrated in the following example.

Chapter 7: Training Feedforward and Radial Basis Function Networks 183

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Load some data.

In[2]:= << one2twodimfunc.dat;

Check the dimensions of the data.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 820, 1<
Out[4]= 820, 2<
There are 20 data samples available and there are one input and two outputs.

Initialize an RBF network.

In[5]:= net = InitializeRBFNet@x, y, 2, LinearPart → FalseD
Out[5]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 13, 48, 43<,
OutputNonlinearity → None, NumberOfInputs → 1<D

Generate the code to calculate the derivative.

In[6]:= SetNeuralD@netD;

184 Neural Networks

Compute the derivative.

In[7]:= der = NeuralD@net, x@@Range@3DDDD
Out[7]= 8880.0187566, 0.108421, 0.318221, 1.7893, 0.0124692, 0., 0.841608, 0., 1., 0.<,8−0.0124813, −0.0522312, −0.211755,

−0.861988, 0., 0.0124692, 0., 0.841608, 0., 1.<<,880.0347679, 0.0930977, 0.540381, 1.24297, 0.0252298, 0., 0.893275, 0., 1., 0.<,8−0.0231357, −0.0448493, −0.359587,
−0.598794, 0., 0.0252298, 0., 0.893275, 0., 1.<<,880.060082, 0.0745408, 0.848315, 0.760255, 0.0479941, 0., 0.936261, 0., 1., 0.<,8−0.0399805, −0.0359096, −0.564497,
−0.366249, 0., 0.0479941, 0., 0.936261, 0., 1.<<<

The first input argument is the network. It must have the same structure as it had when SetNeuralD was
called, but the parameter values may have changed. The second input argument should be a matrix with
one numerical input vector on each row. The output is better explained by looking at the dimension of its
structure.

In[8]:= Dimensions@derD
Out[8]= 83, 2, 10<
The first index indicates the data sample (the derivative was computed on three input data), the second
index indicates the output (there are two outputs of the network), and the third index indicates the parame-
ters (there are obviously 10 parameters in the network). The derivatives with respect to the individual
parameters are placed in the same order as the parameters in the flattened parameter structure of the net-
work, that is, the position in the list Flatten[net[[1]]].

If some parameters should be excluded from the fit, you may indicate that in the call to SetNeuralD. Then
SetNeuralD tests for any possible additional simplifications so that NeuralD becomes as fast as possible.
Parameters are excluded using FixedParameters.

Exclude four parameters from the fit.

In[9]:= SetNeuralD@net, FixedParameters → 82, 5, 6, 8<D;

Chapter 7: Training Feedforward and Radial Basis Function Networks 185

Calculate the derivative of the remaining six parameters.

In[10]:= der = NeuralD@net, x@@Range@3DDDD;
Dimensions@derD

Out[11]= 83, 2, 6<
Compared to earlier, there are now only six components in the third level. They correspond to the six
parameters, and the fixed four are considered to be constants.

7.10 Further Reading

The following are standard books on minimization:

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
Englewood Cliffs, NJ, Prentice Hall, 1983.

R. Fletcher, Practical Methods of Optimization, Chippenham, Great Britain, John Wiley & Sons, 1987.

Stopped search and the separable algorithms are explained in the following articles:

J. Sjöberg and L. Ljung, “Overtraining, Regularization, and Searching for Minimum with Application to
Neural Nets”, Int. J. Control, 62 (6), 1995, pp. 1391–1407.

J. Sjöberg and M. Viberg, “Separable Non-linear Least-Squares Minimization—Possible Improvements for
Neural Net Fitting”, in IEEE Workshop in Neural Networks for Signal Processing, Amelia Island Plantation,
Florida, Sep. 24–26, 1997, pp. 345–354.

This standard book on neural networks may also be of interest:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, NY, Macmillan, 1999.

186 Neural Networks

8 Dynamic Neural Networks

This section demonstrates how the Neural Networks package can be used to estimate models of dynamic
systems and time series using input and output data from the system.

A tutorial on estimation of dynamic systems and time series was given in Section 2.6, Dynamic Neural
Networks. In Section 8.1, Dynamic Network Functions and Options, the functions and their options to
estimate dynamic neural network models are given, and in Section 8.2, Examples, you find examples illustrat-
ing the use of the commands.

8.1 Dynamic Network Functions and Options

This section introduces the commands you need to work with dynamic neural networks. Examples can be
found in Section 8.2, Examples.

8.1.1 Initializing and Training Dynamic Neural Networks

There are two commands to obtain dynamic model structures. NeuralARXFit is used to model dynamic
systems with input signals, and NeuralARFit is used to model time series where there is no external input
signal. As the names indicate, they produce neural ARX and neural AR models as described in Section 2.6,
Dynamic Neural Networks. The term neural AR(X) will be used when either a neural ARX or a neural AR
model can be considered. There is no restriction on the dimensionality of the input and output signals; that
is, the package supports multi-input, multi-output (MIMO) models. In contrast to other neural network
types in the Neural Networks package, there are no specific commands for initialization. Instead, if you only
want to initialize the dynamic neural network, you use the training commands with 0 training iterations.

Both commands call NeuralFit internally (see Section 7.1, NeuralFit). Algorithmic details are described in
Chapter 7, Training Feedforward and Radial Basis Function Networks. There are quite a few input argu-
ments, and depending on how they and the options are chosen, a large variety of different models and
algorithms may be obtained.

NeuralARXFit@u, y, 8na, nb, nk<,type,nhD
initializes and estimates a neural ARX model using
input data u, output data y, regressor 8na, nb, nk<,
and neural network of type with hidden neurons nh

NeuralARXFit@u, y, 8na, nb, nk<, type, nh, uv, yv, iterationsD
initializes and estimates a neural ARX model using
input data u, output data y, regressor 8na, nb, nk<,
and neural network of type with hidden neurons nh,
also submits validation data uv and yv,
and specifies the number of training iterations

NeuralARXFit@u, y, NeuralARX, uv, yv, iterationsD
continues the training of an already-existing neural ARX
model; the arguments uv, yv, and iterations are optional

Initializing and training neural ARX models.

NeuralARXFit returns a list of two variables. The first variable is the trained neural ARX model, with head
NeuralARX, and the second is a training record.

An existing neural ARX model can be submitted for more training by setting the argument NeuralARX equal
to the neural ARX model or its training record.

The format of the training data u and y is described in Section 3.2, Package Conventions. The regressor is
specified as indicated in Section 2.6, Dynamic Neural Networks. The number of lagged outputs to be
included in the regressor is given by na, and the number of lagged inputs is given by nb. The delay is given
by nk. For SISO systems, these indices are given as three (positive) integers. For MIMO systems, each one of
them should be a list with one component for each input or output.

The neural network type indicated by the argument type should be either FeedForwardNet or RBFNet.
The number of neurons (and layers for FF networks) is specified by nh as described in Section 5.1.1, Initialize-
FeedForwardNet, and Section 6.1.1, InitializeRBFNet. A linear model is obtained by choosing type =FeedForg
wardNet and nh = 8 <.
Time-series models are obtained with NeuralARFit in similar fashion to NeuralARXFit. The only differ-
ence is that only the number of lagged outputs have to be indicated in the call.

188 Neural Networks

NeuralARFit@y, na,type,nh D initializes and estimates a
neural AR model using output data y,
regressor indicated by na, and the neural network
type with hidden neurons indicated by nh

NeuralARFit@y,
na,type, nh, yv,iterations D initializes and estimates a neural AR model

using output data y, regressor indicated by na,
and the neural network type with hidden neurons
indicated by nh, also submits validation data yv
and specifies the number of training iterations

NeuralARFit@y,
NeuralAR,yv, iterationsD trains an existing neural AR model further,

where the arguments yv and iterations are optional

Initializing and estimating neural AR models.

NeuralARFit returns two arguments just as NeuralARXFit does; the first one is a model of type Neug
ralAR, and the second argument is the training record.

An existing neural ARX model can be submitted for more training by setting the argument Neural ARX
equal to the neural ARX model or its training record.

In addition to the compulsory arguments of NeuralARXFit and NeuralAR, you can also specify a number
of additional arguments:

 è The number of training iterations to be applied in the call to NeuralFit.

 è Validation data uv and yv, so that the RMSE can be computed on validation data after each training
iteration. The returned trained model is the model that gives the smallest RMSE on the validation
data. This can be the model at an iteration before the last one. In that case the model is obtained by
stopped search, which can be useful to avoid overfitting. See Section 7.5, Regularization and Stopped
Search, for more details.

NeuralARXFit and NeuralARFit have no options of their own, but because they rely on initialization and
training of FF or RBF networks, you can submit any option applicable to InitializeRBFNet or Initial-
izeFeedForwardNet and NeuralFit.

During the training, intermediate results are displayed in a separate notebook, which is created automati-
cally. After each training iteration you can see the value of the RMSE. The step length control parameter of

Chapter 8: Dynamic Neural Networks 189

the minimization algorithm is also shown; see Chapter 7, Training Feedforward and Radial Basis Function
Networks. If you submit validation data to NeuralFit, then you also get the RMSE on this data set.

At the end of the training, a plot is displayed showing the RMSE reduction as a function of the iteration
number.

Using the various options of NeuralFit, as described in Section 7.7, Options Controlling Training Results
Presentation, you can change the way the training results are presented.

There are often different warning messages given at the end of the training, providing some feedback as to
the success of the training. By inspecting the error reduction plot, you can usually tell whether more itera-
tions are necessary. Specifically, if the curve exhibits a reasonable downward slope by the end of the train-
ing, you should consider continuing the training.

The first output argument, the neural AR(X) model, consists of two components. The first component is the
FF or the RBF network, which the model is based on. The second component is a replacement rule, Regresg
sor->{ na, nb, nk}, specifying the regressor by the three indices na, nb, and nk.

The second output argument of NeuralAR(X)Fit is the training record. Its head is NeuralFitRecord,
which contains two components. The first component is a copy of the trained neural AR(X) model and the
second component is a list of rules specifying intermediate values of parameters and the RMSE during the
training. In Section 7.8, The Training Record, you learn how to extract the information from the training
record. You can also use NetPlot to plot some information.

8.1.2 NetInformation

The command NetInformation can be used to obtain some written information about the neural dynamic
model.

NetInformation@NeuralARHXLD
presents some information about the network model

NetInformation.

This information specifies the regressor and the FF or RBF network used in the model.

190 Neural Networks

8.1.3 Predicting and Simulating

Unlike the other neural network types, a dynamic model cannot be applied directly on a data input vector.
The reason for this is that the models are dynamic and you have to consider sequences of data to yield
simulations and predictions. The commands for this are described in the following.

The one-step ahead prediction ỳ Ht » t - 1L is obtained as described in Section 2.6, Dynamic Neural Networks.
It is based on measured outputs up to time t - 1.

It is often interesting to check if the model is capable of performing predictions several time-steps ahead;
that is, to increase the prediction horizon. Consider, for example, the two-step ahead prediction, ỳ Ht » t - 2L,
where past values only up to yHt - 2L are given. This is accomplished by using the estimate ỳ Ht - 1 » t - 2L in
place of the missing yHt - 1L value to do the normal one-step prediction. This procedure may be similarly
extended to obtain larger prediction horizons.

If the prediction horizon is infinite, it is said that the model is being used in simulation. Then, measured
outputs are not used at all, and all outputs in the regressor are replaced by model outputs.

Predictions can be obtained with the command NetPredict.

NetPredict@u,y,NeuralARXD predicts the output signal y using
the model NeuralARX and input data u;
default prediction horizon: 1

NetPredict@y,NeuralARD predicts the time series y using the model NeuralAR;
default prediction horizon: 1

Predicting future outputs.

The prediction error, which is the difference between predicted and true output, can be obtained using
NetPredictionError in the following way.

Chapter 8: Dynamic Neural Networks 191

NetPredictionError@
u,y,NeuralARXD computes the prediction error of the model

NeuralARX applied to data u HinputL and y HoutputL;
default prediction horizon: 1

NetPredictionError@y,NeuralARD computes the prediction error of the model NeuralAR
applied to time series data y; default prediction horizon: 1

Obtain the prediction error.

NetPredict and NetPredictionError have the following options.

option default value

PredictHorizon 1 indicates the prediction horizon;
if set to Infinity, a simulation is obtained

MultiplePrediction False obtains a series of predictions with horizons 1,
2, …, PredictHorizon if set to True

InitialOutput Automatic initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetPredict and NetPredictionError.

The two options InitialOutput and InitialInput can be used to set the values of the regressor at the
beginning of the prediction. The default is to use the first available value in the submitted data; that is,
yH-1L, yH-2L, … are set identically to yH1L and similarly for uH-1L, uH-2L, ….

You can set InitialOutput and InitialInput to other values according to the following rules.

For SISO models you can set the options to:

 è Real numbers; in which case all lagged inputs and outputs are set to these real numbers.

 è Sequences of lagged values that are lists of real-valued numbers, such as 8yH-1L, yH-2L, ..., yH-naL< or 8uH-1L, uH-2L, ..., uH-nk - nb + 1L<.
For MIMO models, uHtL and yHtL are vectors with the number of components equal to the number of inputs
and outputs, respectively. Also the structural indices na, nb, and nk are vectors. In this case the options
InitialOutput and InitialInput can be set to:

192 Neural Networks

 è Real numbers; in which case the lagged values of all inputs and outputs are set to these real numbers.

 è Lists of length equal to the number of inputs/outputs; in which case all lagged values of
input/output number m are set to the value at position m in the list.

 è A matrix; 8yH-1L, yH-2L, ..., yH-Max@naDL< and 8uH-1L, uH-2L, ..., uHMax@-nk - nb + 1DL<, where yH-1L is a
list with one component for each output. The rest of the rows of the matrices are set correspond-
ingly.

A model can be simulated using the command NetSimulate. A neural AR model can only be simulated if
a noise signal e is submitted in the call.

NetSimulate@u, NeuralARXD simulates NeuralARX using the input data u

NetSimulate@u, e, NeuralARXD simulates NeuralARX using
the input data u and noise data e

NetSimulate@ e, NeuralARD simulates NeuralAR using noise data e

Simulating the model.

NetSimulate has the following two options.

option default value

InitialOutput 0 initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetSimulate.

These options were described earlier in this section in connection to the command NetPredict.

A very convenient command that may be used to evaluate a model is NetComparePlot. It simulates or
predicts the output, depending on the option PredictionHorizon, and plots the result together with the
supplied output signal. Therefore, you can visually inspect the performance of the neural model. The RMSE
is also displayed.

Chapter 8: Dynamic Neural Networks 193

NetComparePlot@u,y,NeuralARXD
using the model NeuralARX and the data u HinputL
and y HoutputL, simulatesêpredicts and plots the output
together with the true output; default: simulation

NetComparePlot@y,NeuralARD
using the model NeuralAR and the data y HoutputL,
predicts and plots the output together with the true output

Simulate or predict and compare with true output.

You can change the prediction horizon using the same option PredictionHorizon as in NetPredict
and NetPredictionError. Often there are transients in the beginning of the data sequence due to the fact
that initial input and output values in the regressor are incorrect; that is, the values used for yH-1L, yH-2L, …
and uH-1L, uH-2L, … . You can remove the transients by excluding the first part of the data sequence from
the comparison. This is done by giving the start and end numbers of the samples to be included in the
option ShowRange. Another way to handle the transients is to set the initial values with the options Inig
tialOutput and InitialInput. These options were described earlier in this passage in connection to the
command NetPredict.

option default value

PredictHorizon Infinity indicates prediction horizon

ShowRange All if a list containing two integers is given,
then only the data samples between
these values are included in the comparison

InitialOutput Automatic initial values of the lagged output values

InitialInput Automatic initial values of the lagged input values

Options of NetComparePlot.

In addition to these options, you can supply any option of MultipleListPlot to modify the given plot.

8.1.4 Linearizing a Nonlinear Model

A nonlinear neural ARX or AR model can be linearized at any value of the regressor x. This is done with the
command LinearizeNet.

194 Neural Networks

LinearizeNet@NeuralARHXL, xD
linearizes NeuralAR HXL at the regressor value x

Linearize a dynamic model.

The result is a neural AR(X) model with a linear FF network as described in Section 5.1.5, LinearizeNet and
NeuronDelete.

8.1.5 NetPlot—Evaluate Model and Training

The command NetPlot can be used to illustrate the performance of a model, and to evaluate the training of
it. The command can be used in the same way as in FF and RBF networks. Depending on how the option
DataFormat is set, the command can be used in very different ways. Here, the possibilities that are interest-
ing in connection with dynamic models are presented. Please see Section 5.1.4, NetPlot, for other
possibilities.

NetPlot@NeuralARX,u,yD illustrates NeuralARX using input and output data u and y

NetPlot@NeuralAR,yD illustrates NeuralAR using time series data y

NetPlot@fitrecord, u,yD evaluates the training of a neural ARX model

NetPlot@fitrecord,yD evaluates the training of a neural AR model

The NetPlot function.

When NetPlot is applied to training records from NeuralARXFit it takes the same options as when it is
applied to training records from NeuralFit. The following two options have different default values:

Chapter 8: Dynamic Neural Networks 195

option default value

DataFormat Automatic if a model is submitted, the default is HiddenNeurons;
if a training record is submitted,
the default is ParameterValues

Intervals 5 depending on how DataFormat is chosen,
indicates the number of bars in a bar chart or the period of
animation of the training result: if a bar chart is animated,
then the option should be a list of two integers;
the first indicates the number of
bars and the second the animation period

Options of NetPlot.

You can also submit options to modify the graphical output. Depending on the chosen option for DataFor
mat the graphic is created by BarChart, MultipleListPlot, ListPlot, Plot3D, or Histogram.

If a dynamic neural network model is submitted, then the option DataFormat can be given any of the
following values.

 è HiddenNeurons gives the output values of the hidden neurons as a function of time when the
model is used for prediction on the data.

 è LinearParameters linearizes the model at each time instant at the value of the regressor vector
and displays the linear parameters versus data.

 è FunctionPlot plots the mapping using the range of the supplied data. This option can only be
used if the model has a one- or two-dimensional regressor.

 è ErrorDistribution gives a bar chart of the prediction errors. You can modify the presentation of
the result using any of the options applicable to Histogram.

If you submit a training record to NetPlot, then the default value of DataFormat is ParameterValues.
This gives a plot of the parameters versus training iterations.

Except for the default value, ParameterValues, you can also give DataFormat any of the possible
values. You then obtain animations of the corresponding results as a function of the number of training
iterations. The frequency of the plotting can be set with the option Intervals, which indicates the number
of iterations between each plot.

196 Neural Networks

8.1.6 MakeRegressor

Usually you do not have to care about the regressor of the dynamic model. The only thing you have to do is
to specify it by choosing the three indices na, nb, and nk when the model is defined. However, in case you
would like to compute the regressor explicitly, you can do so with the following command.

MakeRegressor@u, y, 8na, nb, nk<D gives a list of two
components: the regressor and the output using input
and output data and the specifications na, nb, and nk

MakeRegressor@y, 8na<D gives a list of two
components: the regressor and the output using
time series data according to specification na

The MakeRegressor function.

MakeRegressor returns a list of two variables. The first variable is the regressor matrix and the second is
the matrix of the output values.

The difference between the returned output values and the output values submitted in the call is that the
length of the data sequence has been shortened by as many samples as the number of lags in the regressor.

8.2 Examples

Following are examples using measured data from a DC motor and a hydraulic actuator. Two subsequent
examples show how you can handle the bias-variance problem in two different ways. The first way is to use
fewer parameters in your neural network model. The second possibility is to modify the model structure so
that a more appropriate model may be obtained. These are, therefore, alternatives to the approach discussed
in Section 7.5, Regularization and Stopped Search.

8.2.1 Introductory Dynamic Example

In this first example you will see how the different commands of the Neural Networks package can be used to
identify and evaluate dynamic models. You do not obtain exactly the same result if you repeat the example.
This is due to the randomly chosen input signal and the random initialization of the neural network weights.

Read in the Neural Networks package and two standard add-on packages.

In[1]:= << NeuralNetworks`

Chapter 8: Dynamic Neural Networks 197

In[2]:= <<Statistics`ContinuousDistributions`
<<Graphics`MultipleListPlot`

Generate a data set using a function defining the true system.

In[4]:= Ndata=600;
u=RandomArray[NormalDistribution[0,3], {Ndata,2}];
x=FoldList[Function[{xs,uin},{(uin[[1]]+uin[[2]]+0.6*xs[[1]]+0.8*xs[[2]])/(1+xs[[3
]]^2),0.7*xs[[2]]+uin[[2]],xs[[1]]}],{0,0,5}, Drop[u,-1]];
y=x[[All,{1,2}]];

The input data is placed in u and the output data in y.

In a real situation, the data is measured and an approximation of the unknown true function generating the
data is estimated using a dynamic neural network. This situation is now imitated and a neural network
approximating the data generating function is estimated.

Check the dimensions of the data.

In[8]:= Dimensions@uD
Dimensions@yD

Out[8]= 8600, 2<
Out[9]= 8600, 2<
There are 600 data samples available, and the plant has two inputs and two outputs. It is a good idea to look
at the data before you start to estimate a model. From a plot you can see if the data look strange in some way
that makes the training of a network hard.

198 Neural Networks

Look at the first input signal.

In[10]:= ListPlot@u@@All, 1DD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500 600

-10

-7.5

-5

-2.5

2.5

5

7.5

Look at the second input signal.

In[11]:= ListPlot@u@@All, 2DD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500 600

-7.5

-5

-2.5

2.5

5

7.5

Chapter 8: Dynamic Neural Networks 199

Look at the first output signal.

In[12]:= ListPlot@y@@All, 1DD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500 600

-15

-10

-5

5

10

15

Look at the second output signal.

In[13]:= ListPlot@y@@All, 2DD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500 600

-10

-5

5

10

The first half of the data set is used for identification and the second half for validation of the model.

Divide the data into identification and validation data.

In[14]:= ue = u@@Range@Ndataê2DDD;
ye = y@@Range@Ndataê2DDD;
uv = u@@Range@Ndataê2 + 1, NdataDDD;
yv = y@@Range@Ndataê2 + 1, NdataDDD;

In this example the true function is known and the regressor should be chosen to
xHtL = 8y1 Ht - 1L, y1 Ht - 2L, y2 Ht - 1L u1 Ht - 1L, u2 Ht - 1L<, which is obtained by choosing na = 82, 1<, nb = 81, 1<,

200 Neural Networks

and nk = 81, 1< as described in Section 2.6, Dynamic Neural Networks. In real situations, when the generating
function is unknown, you usually have to find the best regressor by trial-and-error.

It is always good to start with a linear model. This is obtained by using an FF network without hidden
neurons, as described in Section 5.1.1, InitializeFeedForwardNet. The performance of the linear model gives
a quality measure that you want your nonlinear neural network model to beat.

Estimate a linear model.

In[18]:= 8model1, fitrecord< = NeuralARXFit@ue, ye,882, 1<, 81, 1<, 81, 1<<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Find some information about the model.

In[19]:= NetInformation@model1D
Out[19]= NeuralARX model with 2 input signals and 2 output signals. The regressor is

defined by: na = 82, 1<, nb = 81, 1<, nk = 81, 1<. The mapping from
regressor to output is defined by a FeedForward network created 2003−7−28
at 21:14. The network has 5 inputs and 2 outputs. It has no hidden layer.

The command NetComparePlot is very convenient for evaluating dynamic models. Depending on which
value you choose of the option PredictionHorizon, the model can be a simulator or a predictor. For each
output, the model output is displayed together with the true output signal, and the root-mean-square error
is given in the plot title. This type of test is only fair if you use fresh data, that is, the validation data for the
comparison.

Chapter 8: Dynamic Neural Networks 201

Obtain the one-step-ahead prediction with the linear model and compare it with the true output signal.

In[20]:= NetComparePlot@u, y, model1, ShowRange → 8Ndataê2 + 1, Ndata<, PredictHorizon → 1,
PlotStyle → 8Hue@.6D, Hue@.8D<, PlotLegend → 8"True", "Simulated"<D

300 350 400 450 500 550 600
-15

-10

-5

0

5

10

15
Output signal: 1 RMSE: 2.58631

Simulated

True

300 350 400 450 500 550 600

-10

-5

0

5

10

Output signal: 2 RMSE: 2.13349×10−15

Simulated

True

By including the whole data set in the call, and then indicating the validation data with the option Showg
Range, you avoid transients in the beginning of the plotted prediction.

From the plot you see that the second output is described almost perfectly by the linear model, but there are
inconsistencies in the first output. This is not surprising if you take a closer look at the true function generat-
ing the data. The second output can be described by a linear model but the first output cannot. To model the
first output better, you need to make the neural network nonlinear by including some neurons. This will be
done later in this section.

You can also use the command NetSimulate or NetPredict to perform simulations and predictions.
They give you the simulated and predicted outputs in the same format as the original output signal. The
obtained simulation and prediction can then, for example, be plotted with the true output.

202 Neural Networks

Simulate the linear model and plot the first 100 values of the validation data together with the true output.

In[21]:= ys = NetSimulate@u, model1D;
In[22]:= MultipleListPlot@y@@Ndataê2 + Range@100D, 1DD,

ys@@Ndataê2 + Range@100D, 1DD, PlotJoined → True,
PlotLegend → 8"True", "Simulation"<, PlotStyle → 8Hue@0.6D, Hue@0.9D<D

20 40 60 80 100

-15

-10

-5

5

10

Simulation

True

Estimate a nonlinear model based on an FF network with 4 neurons and with the same regressor as the linear model.

In[23]:= 8model2, fitrecord< =

NeuralARXFit@ue, ye, 882, 1<, 81, 1<, 81, 1<<, FeedForwardNet, 84<, uv, yv, 50D;

0 5 10 15 20 25 30 35 40 45 50
Iterations

0.5

1

1.5

2

2.5

3

RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 39th training iteration.

Chapter 8: Dynamic Neural Networks 203

Note that if you repeat the example, the result will turn out differently due to randomness in data and in the
network initialization. You might need more training iterations, or you might get caught in a local mini-
mum.

Compare the one-step-ahead prediction with the true output.

In[24]:= NetComparePlot@u, y, model2, ShowRange → 8Ndataê2 + 1, Ndata<, PredictHorizon → 1,
PlotStyle → 8Hue@.6D, Hue@.8D<, PlotLegend → 8"True", "Simulation"<D

300 350 400 450 500 550 600
-15

-10

-5

0

5

10

15
Output signal: 1 RMSE: 0.225376

Simulation

True

300 350 400 450 500 550 600

-10

-5

0

5

10

Output signal: 2 RMSE: 0.00505951

Simulation

True

Compare this with the prediction of linear model. The first output is much better predicted, but the second
is slightly worse.

The difference between the two models can be illustrated by comparing the prediction errors in common
plots.

204 Neural Networks

Compute and plot the prediction errors using the linear and nonlinear models.

In[25]:= e1 = NetPredictionError@uv, yv, model1D;
e2 = NetPredictionError@uv, yv, model2D;

In[27]:= MultipleListPlot@e1@@All, 1DD, e2@@All, 1DD,
PlotRange → All, PlotJoined → True, PlotStyle → 8Hue@0.6D, Hue@0.9D<,
PlotLabel → "First output", PlotLegend → 8"Linear", "Nonlinear"<D
MultipleListPlot@e1@@All, 2DD, e2@@All, 2DD,
PlotJoined → True, PlotStyle → 8Hue@0.6D, Hue@0.9D<,
PlotLabel → "Second output", PlotLegend → 8"Linear", "Nonlinear"<D

50 100 150 200 250 300

-5

5

10

First output

Nonlinear

Linear

50 100 150 200 250 300

-0.005

0.005

0.01

Second output

Nonlinear

Linear

As you see from the plots, the errors of the linear model dominate the first output, but for the second output
the nonlinear model gives the largest error. The scales of the prediction errors of the two ouputs are very
different, however.

An analytic expression of dynamic neural network models is obtained by evaluating the neural network
placed at the first position of the neural ARX model on a vector with length equal the number of regressors.

Chapter 8: Dynamic Neural Networks 205

Express the linear ARX model analytically.

In[29]:= model1@@1DD@8y1@t − 1D, y1@t − 1D, y2@t − 2D, u1@t − 1D, u2@t − 1D<D@@1DD
Out[29]= 0.0272013 + 0.621573 u1@−1 + tD +

0.529971 u2@−1 + tD − 0.0571367 y1@−1 + tD + 0.543105 y2@−2 + tD
The expression of the nonlinear model is much more complicated.

Express the nonlinear neural ARX model analytically.

In[30]:= model2@@1DD@8y1@t − 1D, y1@t − 1D, y2@t − 1D, u1@t − 1D, u2@t − 1D<D@@1DD
Out[30]= 252.266 − 0.19221êH1 + Æ−6.74106−0.122178 u1@−1+tD−0.0958901 u2@−1+tD−0.0656796 y1@−1+tD−0.239055 y2@−1+tDL −

694.073ê H1 + Æ0.561709+4.5562×10−7 u1@−1+tD+0.000317567 u2@−1+tD−1.15007×10−7 y1@−1+tD+0.000222354 y2@−1+tDL +

380694.ê H1 + Æ−0.0183979−0.00648828 u1@−1+tD−0.00203839 u2@−1+tD+1.64912 y1@−1+tD+0.00916544 y2@−1+tDL −
380694.ê H1 + Æ−0.018398−0.00647792 u1@−1+tD−0.00202864 u2@−1+tD+1.64913 y1@−1+tD+0.00917335 y2@−1+tDL

The symbolic expressions may be useful if you want to use general Mathematica commands to manipulate
the neural network expression.

8.2.2 Identifying the Dynamics of a DC Motor

In this example you will see how the Neural Networks package can be used to model the dynamics of a DC
motor. The input signal is the applied voltage and the output signal is the angular speed of the motor.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << dcmotor.dat;

The input data is placed in u and the output data in y.

206 Neural Networks

Check the dimensions.

In[3]:= Dimensions@uD
Dimensions@yD

Out[3]= 8200, 1<
Out[4]= 8200, 1<
There are 200 data samples available, and the plant has one input and one output.

It is always a good idea to visually inspect the data before the modeling. This might allow you to detect any
outliers in the data.

Show the input signal.

In[5]:= ListPlot@Flatten@uD, PlotJoined → TrueD
50 100 150 200

-1.5

-1

-0.5

0.5

1

Show the output signal.

In[6]:= ListPlot@Flatten@yD, PlotJoined → TrueD
50 100 150 200

-6

-4

-2

2

4

Chapter 8: Dynamic Neural Networks 207

By inspecting the plots you might find outliers, which should be removed before the system identification
procedure starts.

The first half of the data set is used for identification and the second half for validation of the model.

Divide the data into identification and validation data.

In[7]:= ue = u@@Range@100DDD;
ye = y@@Range@100DDD;
uv = u@@Range@101, 200DDD;
yv = y@@Range@101, 200DDD;

It is a good idea to try a linear model first and then try to obtain a better nonlinear model. Using Maxwell’s
and Newton’s laws, the following linear relationship for the DC motor could be expected.

(1)ŷ HtL = ay Ht − 1L + bu Ht − 1L + c

This means that the regressor should be chosen to xHtL = 8yHt - 1L uHt - 1L<, which is obtained by choosing
na = 1, nb = 1, and nk = 1.

The linear model has three parameters, a, b, and, c. You specify and train this linear model structure with the
following call.

In[11]:= 8model1, fitrecord< =

NeuralARXFit@ue, ye, 81, 1, 1<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Find some information about the model.

In[12]:= NetInformation@model1D
Out[12]= NeuralARX model with 1 input signal and 1 output signal. The regressor

is defined by: na = 1, nb = 1, nk = 1. The mapping from regressor to
output is defined by a FeedForward network created 2002−4−3 at 13:
56. The network has 2 inputs and 1 output. It has no hidden layer.

The command NetComparePlot is very convenient for evaluating dynamic models. Depending on which
option you choose, the model can be a simulator or a predictor. The model output is displayed together with
the true output signal. This type of test is only fair if you use fresh data, that is, the validation data for the
comparison.

208 Neural Networks

Simulate the linear model and compare it with the true output signal.

In[13]:= NetComparePlot@u, y, model1, PredictHorizon → Infinity,
ShowRange → 8101, 200<, PlotStyle → 8Hue@.6D, Hue@.8D<D

100 120 140 160 180 200

-6

-4

-2

0

2

4

Output signal: 1 RMSE: 0.113045

By including the whole data set in the call, and then indicating the validation data with the option Showg
Range, you avoid transients in the beginning of the simulation.

You can also use the command NetSimulate or NetPredict directly instead of calling
NetComparePlot.

It is hard to see any difference between the true and the simulated output signal in the plot, and, obviously,
the linear model is quite good at explaining the relationship in the data. A nonlinear model will now be
trained to see if it becomes better than the linear model. The dynamic model can be described by

(2)y HtL = g Hθ, y Ht − 1L, u Ht − 1LL
where g(q, ·, ·) is the neural network function whose parameters q are to be trained.

Chapter 8: Dynamic Neural Networks 209

Train an FF network on the DC-motor data.

In[14]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 81, 1, 1<, FeedForwardNet, 83<, 50D;

0 5 10 15 20 25 30 35 40 45 50
Iterations

0.2

0.4

0.6

0.8

1

1.2
RMSE

Depending on the initialization you may end up in any one of many local minima. Notice that the result
changes if you re-evaluate the training command due to the randomness in the initialization of the neural
network. If the criterion at the end of the learning is larger than 0.05, you should repeat the command.

Simulate the nonlinear neural network model.

In[15]:= NetComparePlot@u, y, model2, PredictHorizon → Infinity,
ShowRange → 8100, 200<, PlotStyle → 8Hue@.6D, Hue@.8D<D

100 120 140 160 180 200

-6

-4

-2

0

2

4

Output signal: 1 RMSE: 0.0424852

The nonlinear neural network model should give an RMSE of less than half of what you obtained for the
linear model. However, because the models are so good it is hard to see any difference in the plots. Instead
you can look at the prediction errors, that is, the difference between the true output and the model output.
To do that you can use the command NetPredictionError.

210 Neural Networks

Compute and plot the prediction errors using the linear and nonlinear models.

In[16]:= e1 = NetPredictionError@uv, yv, model1D;
e2 = NetPredictionError@uv, yv, model2D;
<< Graphics`MultipleListPlot ;̀
MultipleListPlot@Flatten@e1D, Flatten@e2D, PlotJoined → True,
PlotStyle → 8Hue@0.6D, Hue@0.9D<, PlotLegend → 8"Linear", "Nonlinear"<D

20 40 60 80 100

-0.2

-0.1

0.1

0.2

Nonlinear

Linear

It should be evident from the plot that the prediction errors of the nonlinear model are much smaller than
those of the linear model.

Since the model describing the DC motor has only two regressor components, it is possible to look at gHq, xL.
But because the linear and nonlinear models are very similar, it is hard to see anything other than a linear
relationship.

Plot the nonlinear model of the DC motor.

In[20]:= NetPlot@model2, uv, yv, DataFormat → FunctionPlotD

-5
-2.5

0
2.5

-1

0

1
-5

0

5

-5
-2.5

0
2.5

Chapter 8: Dynamic Neural Networks 211

It is, however, fairly easy to plot the difference between the linear and nonlinear models. This can be done by
extracting the linear parameters from the linear model and inserting them with opposite signs as a linear
submodel in the nonlinear model. Section 13.1, Change the Parameter Values of an Existing Network, gives
more details on how you can change the parameters in an existing neural network.

Plot the difference between linear and nonlinear models.

In[21]:= model3 = model2;
model3@@1, 1DD = 8model2@@1, 1, 1DD, −model1@@1, 1, 1, 1, 81, 2<DD<;
NetPlot@model3, uv, yv, DataFormat → FunctionPlotD

-5
-2.5

0
2.5

-1

0

1

-0.4
-0.3
-0.2
-0.1

0

-5
-2.5

0
2.5

Now it is easy to see that the relationship is far from being linear.

An analytic expression of the dynamic model can be obtained by using the neural net placed at the first
position.

Express the neural ARX model analytically.

In[24]:= model2@@1DD@8yy@t − 1D, uu@t − 1D<D@@1DD
Out[24]= 24.9618 +

20174.5
cc
1 + Æ10.1785−0.647103 uu@−1+tD−0.0877935 yy@−1+tD −

2301.18
cc
1 + Æ4.46849+0.118863 uu@−1+tD+0.0148835 yy@−1+tD +

0.385491
cc
1 + Æ−3.22387−55.0474 uu@−1+tD+0.313509 yy@−1+tD

Similarly, it might be interesting to have the equation of the plane describing the first linear ARX model.

212 Neural Networks

Describe the first linear ARX model.

In[25]:= model1@@1DD@8yy@t − 1D, uu@t − 1D<D@@1DD
Out[25]= −0.137853 + 3.91426 uu@−1 + tD + 0.459061 yy@−1 + tD
8.2.3 Identifying the Dynamics of a Hydraulic Actuator

In this example the dynamics of a hydraulic actuator will be modeled. The data used was kindly provided
by P. Krus at the Fluid Power Technology group of the Department of Mechanical Engineering, Linköping
University, http://hydra.ikp.liu.se.

The input signal is the opening of a valve, which influences the flow of oil into a cylinder acting on a robot
arm. The oil pressure is the output signal that relates to the position of the robot arm. The goal is to find a
mathematical model describing how the valve opening influences the oil pressure.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

The input data is placed in u and the output data in y.

Check the dimensions.

In[3]:= Dimensions@uD
Dimensions@yD

Out[3]= 81024, 1<
Out[4]= 81024, 1<
The 1024 input and output data samples involved are plotted.

Chapter 8: Dynamic Neural Networks 213

Plot the input signal.

In[5]:= ListPlot@Flatten@uD, PlotJoined → TrueD

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

Plot the output signal.

In[6]:= ListPlot@Flatten@yD, PlotJoined → TrueD
200 400 600 800 1000

-4

-3

-2

-1

1

2

3

As in the previous example, the first half of the data set is used for identification and the second half for
validation of the model.

Divide the data set into estimation and validation data.

In[7]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

The first candidate model is a linear model so that you have something to compare the nonlinear model to.
The chosen regressor indices are na = 3, nb = 2, and nk = 1, which give a regressor
xHtL = 8yHt - 1L, yHt - 2L, yHt - 3L, uHt - 1L, uHt - 2L<. The linear model then becomes

214 Neural Networks

(3)yHtL = qT xHtL + q0

where q is a parameter vector of length 5 and q0 is a level parameter.

A linear model is obtained by using a FeedForwardNet without any hidden layer. Since the parameter
estimate of linear models can be computed exactly with only one training iteration, no iterative training is
necessary.

Estimate a linear model of the hydraulic actuator.

In[11]:= 8model1, fitrecord< =

NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 8<, 0, CriterionPlot → FalseD;
Provide information about the model.

In[12]:= NetInformation@model1D
Out[12]= NeuralARX model with 1 input signal and 1 output signal. The regressor

is defined by: na = 3, nb = 2, nk = 1. The mapping from regressor to
output is defined by a FeedForward network created 2002−4−3 at 13:
57. The network has 5 inputs and 1 output. It has no hidden layer.

Use NetComparePlot to produce a prediction and compare the result to the true output. Since the first half
of the data was used for training, the second half is used for a fair validation.

A short prediction horizon will often yield good prediction performance if the signals are dominated by low
frequencies. Therefore, it might be hard to evaluate the model’s quality from a one-step prediction, which is
shown here.

Chapter 8: Dynamic Neural Networks 215

Compare a one-step prediction with the true output.

In[13]:= NetComparePlot@uv, yv, model1, PredictHorizon → 1D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.110583

The one-step prediction looks good, and it is hard to see the difference between the predicted and the true
output. Often it is more interesting to look at the result using a larger prediction horizon or a pure
simulation.

Compare a simulation with the true output.

In[14]:= NetComparePlot@uv, yv, model1,
PredictHorizon → Infinity, PlotLegend → 8"True", "Simulated"<D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.951624

Simulated

True

After having obtained a linear model, you can try to derive a better nonlinear one. This can be done by using
the same regressor as earlier, but adding a hidden layer to the network.

216 Neural Networks

Train an FF network with four neurons on the hydraulic actuator.

In[15]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 84<, 15D;

0 2 4 6 8 10 12 14
Iterations

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

RMSE

Depending on the initialization, the training ends up in different local minima. If the result is not satisfac-
tory, you can repeat the training; a new initialization is used each time.

Simulate the nonlinear model and compare the result with the true output.

In[16]:= NetComparePlot@uv, yv, model2,
PredictHorizon → Infinity, PlotLegend → 8"True", "Simulated"<D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.804193

Simulated

True

Chapter 8: Dynamic Neural Networks 217

Evaluate the model on validation data using a one-step prediction.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 1D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.10438

Is the performance better than the linear model?

It might be interesting to look at the prediction errors to see where on the data sequence the model performs
well.

Compute and plot the prediction errors.

In[18]:= ep = NetPredictionError@uv, yv, model2, PredictHorizon → 1D;
ListPlot@Flatten@epD, PlotJoined → True, PlotRange → AllD

100 200 300 400 500
-0.2

0.2

0.4

0.6

0.8

1

You can also look at the distribution of the prediction errors. Such a plot can indicate if the model has
problems explaining some individual data samples.

218 Neural Networks

Display the distribution of the prediction errors with a histogram.

In[20]:= NetPlot@model2, uv, yv, DataFormat → ErrorDistributionD

-0.2 0. 0.2 0.4 0.6 0.8 1.

25

50

75

100

125

150

175

Distribution of Errors

You can plot the linearization at each sampling instant. The smaller the variations in the parameter values of
the linear model over the data domain, the closer the underlying model is to a linear model. A curve that is
close to zero over the whole data domain indicates that a smaller model with fewer regressors could be
better (assuming the same range of all signals).

Display the linearization of the nonlinear model versus the data samples.

In[21]:= NetPlot@model2, uv@@Range@30DDD, yv@@Range@30DDD, DataFormat → LinearParametersD

10 15 20 25

-0.5

0.5

1

1.5

Output: 1

Chapter 8: Dynamic Neural Networks 219

8.2.4 Bias-Variance Tradeoff—Avoiding Overfitting

As described in Section 7.5, Regularization and Stopped Search, it is critical to find the appropriate type of
model and the appropriate number of parameters of the model.

In this example three ways to avoid overfitting are demonstrated: choosing a network with a sufficiently low
number of neurons, using stopped search for the minimum, and applying regularization.

The data from the hydraulic actuator from the previous example is used to demonstrate these alternative
options. You may refer to the previous example if you want an introduction to this data set.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

The first half of the data set is used for identification and the second half for validation of the model.

In[3]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

Train a nonlinear neural ARX model with many neurons on the data.

Train an FF network on the hydraulic actuator.

In[7]:= 8model1, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 88<, 40D;

0 5 10 15 20 25 30 35 40
Iterations

0.08

0.1

0.12

0.14

0.16

0.18

RMSE

220 Neural Networks

Depending on the initialization you end up in different local minima. If the result is not satisfactory you may
repeat the training, which will use a new initialization.

Evaluate the model on validation data using a four-step prediction.

In[8]:= NetComparePlot@uv, yv, model1, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.427808

The result of the prediction depends on which minimum the training converged to, but usually the result is
worse than that of a linear model. You may try a linear model for comparison.

Estimate a linear model and display the four-step prediction.

In[9]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<,
FeedForwardNet, 8<, 0, CriterionPlot → False, CriterionLog → FalseD;

NetComparePlot@uv, yv, model2, PredictHorizon → 4D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.415044

The reason why the nonlinear model was worse than the linear model is that it had more degrees of freedom
than necessary; that is, it used more parameters than necessary. In contrast, the linear model used fewer

Chapter 8: Dynamic Neural Networks 221

parameters than necessary. By choosing somewhere between 0 and 8 hidden neurons, it might be possible to
find a better model. This is the first way to handle the bias-variance tradeoff.

Estimate and predict a model with four hidden neurons.

In[11]:= 8model3, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 84<, 20D;

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.1

0.15

0.2

0.25

0.3

0.35

0.4
RMSE

In[12]:= NetComparePlot@uv, yv, model3, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.296174

Is the result better than the linear model and the model with eight neurons? Try other numbers of neurons
and repeat the training.

You can also submit the validation data to the training algorithm. The criterion is then evaluated after each
iteration. As described in Section 7.5, Regularization and Stopped Search, the most important parameters are
adapted in the beginning of the training and the least important at the end. The performance of the network
model during the training is illustrated by the plot of the criterion evaluated on the validation data, which is
shown at the end of the training. If the model starts to become worse after some number of training itera-
tions then the model is overtrained.

222 Neural Networks

Train a large network but supply the validation data.

In[13]:= 8model4, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet,88<, uv, yv, 40, RandomInitialization→ LinearParametersD;

0 5 10 15 20 25 30 35 40
Iterations

0.2

0.4

0.6

0.8

1

1.2
RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 20th training iteration.

Is there any overtraining? Usually there is when you use such a large network, but, depending on initializa-
tion, overtraining may not be an issue.

If you submit validation data, the desired model is not necessarily the one obtained at the end of the training
process. The desired model is the one that gives the best match to the validation data, which could exist at
an intermediate iteration in the training process. Therefore, by supplying validation data you can do the
bias-variance tradeoff by stopped search; that is, stopping the training at the iteration where the prediction
best matches the validation data.

Chapter 8: Dynamic Neural Networks 223

Predict with the model obtained by stopped search.

In[14]:= NetComparePlot@uv, yv, model4, PredictHorizon → 4D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.310709

When validation data is submitted in the training, you automatically obtain a stopped search model. If you
want the model at the last iteration instead, it is possible to get it by using the training record. It contains a
list of the parameters after each training iteration.

Check the storing format of the training record.

In[15]:= fitrecord

Out[15]= NeuralFitRecord@NeuralARX, ReportFrequency → 1, CriterionValues → 8−values −<,
CriterionValidationValues → 8−values −<, ParameterRecord → 8−parameters −<D

Note that the value of ReportFrequency indicates the iteration frequency with which parameter values
are logged.

Extract the parameters versus training iterations and check the length of the parameter list.

In[16]:= parameters = ParameterRecord ê. fitrecord@@2DD;
Length@parametersD

Out[17]= 41

The length of the parameter log equals the number of iterations, including one for the initial estimate. The
model at the last iteration can now be compared to the one obtained with the preceding stopped search
technique. This can be done in the following way. First check how the information is stored in the model.

224 Neural Networks

In[18]:= model4

Out[18]= NeuralARX@FeedForwardNet@88w1, w2<<,8AccumulatedIterations → 40, CreationDate → 82003, 7, 28, 21, 22, 0.7205328<,
Neuron → Sigmoid, FixedParameters → None,
OutputNonlinearity → None, NumberOfInputs → 5<D, Regressor → 83, 2, 1<D

Create a new model with the same structure as the previous one and insert the last parameter values from
the training record.

In[19]:= model5 = model4;
model5@@1, 1DD = Last@parametersD;

Predict using the final model.

In[21]:= NetComparePlot@uv, yv, model5, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

4

Output signal: 1 RMSE: 0.502187

Now, compare the performance of this model with that of the stopped search model.

If you do not want to use the stopped search feature, it might be interesting to submit validation data in the
training. If the performance measured on validation data increases toward the end of the training, then this
indicates that the chosen model has too much flexibility. You should choose a neural network with fewer
neurons (or use stopped search).

The third way to handle the bias-variance tradeoff is to use a large model but to minimize a regularized
criterion, as described in Section 7.5, Regularization and Stopped Search.

Chapter 8: Dynamic Neural Networks 225

Train a neural network using regularization.

In[22]:= 8model6, fitrecord< = NeuralARXFit@ue, ye, 83, 2, 1<, FeedForwardNet, 88<, uv, yv,
15, RandomInitialization→ LinearParameters, Regularization → 0.0001D;

0 1 2 3
Iterations

0.25

0.5

0.75

1

1.25

1.5

1.75

RMSE

Evaluate the regularized network model.

In[23]:= NetComparePlot@uv, yv, model6, PredictHorizon → 4D

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

Output signal: 1 RMSE: 0.34202

How does the regularized model perform compared to the other two ways of handling the bias-variance
tradeoff?

In this example you have seen three ways to handle the bias-variance tradeoff: (1) use a sparse model, which
does not have more parameters than necessary; (2) use a large model in connection with the validation data
to apply stopped search, so that only a subset of the parameters are used; and (3) use a large model with
regularization so that only a subset of the parameters are used.

226 Neural Networks

8.2.5 Fix Some Parameters—More Advanced Model Structures

Sometimes it can be interesting to exclude some of the parameters from the training process. In this way, it is
possible to obtain special model structures, where some features are built into the model at initialization.
Addressed in the following is a special model for the hydraulic actuator problem discussed earlier. The
option FixedParameters is used to exclude parameters from the fit, and it is explained in Section 13.2,
Fixed Parameters.

There are reasons to believe that most of the nonlinear behavior of the hydraulic actuator is near the physical
input of the system, where the oil streams into the cylinder. Hence, it could be interesting to include only the
past input values of the regressor in the nonlinear part of the model, while keeping the model linear in the
past output values. Using a regressor similar to that used in the previous two examples yields the following
model:

(4)
ŷ HtL =

a1 y Ht − 1L + a2 y Ht − 2L + a3 y Ht − 3L + g Hθ, u Ht − 1L, u Ht − 2LL
where gHq, uHt - 1L, uHt - 2LL is a neural network.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << actuator.dat;

Divide the data into training and validation data.

In[3]:= ue = u@@Range@512DDD;
ye = y@@Range@512DDD;
uv = u@@Range@513, 1024DDD;
yv = y@@Range@513, 1024DDD;

Before fixing the parameters, an initial model is obtained by invoking training with zero iterations. Note that
you can repeat the example with different models by modifying the structure indices na, nb, nk, and nh.
Choose an FF network with two hidden layers.

Chapter 8: Dynamic Neural Networks 227

Obtain an initial FF network model with two hidden layers.

In[7]:= na = 3; nb = 2; nk = 1; nh = 83, 3<;8model1, fitrecord< = NeuralARXFit@ue, ye, 8na, nb, nk<,
FeedForwardNet, nh, 0, LinearPart → True, CriterionPlot → FalseD;

Inspect the format of the model.

In[9]:= model1

Out[9]= NeuralARX@FeedForwardNet@88w1, w2, w3<, χ<,8AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 7, 32<,
Neuron → Sigmoid, FixedParameters → None,
OutputNonlinearity → None, NumberOfInputs → 5<D, Regressor → 83, 2, 1<D

It is the first na rows of w1, corresponding to the past y values, that have to be set to zero. Refer to the descrip-
tion in Section 2.6, Dynamic Neural Networks.

Take a look at the w1 matrix.

In[10]:= w1 = model1@@1, 1, 1, 1DD ;
MatrixForm@w1D

Out[11]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjj
−0.32458 −1.52618 0.322549
−0.685248 −0.0795772 1.15006
−0.628164 2.74448 0.129114
0.0613149 −3.40022 0.729567
−0.1638 −0.0633633 −0.871552
2.60667 4.00491 0.521309

y
{
zzzzzzzzzzzzzzzzzzzzz

Set the first na rows to zero.

In[12]:= model1@@1, 1, 1, 1, 81, 2, 3<DD = Table@0, 8na<, 8nh@@1DD<D;

228 Neural Networks

Check that the manipulation is correct.

In[13]:= w1 = model1@@1, 1, 1, 1DD ;
MatrixForm@w1D

Out[14]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjj

0 0 0
0 0 0
0 0 0

0.0613149 −3.40022 0.729567
−0.1638 −0.0633633 −0.871552
2.60667 4.00491 0.521309

y
{
zzzzzzzzzzzzzzzzzzzzz

The parameters that have been set to zero also have to remain zero during the training. Therefore, the
zeroed parameters have to be held fixed in the training. To do that you need to know their positions in the
flattened parameter list of the model. You find the position easily by a search of the zeros.

Find the indices of the parameters to be held fixed.

In[15]:= fixparameters = Flatten@Position@Flatten@model1@@1, 1DDD, 0DD
Out[15]= 81, 2, 3, 4, 5, 6, 7, 8, 9<

Train the network holding the zeroed parameters fixed.

In[16]:= 8model2, fitrecord< =

NeuralARXFit@ue, ye, model1, 30, FixedParameters → fixparametersD;

0 5 10 15 20 25 30
Iterations

0.084

0.086

0.088

0.09

0.092

RMSE

The trained model can now be tested on the validation data.

Chapter 8: Dynamic Neural Networks 229

Compare four-step prediction with the true output on the validation data.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 4D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.246342

Compare the result with those of the techniques for handling the bias-variance tradeoff, which were demon-
strated in the preceding example.

Compare the simulation with the true output on the validation data.

In[18]:= NetComparePlot@uv, yv, model2D

0 100 200 300 400 500

-4

-2

0

2

Output signal: 1 RMSE: 0.419559

You can go back and repeat the example, changing the size of the model. Notice that the result will change
also if you do not change the network model, due to the randomness in the initialization.

The parameter-fixing feature can be used to incorporate prior knowledge in the network model. In this way
a model with fewer parameters can be obtained, which performs well from a bias-variance perspective.

230 Neural Networks

8.3 Further Reading

System identification and time series prediction are broad and diverse fields. This list is a small sampling of
the vast literature available on these topics.

The following books are good introductions:

R. Johansson, System Modeling and Identification, Englewood Cliffs, NJ, Prentice Hall, 1993.

L. Ljung and T. Glad, Modeling of Dynamic Systems, Englewood Cliffs, NJ, Prentice Hall, 1994.

The following books are more thorough and they are used in graduate courses at many universities:

L. Ljung, System Identification: Theory for the User, 2nd ed., Englewood Cliffs, NJ, Prentice Hall, 1999.

T. Söderström and P. Stoica, System Identification, Englewood Cliffs, NJ, Prentice Hall, 1989.

The following article discusses possibilities and problems using nonlinear identification methods from a
user’s perspective:

J. Sjöberg et al., “Non-Linear Black-Box Modeling in System Identification: A Unified Overview”, Automat-
ica, 31 (12), 1995, pp. 1691–1724.

This book is a standard reference:

G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, Oakland, CA, Holden-Day, 1976.

Many modern approaches to time series prediction can be found in this book and in the references therein:

A. S. Weigend and N. A. Gershenfeld, “Time Series Prediction: Forecasting the Future and Understanding
the Past”, in Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis held in
Santa Fe, New Mexico, May 14–17, 1992, Reading, MA, Addison-Wesley, 1994.

Standard books on neural networks might also be of some interest. The following are examples:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

Chapter 8: Dynamic Neural Networks 231

9 Hopfield Networks

Hopfield networks, or associative networks, are typically used for classification. Given a distorted input
vector, the Hopfield network associates it with an undistorted pattern stored in the network.

A short tutorial about Hopfield networks is given in Section 2.7, Hopfield Network. Section 9.1, Hopfield
Network Functions and Options, defines the commands and the options. Section 9.2, Examples, contains
demonstration examples illustrating the commands.

9.1 Hopfield Network Functions and Options

This section introduces the commands you need to train and use Hopfield networks. Examples can be found
in Section 9.2, Examples.

9.1.1 HopfieldFit

Hopfield networks are defined with the function HopfieldFit.

HopfieldFit@x, optsD uses the data vectors x to create a discrete- or
continuous-time Hopfield network depending on the options

Training a Hopfield network.

HopfieldFit returns an object with head Hopfield. The information of the network is stored in the
systematic way used by all neural networks of the package, as described in Section 3.2, Package Conven-
tions. The first component is the matrix that contains the parametric weights, as described in Section 2.7,
Hopfield Network.

HopfieldFit takes the following options.

options default values

NetType Discrete indicates the discrete- or
continuous-time Hopfield model

Neuron SaturatedLinear type of neuron for
continuous-time Hopfield models

WorkingPrecision 4 indicates the precision of the solution
of a continuous-time Hopfield network

Options of HopfieldFit.

The option NetType takes the value Discrete or Continuous, indicating which type of Hopfield net-
work you want to create. Continuous-time Hopfield networks can have two types of neurons, Saturatedg
Linear or Tanh. You use the option Neuron to indicate your preference. The option WorkingPrecision
indicates the precision, the number of decimals, with which the differential Equation 2.28 in Section 2.7,
Hopfield Network, should be solved for continuous-time Hopfield networks.

A continuous-time Hopfield network stores a few more information items than its discrete-time counterpart.
The type of nonlinear activation function, Neuron, WorkingPrecision, and the step size, Dt, for the
differential equation must be logged.

The network can be evaluated for the disturbed data vectors using the evaluation rule for Hopfield objects.
This means that the equation describing the network, as given in Section 2.7, Hopfield Network, is simulated
using the disturbed data vector as an initial state.

net@xD evaluates net on the input vector x

Function evaluation of a Hopfield network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

The evaluation rule for Hopfield networks has the option Trajectories. By setting this option to True,
you obtain not only the final values of the state vectors, but also the trajectories of the states starting at the
initial values, supported in the call, and finishing at the final values.

234 Neural Networks

option default value

Trajectories False indicates if the state trajectories should
be returned or only the final state values

Option of the evaluation rule for Hopfield networks.

9.1.2 NetInformation

Some information about a Hopfield network is provided when the command NetInformation is applied.

NetInformation@hopD gives information about a Hopfield network

The NetInformation function.

9.1.3 HopfieldEnergy

The energy of a Hopfield network, at any value of the state vector, is given by HopfieldEnergy. The
mathematical definition of the energy is provided in Section 2.7, Hopfield Network.

HopfieldEnergy@hop, xD computes the energy level for the given
Hopfield network hop at the indicated state vector x

Computing the energy of a state of a Hopfield network.

HopfieldEnergy has no options.

9.1.4 NetPlot

A Hopfield network can be evaluated directly on a data vector by applying the evaluation rule as shown
earlier. The command NetPlot can also be used, and it gives some more information about the evaluation.
It works in the following way.

NetPlot@hop, x, optsD plots the convergence path of a Hopfield network; presents
the result in various ways by choosing different options

Illustrate Hopfield networks.

Chapter 9: Hopfield Networks 235

NetPlot takes the following options when it is applied to a Hopfield network.

option name default value

DataFormat Trajectories indicates how the
classification result is illustrated

Compiled True use compiled version

Option of NetPlot.

NetPlot simulates the Hopfield network, as described in Section 2.7, Hopfield Network, using the supplied
disturbed data vector x as an initial state. By giving different values to the option DataFormat you can
obtain the result, which may be presented in different ways.

The default DataFormat→Trajectories gives a plot of the components of the state vector as a function
of time. In addition to DataFormat, NetPlot also passes on any other options to its plot commands so that
you can modify the plots.

Possible values for DataFormat include the following.

Trajectories plots the components of
the state vectors as a function of time

Energy plots the energy decrease as a function of time

ParametricPlot an option only possible for two-dimensional problems;
gives a parametric plot of the states
together with a contour plot of the energy

Surface an option only possible for continuous-time Hopfield
nets in two dimensions; gives a parametric plot
of the states together with a 3 D plot of the energy

Possible values of DataFormat.

As described in Section 2.7, Hopfield Network, the convergence points of a Hopfield network are always
local energy minima. That is why the energy is strictly decreasing.

236 Neural Networks

For a continuous-time, two-dimensional Hopfield network, you can also get the energy surface together
with the state trajectories by choosing the option Surface.

9.2 Examples

In this subsection, Hopfield networks are used to solve some simple classification problems. The first two
examples illustrate the use of discrete-time Hopfield models, and the last two examples illustrate the continu-
ous-time version on the same data sets.

9.2.1 Discrete-Time Two-Dimensional Example

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

In this small example there are two pattern vectors 81, -1< and 8-1, 1<. Since the vectors are two-dimensional
you can display the results to illustrate the outcome.

 Generate and look at class vectors.

In[2]:= x={{1,-1},{-1,1}};
NetClassificationPlot[x]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

The two pattern vectors are placed in the corners of the plot. The idea is now that disturbed versions of the
two pattern vectors should be classified to the correct undisturbed pattern vector.

Chapter 9: Hopfield Networks 237

Define a discrete-time Hopfield network.

In[4]:= hop = HopfieldFit[x]

Out[4]= Hopfield@W, 8NetType → Discrete, CreationDate → 82002, 4, 3, 14, 9, 1<<D
Because the discrete Hopfield network is the default type, you do not have to specify that you want this type.

Some descriptive information is obtained by using NetInformation.

In[5]:= NetInformation@hopD
Out[5]= Discrete Hopfield model for pattern vectors with 2

components. Created 2002−4−3 at 14:09. Type of neuron: Sign@xD.
A new data pattern may be classified by processing it with the obtained model.

Evaluate the network for some disturbed data vectors.

In[6]:= hop[{0.4,-0.6}]

Out[6]= 881, −1<<
More information about the evaluation of the Hopfield network on data vectors can be obtained by using
NetPlot. The default is to plot the state trajectories as a function of time.

Plot the state vectors versus time.

In[7]:= NetPlot[hop, {{0.4, -0.6}}]

0.5 1 1.5 2
Time

-1

-0.5

0.5

1
Vector 1

238 Neural Networks

It might be interesting to obtain the trajectories for further manipulation. They can be obtained using the
evaluation rule with the option Trajectories→True. Then the trajectories are returned instead of only
the final value, which is the default.

Obtain the state trajectory.

In[8]:= hop@880.4, −0.6<<, Trajectories → TrueD
Out[8]= 8880.4, −0.6<, 81, −0.6<, 81, −1<<<
The trajectory is the numerical solution to Equation 2.26 describing the network; see Section 2.7, Hopfield
Network.

NetPlot can also be used for several patterns simultaneously.

Evaluate two data vectors simultaneously.

In[9]:= res = NetPlot[hop, {{0.4, -0.6}, {0.6, 0.7}}]

0.5 1 1.5 2
Time

-1

-0.5

0.5

1
Vector 1

0.5 1 1.5 2
Time

-1

-0.5

0.5

1
Vector 2

By giving the option DataFormat→Energy, you obtain the energy decrease from the initial point, the data
vector, to the convergence point as a function of the time.

Chapter 9: Hopfield Networks 239

Look at the energy decrease.

In[10]:= res = NetPlot[hop, {{0.4, -0.6}, {0.6, 0.7}},DataFormat→Energy]

0.5 1 1.5 2

-3.5

-3

-2.5

-2

-1.5

-1
Vector 1

0.5 1 1.5 2

-4

-3

-2

-1

Vector 2

Try 30 data pattern vectors at the same time. To avoid 30 trajectory and energy plots, you can instead choose
the option DataFormat→ParametricPlot. You can use the command RandomArray from the standard
add-on package Statistics`ContinuousDistributions` to generate random vectors.

Plot a contour plot with state vector trajectories.

In[11]:= << Statistics`ContinuousDistributions`
x = RandomArray[UniformDistribution[-1, 1], {10, 2}];
NetPlot[hop,x,DataFormat→ParametricPlot,PlotRange→{-1.2,1.2}]

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

240 Neural Networks

All trajectories converge to 8-1, 1< or 81, -1<, which are the two pattern vectors used to define the Hopfield
network with HopfieldFit.

9.2.2 Discrete-Time Classification of Letters

In this example, some letters will be automatically classified.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Generate patterns of the letters A, I, and Y. They are stored as matrices with 1 indicating black and -1
indicating white.

Generate the letters A, Y, and I in a list x.

In[2]:= x=-{{{1,-1,1},{1,1,1},{1,-1,1},{1,1,1}},
{{-1,1,-1},{-1,1,-1},{-1,1,-1},{-1,1,-1}},
{{-1,1,-1},{-1,1,-1},{1,-1,1},{1,-1,1}}};

Look at the letters.

In[3]:= xg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None]&,x];
Show[GraphicsArray[xg]]

Before you can construct a Hopfield network, the matrices have to be transformed into vectors.

Transform the matrices into pattern vectors.

In[5]:= xv = Map[Flatten,x,{1}];

The vectors containing the input pattern representing the three letters can now be used to create a Hopfield
network.

Chapter 9: Hopfield Networks 241

Create a Hopfield network.

In[6]:= hopletter = HopfieldFit[xv]

Out[6]= Hopfield@W, 8NetType → Discrete, CreationDate → 82002, 4, 3, 14, 10, 31<<D
The obtained Hopfield network can be tested in different ways. Start by determining if it can correctly
classify noisy versions of the three letters. Noisy versions are generated when each pixel has a certain proba-
bility to change value. Since this is a random process you will receive different disturbed data vectors each
time you repeat the following commands.

Create three disturbed data vectors from the three pattern vectors.

In[7]:= <<Statistics`ContinuousDistributions`
y=Sign[xv*RandomArray[UniformDistribution[-0.1,1], {3,12}]];

You can look at the disturbed data vectors, but first they must be converted to matrices.

Look at the disturbed letters.

In[9]:= ym=Map[Partition[#,3] &, y];
yg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None] &,ym];
Show[GraphicsArray[yg]]

It is now time to evaluate the Hopfield network against the disturbed data vectors. This is done by mapping
the Hopfield object containing the Hopfield network on each of the data vectors describing the noisy letters.
The result is converted back into matrices and plotted.

242 Neural Networks

Evaluate the Hopfield network on the noisy letters and plot the result.

In[12]:= yh=Map[hopletter[#] &, y];
yh=Apply[Partition[#,3] &, yh, 1];
yhg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None] &, yh];
Show[GraphicsArray[yhg]]

Is the result satisfactory? You can test other noisy letters by repeating the commands.

With NetPlot you can plot the energy decrease and the trajectories xHtL.
Look at the energy decrease during the evaluation.

In[16]:= NetPlot[hopletter,y,DataFormat→Energy]

0.5 1 1.5 2

-16
-15
-14
-13
-12

Vector 1

0.5 1 1.5 2 2.5 3

-16
-14
-12
-10

Vector 2

0.5 1 1.5 2

-12
-11.5

-11
-10.5

-10
-9.5

Vector 3

From the plot you can see that the Hopfield network converged after three discrete-time steps.

Look at the state vectors starting at the noisy letters.

In[17]:= NetPlot[hopletter,y]

0.5 1 1.5 2
Time

-1
-0.5

0.5
1

Vector 1

0.511.522.53
Time

-1
-0.5

0.5
1

Vector 2

0.5 1 1.5 2
Time

-1
-0.5

0.5
1

Vector 3

Chapter 9: Hopfield Networks 243

You can also try the Hopfield networks on some randomly generated patterns.

Generate and look at random patterns.

In[18]:= letterRand=Sign[RandomArray[UniformDistribution[-1,1], {4, 12}]];
letterRandMatrix=Map[Partition[#,3] &,letterRand, 1];
lg = Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None]
&,letterRandMatrix];
Show[GraphicsArray[lg]]

Apply the network to each of these patterns and look at the patterns to which they converge.

In[22]:= lh=Map[hopletter[#] &, letterRand];
lh=Apply[Partition[#, 3] &, lh, 1];
lhg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, lh];
Show[GraphicsArray[lhg]]

You can show that the mirror vectors to the pattern vectors also constitute minima to the energy function
and, therefore, the mirror vectors are also possible convergence points of the Hopfield network. It is not
uncommon for some of the randomly generated data vectors to converge to these inverses of some of the
original letters.

9.2.3 Continuous-Time Two-Dimensional Example

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

244 Neural Networks

Consider the same two-dimensional example as for the discrete-time Hopfield network. There are two
pattern vectors 81, -1< and 8-1, 1<, and the goal is to classify noisy versions of these vectors to the correct
vector.

Generate and look at class pattern vectors.

In[2]:= x={{1,-1},{-1,1}};
NetClassificationPlot[x]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

The two pattern vectors are placed in the corners of the plot.

Define a continuous-time Hopfield network with a saturated linear neuron.

Create a continuous-time Hopfield network.

In[4]:= hop=HopfieldFit[x,NetType→Continuous,Neuron→SaturatedLinear]

Out[4]= Hopfield@W, 8NetType → Continuous, WorkingPrecision → 4,
CreationDate → 82002, 4, 3, 14, 11, 31<, Dt → 0.2, Neuron → SaturatedLinear<D

Provide some information about the Hopfield network.

In[5]:= NetInformation@hopD
Out[5]= Continuous Hopfield model for pattern vectors with 2 components. Created 2002−4−3

at 14:11. Type of neuron: SaturatedLinear@xD. Precision in evaluation: 4

The obtained network can be used right away on any data vector by using the evaluation rule for Hopfield
objects.

Chapter 9: Hopfield Networks 245

Evaluate the Hopfield network on a data vector.

In[6]:= hop[{0.4,-0.6}]

Out[6]= 880.99962, −0.999746<<
Using NetPlot you can plot various information, for example, the state trajectories.

Plot the state trajectories.

In[7]:= NetPlot[hop,{{0.4, -0.6}}]

1 2 3 4 5 6
Time

-1

-0.5

0.5

1
Vector 1

It might be interesting to obtain the state trajectories of the evaluation of the Hopfield network on the data
vectors. This can be done by setting the option Trajectories→True in the evaluation of the Hopfield
network.

Obtain the state trajectory.

In[8]:= hop@880.99, −0.99<<, Trajectories → TrueD
Out[8]= 8880.99, −0.99<, 80.992, −0.992<, 80.9936, −0.9936<, 80.99488, −0.99488<,80.995904, −0.995904<, 80.996723, −0.996723<, 80.997379, −0.997379<,80.997903, −0.997903<, 80.998322, −0.998322<, 80.998658, −0.998658<,80.998926, −0.998926<, 80.999141, −0.999141<, 80.999313, −0.999313<,80.99945, −0.99945<, 80.99956, −0.99956<, 80.999648, −0.999648<<<
The trajectory is the numerical solution to Equation 2.28 describing the network (see Section 2.7, Hopfield
Network), computed with a time step given by the variable Dt in the Hopfield object. It was automatically
chosen, when HopfieldFit was applied, to ensure a correct solution of the differential equation.

246 Neural Networks

The energy surface and the trajectories of the data vectors can provide a vivid illustration of the classifica-
tion process. This is only possible for two-dimensional, continuous-time Hopfield nets.

Plot the energy surface together with the trajectories of several data vectors.

In[9]:= << Statistics`ContinuousDistributions`
x = RandomArray[UniformDistribution[-1, 1], {30, 2}];
NetPlot[hop,x,DataFormat→Surface]

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

-6

-4

-2

0

-1

-0.5

0

0.5

9.2.4 Continuous-Time Classification of Letters

Consider classification of the same letters as in the example used with the discrete-time Hopfield network.

Read in the Neural Networks package.

In[1]:= <<NeuralNetworks`

A continuous-time Hopfield network will now be used to classify noisy patterns of the letters A, I, and Y.
First combine the three letters as three matrices in a list.

Generate three matrices containing the letters A, Y, and I.

In[2]:= x=-{{{1,-1,1},{1,1,1},{1,-1,1},{1,1,1}},
{{-1,1,-1},{-1,1,-1},{-1,1,-1},{-1,1,-1}},
{{-1,1,-1},{-1,1,-1},{1,-1,1},{1,-1,1}}};

Chapter 9: Hopfield Networks 247

Each matrix element contains the gray level of one pixel. The value 1 corresponds to entirely black and -1 to
entirely white.

Look at the letters.

In[3]:= xg=Map[ListDensityPlot[#,DisplayFunction→Identity,FrameTicks→None]&,x];
Show[GraphicsArray[xg]]

Before you can construct a Hopfield network, the matrices have to be transformed into vectors.

Transform the matrices to pattern vectors.

In[5]:= xv = Map@Flatten, x, 81<D;
The network is obtained with HopfieldFit.

Obtain a continuous-time Hopfield network.

In[6]:= hopletter = HopfieldFit@xv, NetType → Continuous, Neuron → SaturatedLinearD
Out[6]= Hopfield@W, 8NetType → Continuous,

WorkingPrecision → 4, CreationDate → 82002, 4, 3, 14, 12, 39<,
Dt → 0.047619, Neuron → SaturatedLinear<D

To test if the network can correct noisy data vectors, some noisy versions of the three pattern vectors are
created. If everything works out the way it ought to, then these three noisy data vectors will be classified
correctly.

Create three distorted letters from the three given ones.

In[7]:= <<Statistics`ContinuousDistributions`
y=xv*RandomArray[UniformDistribution[-0.3,1], {3,12}];

248 Neural Networks

The disturbed letters take real values in the interval 8-1, 1<. To look at the disturbed letters, they must first
be retransformed into matrices.

Look at the disturbed letters.

In[9]:= ym=Map[Partition[#,3] &, y];
yg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, ym];
Show[GraphicsArray[yg]]

The Hopfield network will now be used to “repair” the noisy patterns. The result is transformed into matri-
ces and plotted.

Apply the Hopfield network to the noisy data vectors and plot the result.

In[12]:= yh=Map[hopletter[#] &, y];
yh=Apply[Partition[#, 3] &, yh, 1];
yhg=Map[ListDensityPlot[#, DisplayFunction→Identity,FrameTicks→None] &, yh];
Show[GraphicsArray[yhg]]

Was the result satisfactory? Because the noisy data vectors were generated randomly, the result may vary
from time to time. Repeat the calculations a couple of times with different noisy letters to see the differences.

You can also use NetPlot to illustrate the evaluation on the noisy data vectors.

Chapter 9: Hopfield Networks 249

Check how the trajectories develop with time.

In[16]:= NetPlot@hopletter, yD
1 2 3 4 5 6

Time

-1
-0.5

0.5
1
Vector 1

1 2 3 4 5 6
Time

-1
-0.5

0.5
1
Vector 2

1 2 3 4 5 6
Time

-1
-0.5

0.5
1
Vector 3

Check how the energy decreases with time.

In[17]:= NetPlot@hopletter, y, DataFormat → Energy, Ticks → 8Automatic, 8−60, −100, −140<<D
1 2 3 4 5 6

Time
-100
-140

Vector 1

1 2 3 4 5 6
Time

-100
-140

Vector 2

1 2 3 4 5 6
Time

-100

-140

Vector 3

You can also see how the Hopfield network deals with some randomly generated patterns.

Generate and look at random patterns.

In[18]:= letterRand = RandomArray@UniformDistribution@−1, 1D, 84, 12<D;
letterRandMatrix = Map@Partition@#, 3D &, letterRand, 1D;
lg = Map@ListDensityPlot@#, DisplayFunction → Identity, FrameTicks → NoneD &,

letterRandMatrixD;
Show@GraphicsArray@lgDD

Do any of these random patterns look like any of the three letters? What does the Hopfield network say
about them? To which energy minima are these random patterns attracted?

250 Neural Networks

Apply the network to the random patterns and look at the result.

In[22]:= lh=Map[hopletter[#] &, letterRand];
lh=Apply[Partition[#, 3] &, lh, 1];
lhg=Map[ListDensityPlot[#, DisplayFunction →Identity,FrameTicks→None]&, lh];
Show[GraphicsArray[lhg]]

Have the randomly generated patterns been classified as any of the letters? If so, do these results make
sense; that is, do the original random patterns resemble these letters? As mentioned previously, it is possible
at times to get the inverted versions of the letters. They are also attractors of the Hopfield network; that is,
their inversions are also possible convergence points of the network. This is an unfortunate feature of
Hopfield networks.

9.3 Further Reading

The following texts cover Hopfield networks:

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

M. H. Hassoun, Fundamentals of Artificial Neural Networks, Cambridge, MA, The MIT Press, 1995.

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities”,
in Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 2554–2558.

J. J. Hopfield, “Neurons with Graded Response Have Collective Computational Properties Like Those of
Two-State Neurons”, in Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 3088–3092.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

Chapter 9: Hopfield Networks 251

10 Unsupervised Networks

Unsupervised neural networks employ training algorithms that do not make use of desired output data.
They are used to find structures in the data, such as clusters of data points or one- or two-dimensional
relationships among the data. When such structures are discovered, they can help describe the data in more
compact ways.

A short tutorial on unsupervised networks is given in Section 2.8, Unsupervised and Vector Quantization
Networks. Section 10.1, Unsupervised Network Functions and Options, describes the functions and their
options to work with unsupervised networks. Examples of the use of the commands are given in Section
10.2, Examples without Self-Organizing Maps, and Section 10.3, Examples with Self-Organizing Maps.
Section 10.4, Change Step Length and Neighbor Influence, describes how you can change the training
algorithm by changing the step length and the neighbor feature.

10.1 Unsupervised Network Functions and Options

This section introduces the commands to deal with unsupervised networks, with and without a neighbor
map. Examples illustrating the use of the commands follows in Section 10.2, Examples without Self-
Organizing Maps, and Section 10.3, Examples with Self-Organizing Maps.

10.1.1 InitializeUnsupervisedNet

An unsupervised network is initialized with InitializeUnsupervisedNet.

InitializeUnsupervisedNet@x, sizeD
initializes an unsupervised network of
the indicated size using supplied data vectors x

Initialize an unsupervised network.

The argument size should be a positive integer indicating the number of codebook vectors; the supplied data
x should be a matrix as described in Section 3.2, Package Conventions.

Unsupervised networks are stored in objects with head UnsupervisedNet, on a format following the
general standard of the package, as described in Section 3.2, Package Conventions. The first component is a
list of the codebook vectors.

You may write your own initialization or training algorithm. In that case, Section 13.1, Change the Parameter
Values of an Existing Network, describes how you insert the parameter values into an unsupervised
network.

The options of InitializeUnsupervisedNet are divided into two groups. The first group defines the
structure of the network, which could include a neighbor map when a SOM is desired. The second group of
options influences the way the network is actually initialized.

The following options define the structure of the unsupervised network.

option default value

SOM None specifies the neighbor map if
changed to a list containing two integers

Connect False connects the neighbor map into a
ring if set to False or a cylinder if True

Options of InitializeUnsupervisedNet defining the structure of the unsupervised network.

If you want a neighbor map, you set the option SOM to a list of two integers. These two integers define the
geometry of the neighbor map, and their product must equal the number of codebook vectors. A one-dimen-
sional SOM is obtained by setting one of the integers to 1 and the second to the number of codebook vectors.

The second group of options influences the initialization procedure of the unsupervised network. They can
be used in calls to InitializeUnsupervisedNet and also to UnsupervisedNetFit if no existing
network is submitted. If the option UseSOM is set to True, then a SOM will be used for the initialization, and
most of the options are only active in this case. Some of the options are more advanced, and they are
explained further in the examples in Section 10.4, Change Step Length and Neighbor Influence.

254 Neural Networks

option default value

UseSOM False random initialization of the un-
supervised net; if set to True,
a SOM is used in the initialization

Compiled True applies the initial
SOM training compiled

Iterations 10 number of iterations with the SOM

InitialRange 0.01 standard deviation of the normally
distributed initial codebook vectors,
normalized by the range
of the data vectors

Recursive False applies the initial
SOM training in batch mode

StepLength Automatic step-length function for
the initialization algorithm

NeighborStrength Automatic positive value, or function,
indicating the neighbor
strength for the SOM algorithm

Neighbor NonSymmetric neighbor topology
for the SOM algorithm

CriterionPlot False gives no plot presenting the result of
the training with the SOM algorithm

CriterionLog False logs no information about the
training with the SOM algorithm

CriterionLogExtN True if the CriterionLog
option is set to True,
then presents the training
log in a separate notebook

ReportFrequency 1 if the CriterionLog
option is set to True,
then logs the performance with
this interval during the training

MoreTrainingPrompt False prompts for more training
iterations if set to True

Chapter 10: Unsupervised Networks 255

Options of InitializeUnsupervisedNet defining the initialization of the network.

The default initialization of unsupervised networks is to place the codebook vectors randomly around the
mean of the data vectors. Then, InitialRange is the only option that influences the initialization.

The other possibility is to set UseSOM→True, and then apply a few training iterations with a neighbor
feature. The risk that some of the codebook vectors might “die”—that is, they might not be used by the
data—decreases by using this initialization. All options, except InitialRange, influence the initial training
with the neighbor feature, and therefore, they only influence the initialization if they are used in combina-
tion with UseSOM→True.

The default of the options StepLength and NeighborStrength are the following two functions:

 è StepLength: Function[If[# < 3, 0.1, 0.5]]

 è NeighborStrength: Function[If[# < 3, 0.1, (2*#)/10.]]

You can change these default values as described later in this section.

10.1.2 UnsupervisedNetFit

Unsupervised networks are trained with UnsupervisedNetFit. You can choose between submitting an
already existing unsupervised model, or have a new network initialized by indicating the number of code-
book vectors. You can also indicate the number of training iterations. If left out, the default number of
iterations (30) will be applied.

UnsupervisedNetFit@x, sizeD initializes and trains an unsupervised net of
indicated size the default number of iterations

UnsupervisedNetFit@x, size, iterationsD initializes and trains an unsupervised net of
indicated size the specified number of iterations

UnsupervisedNetFit@x, netD trains the supplied unsupervised
net the default number of iterations

UnsupervisedNetFit@x, net, iterationsD trains the supplied unsupervised
net the specified number of iterations

Training an unsupervised network.

An existing network can be submitted for more training by setting net equal to the network or its training
record. The advantage of submitting the training record is that the information about the first training is
combined with the additional training.

256 Neural Networks

UnsupervisedNetFit returns a list of two variables. The first output is the trained unsupervised network.
It consists of an object with head UnsupervisedNet. The second output, the training record with head
UnsupervisedNetRecord, contains logged information about the training. It can be used to analyze the
progress of the training, and to validate the model using the command NetPlot. You can also extract
intermediate information from the training as described in Section 7.8, The Training Record.

During the training, intermediate results are displayed in a separate notebook, which is created automati-
cally. After each training iteration the mean distance between the data vectors and the closest codebook
vector is written out. Using the options of UnsupervisedNetFit, as described in Section 7.7, Options
Controlling Training Results Presentation, you can change the way the training results are presented.

The necessary number of training iterations is strongly dependent on the particular problem. Depending on
the number of data vectors, their distribution, and the number of codebook vectors, you might need more
iterations. At the end of the training, the decrease of the mean distance is shown in a plot. You can use this
plot to decide if more training iterations are necessary.

Sometimes you also receive a warning at the end of the training saying that there is at least one codebook
vector that is not used by the data. This indicates that there are nuisance codebook vectors, or dead neurons,
that do not have any effect on the training data. In general you do not want any dead codebook vectors, and
there are various measures you can take. For example, you can

 è Re-initialize the unsupervised network using the option UseSOM→True. This usually gives a better
initialization as described later.

 è Repeat the training from a different initialization. The initialization and training contain some ran-
domness and by repeating these commands you obtain a new realization that might be better.

 è Change the size of the unsupervised network by changing the number of codebook vectors in the
initialization.

 è Identify the unused codebook vectors with UnUsedNeurons and remove them using NeuronDelete.

UnsupervisedNetFit takes basically the same options as InitializeUnsupervisedNet, but the
default values are different.

Chapter 10: Unsupervised Networks 257

option default value

SOM None specifies the neighbor map if
changed to a list containing two integers

Connect False connects the neighbor map into
a ring if False or a cylinder if True

Compiled True uses compiled code

Recursive True trains in recursive mode

StepLength Automatic step-length function for the training algorithm

NeighborStrength Automatic positive value, or function,
indicating neighbor strength

Neighbor NonSymmetric neighbor topology

CriterionPlot True plots the result of the training

CriterionLog True logs information about the training

CriterionLogExtN True presents the training log in a separate notebook

ReportFrequency 1 logs the performance with
this interval during the training

MoreTrainingPrompt False prompts for more
training iterations if set to True

Options of UnsupervisedNetFit.

The options CriterionPlot, CriterionLog, CriterionLogExtN, ReportFrequency, and Moreg
TrainingPrompt are common in the other training commands in the Neural Networks package, and they
are described in Section 7.7, Options Controlling Training Results Presentation.

By giving new values to SOM and Connect in the call to UnsupervisedFit, it is possible to change the
neighbor map of an existing unsupervised network. Examples of how this is done can be found in Section
10.3.3, Adding a SOM to an Existing Unsupervised Network.

The options NeighborStrength and Neighbor only influence the algorithm if the unsupervised network
has a neighbor map attached to it. Examples illustrating these options are given in Section 10.4, Change Step
Length and Neighbor Influence.

258 Neural Networks

The options Recursive, StepLength, NeighborStrength, and Neighbor are used to modify the
training algorithm. They are of a more advanced nature and are further described in this section.

An unsupervised network can be evaluated on one data vector, or a list of data vectors, using the function
evaluation rule. The output is a list containing the number of the codebook vector closest to the data vector.
This evaluation rule is actually all you need to start using the unsupervised network.

net@xD evaluates the net on the input vector x

Function evaluation of an unsupervised network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
in each row.

The function evaluation rule also has an option.

option default value

SOM Automatic indicates whether the output should be the number of the
winning neuron or its coordinates within the SOM map

Option of the evaluation of an unsupervised network.

The default Automatic is changed to True or False depending on whether or not the unsupervised
network has a SOM feature. If it does, then the default gives the position of the winning codebook vector
within the SOM structure. If you supply the option SOM→False, then the SOM feature is not used in the
evaluation, and you receive the number of the winning codebook vector. This is illustrated in Section 10.3.1,
Mapping from Two to One Dimensions.

Details and Algorithms

Further described are more advanced options for UnsupervisedNetFit. They can be used to modify the
training algorithm from the default version in a way that might better suit your problem.

The codebook vectors can either be adapted in a recursive manner, considering one data sample in each
update, or in batch mode where all data is used at each step. The algorithm to be used is indicated by the
Recursive option. Also, the algorithm will vary depending on whether or not a neighbor feature is applied.

Chapter 10: Unsupervised Networks 259

The recursive algorithm for unsupervised networks (Standard competitive learning rule):

Given N data vectors 8xk<, k = 1, ..., N, in each update, the following steps are performed.

 1. k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is
considered each time this step is executed.

 2. The codebook vector closest to xk, called the winning neuron or the winning codebook vector, is identi-
fied. Its index is indicated by i.

 3. The winning codebook vector is changed according to

(1)wi = wi + SL@nD ∗ Hxk − wiL
 where n is the iteration number.

 4. The described steps are repeated N times in each iteration.

Abbreviations have been used; SL@nD is the StepLength function, and it can be changed by the option with
the same name.

If the unsupervised network contains a neighbor feature, then the following recursive algorithm applies.

The recursive algorithm for SOM (Kohonen’s algorithm):

 Given N data vectors 8xk<, k = 1, ... N, in each update, the following steps are performed.

 1. k is chosen randomly from a uniform integer distribution between 1 and N, where the whole range is
considered each time this step is executed.

 2. The codebook vector closest to xk, called the winning neuron or the winning codebook vector, is
identified. Its index is indicated by 8iwin, jwin<.

 3. All the codebook vectors are changed according to

(2)
wi,j = wi,j +

SL@nD ∗ Exp@−NS@nD ∗ NM@@c1 − iwin + i, c2 − jwin + jDDD ∗ Hxk − wi,jL
 where n is the iteration number and 8c1, c2< is the center position of the neighbor matrix, the value

given with the SOM option.

 4. The described steps are repeated N times in each iteration.

260 Neural Networks

Abbreviations have been used; SL@nD is the StepLength function and NS@nD is the NeighborStrength
function. They can both be changed by the options with the same names. NM is the neighbor matrix dictat-
ing which codebook vectors are neighbors, and it can also be chosen by the user. All codebook vectors are
changed toward the data vector. The neighbor matrix NM should have its minimum at its center element8c1, c2<, so that the winning neuron update is most pronounced. Typically, the elements of NM further away
from the center take larger values, so that codebook vectors further away from the winner are changed less.
One iteration of the stochastic algorithm (that is, n incremented by 1), consists of N updates via Equation
10.2. Note that due to the fact that k is chosen independently in each update, the data use is indeterminate.

With Recursive→False all data is used in each iteration. The training follows a deterministic scheme
where the mean of the update Equation 10.1, or Equation 10.2, over all data 8xk<, k = 1, ..., N is used. In this
case, the unsupervised training without a neighbor feature becomes equivalent to what is called a k-means
clustering.

The intended use of UnsupervisedNetFit is to employ the recursive algorithm at the beginning of the
training, and then, possibly, take a few steps with the batch algorithm to fine tune the neurons. When
UnsupervisedNetFit is used in other ways you should consider changing the two options StepLength
and NeighborStrength.

The StepLength option:

The StepLength option has the default value Automatic. Depending on the value of the Recursive
option, this is changed into one out of two different functions.

Recursive → True: Function[n, If[n<5, 0.01, 2./(3+n)]]

Recursive → False: Function[n, 1]

In the recursive case, the step length is small during the first iterations so that the codebook vectors find a
good orientation. Then, the step length is increased to speed up the convergence. From this higher value, the
step length is then slowly decreased again. Convergence can only be guaranteed if the step length converges
toward zero.

For a batch update, the step length is set to one for all iterations. This is a good choice if the codebook
vectors are close to their optimal values, so that the step becomes small anyway. The equation may become
unstable if such a large step length is used when this is not the case.

You can choose other step lengths in two different ways. A constant step length is obtained by giving Stepg
Length a numerical value in the range 80, 1<. The other possibility is to set the option to a function that takes
the iteration number as input and delivers a numerical value as output. In Section 10.4, Change Step Length
and Neighbor Influence, you find an example showing how the step length may be changed.

Chapter 10: Unsupervised Networks 261

The NeighborStrength option:

The NeighborStrength option works similarly to StepLength, but it is active only if there is a neighbor
feature adapted to the network. Depending on the Recursive option the default Automatic is changed
into:

Recursive → True: Function[n, If[n<5, 0.1, (n-4)/10.]];

Recursive → False: Function[n, 1000.]

In the recursive case, during the first five iterations, the neighbors of the winning neuron are influenced
strongly Hlow value > 0L. This helps the network to conform to a nice structure and avoid “knots.” Subse-
quently, the influence on the neighbors gradually decreases (value increases).

When the algorithm is applied in batch mode, the neighbor strength function has a constant value of 1000,
which imparts only a negligible influence on the neighboring codebook vectors. Therefore, in batch mode,
only the winning neurons are adapted. This is good when the batch mode is used to fine-tune the final
positions of the codebook vectors, after the recursive training has been applied.

A positive constant neighbor strength can be specified using NeighborStrength. You can also use any
function that takes the iteration number as input and gives the neighbor strength as output. In Section 10.4,
Change Step Length and Neighbor Influence, you find an example showing how the NeighborStrength
option can be changed.

The Neighbor option:

As is the case with NeighborStrength, the Neighbor option also has no meaning unless a neighbor
feature is attached to the unsupervised network. The Neighbor option lets you specify which neurons, or
codebook vectors, are neighbors. There are two standard possibilities that are specified by setting the Neighg
bor option to NonSymmetric (default) or Symmetric. The nonsymmetric choice gives a stronger connec-
tion to the neighbors on one side than on the other side. This should make it easier to avoid “knots” on the
map. With these standard choices, neighbor matrices of the correct dimensions are computed internally. The
symmetric option gives a neighbor matrix i

k
jjjjjjjjjjjjjjjj
2
1
0
1
2

y
{
zzzzzzzzzzzzzzzz

262 Neural Networks

for a one-dimensional network with three codebook vectors. The zero is at the center position, and it corre-
sponds to the winning codebook vector. The matrix has larger values away from the center position in both
directions. Since the size of the matrix elements indicates the distance between the codebook vector and the
winning neuron, a larger value means that the distance is also larger. The nonsymmetric alternative givesi

k
jjjjjjjjjjjjjjjj
4
2
0
1
2

y
{
zzzzzzzzzzzzzzzz

in a one-dimensional network with three codebook vectors. For a two-dimensional network of size 83, 4< you
obtain the following neighbor matrices with the nonsymmetric alternativei

k
jjjjjjjjjjjjjjjj
10 8 6 4 5 6 7
8 6 4 2 3 4 5
6 4 2 0 1 2 3
7 5 3 1 2 3 4
8 6 4 2 3 4 5

y
{
zzzzzzzzzzzzzzzz

and with the symmetric alternativei
k
jjjjjjjjjjjjjjjj
5 4 3 2 3 4 5
4 3 2 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 2 3 4
5 4 3 2 3 4 5

y
{
zzzzzzzzzzzzzzzz

You can use the Neighbor option and submit your own neighbor matrix. It should then have dimensions82 c1 - 1, 2 c2 - 1<, where 8c1, c2< are the dimensions of the SOM map. In Section 10.4, Change Step Length
and Neighbor Influence, you will find an example showing how the Neighbor option can be changed.

The Connect option:

If Connect is changed to True, then the neighbor matrix is changed so that the SOM network is connected
to a ring in the one-dimensional case, and into a cylinder in the two-dimensional case (in the first of the two
dimensions). This holds only if you use one of the two values NonSymmetric or Symmetric for the Neighg
bor option. If you instead supply your own neighbor matrix, then the Connect option does not have any
meaning, and you have to specify the neighbor matrix directly so that it corresponds to a ring. The neighbor
matrix generated by setting Connect→True and Neighbor→Symmetric for a one-dimensional SOM
network with six codebook vectors is

Chapter 10: Unsupervised Networks 263

i

k

jjj

1
2
3
2
1
0
1
2
3
2
1

y

{

zzz
The element values indicate the distance from the winning neuron, which is in the center, that is, it has
distance zero from itself. The codebook vectors six positions away from the winner have distance one, the
same as the codebook vector in the position next to the winner. Therefore, one end of the line is connected to
the other end.

10.1.3 NetInformation

Some information about the unsupervised networks is presented in a string by the function
NetInformation.

NetInformation@unsupD gives information about an unsupervised net

The NetInformation function.

NetInformation takes no options.

10.1.4 UnsupervisedNetDistance, UnUsedNeurons, and NeuronDelete

The function UnsupervisedNetDistance gives the average Euclidian distance between the data vectors
and the nearest codebook vector of the submitted unsupervised network.

UnsupervisedNetDistance@net, xD
gives the mean Euclidian distance
between data x and nearest codebook vector

Performance of an unsupervised network.

264 Neural Networks

A small value indicates that all data vectors are close to a codebook vector, and then the clustering can be
considered successful.

UnsupervisedNetDistance has one option.

option default value

Compiled True use compiled version

Option of UnsupervisedNetDistance.

The function UnUsedNeurons indicates the codebook vectors that are not closest to any data vector. These
codebook vectors that are unused on the training data set can be considered to have “died,” and do not
contribute to the clustering. Instead, they can be considered as nuisance vectors. Therefore, it is always
interesting to test which, if any, codebook vectors are not being used. You may use the command NeuronDeg
lete to remove these codebook vectors from the network.

UnUsedNeurons@net, xD gives the numbers of codebook vectors not used by the data x

Finding the unused codebook vectors.

The output is a list containing the numbers of the codebook vectors that are not closest to any of the sup-
plied data.

Sometimes it might be of interest to remove some of the codebook vectors from an existing unsupervised
network, for example, the ones pointed out by UnUsedNeurons. NeuronDelete can be used to do this.

NeuronDelete@net, posD deletes the codebook vectors
indicated with pos in an existing network net

Deleting codebook vectors in an existing unsupervised network.

NeuronDelete has one option.

option default

DeleteSOM False removes the neighbor structure from the network

Option of NeuronDelete.

Chapter 10: Unsupervised Networks 265

The argument pos indicates the codebook vectors to be deleted. It is used differently depending on whether
the network has a SOM.

If there is no SOM, or if DeleteSOM→True, then pos should be an integer indicating the number of the
codebook vector to be deleted. Several codebook vectors can be removed by supplying a list of integers.

If the network has a neighbor structure, SOM, and if it is not removed using DeleteSOM→True, then you
have to delete a whole row or a column of codebook vectors simultaneously. This is done by setting pos to a
list with two elements. Both of these elements are also lists: the first one containing the numbers of the rows
to be deleted and the second one containing the numbers of the columns to be deleted. That is,
pos = 88m, n, …<, 8k, l, …<< removes rows m and n and columns k and l. If you delete only rows or columns,
then one of the elements becomes an empty list.

10.1.5 NetPlot

The NetPlot command is intended to support the illustration of unsupervised networks and their training.

An existing unsupervised network can be evaluated on a data vector directly using the evaluation rule. The
output indicates the codebook vector to which the data vector is mapped. This evaluation rule is actually all
you need for the unsupervised network. The command NetPlot merely complements the evaluation rule
by graphically illustrating the result of the unsupervised network.

The function NetPlot supports the illustration of the clustering in several ways, depending on the choice of
the option DataFormat. An unsupervised network or the training record can be submitted, the second
argument given by UnsupervisedNetFit. If a training record is submitted, then the progress during the
training is illustrated. Consequently, in the calls in the following table, net can be either a trained unsuper-
vised network or a training record.

NetPlot@net, x, yD illustrates how net clusters data x to given classes y

NetPlot@net, xD illustrates how net clusters data x

Illustrating an unsupervised network or its training.

An output y, indicating valid classes of the data vectors, must be in the correct format as described in Sec-
tion 3.2, Package Conventions.

The option DataFormat controls the way the clustering result is illustrated, and depending on its value,
some of the other options may become obsolete.

266 Neural Networks

The default in two-dimensional clustering problems is to plot the data together with the codebook vectors.
The positions of the codebook vectors are indicated by their numbers.

NetPlot takes the following options.

option default value

DataFormat Automatic indicates how the clustering should be illustrated;
the default depends on the dimension
of the data Hdifferent possibilities followL

Voronoi True displays Voronoi cells; if set to False,
indicates the positions of the codebook vectors with crosses

CbvSymbol Automatic changes the mark indicating the codebook vectors

Intervals 5 interval of training iterations between plots in the graphics array

SOM Automatic uses the net s neighbor feature if one exists

Compiled True uses compiled version

Options of NetPlot.

The option DataFormat takes the following values.

DataMap the default for two-dimensional problems;
gives a plot of data together with the codebook vectors

Table gives a table with one box for each codebook vector;
each box contains the number of data vectors
from each class assigned to this codebook vector

DataMapArray gives a graphics array of the
progress of the clustering during training;
applies only to two-dimensional problems

Possible values of DataFormat.

In addition to these options, you can submit others to modify the graphical output. Depending on the
chosen option for DataFormat, the graphical output is created by BarChart, BarChart3D, Multipleg
ListPlot, ListPlot, or Plot3D.

Chapter 10: Unsupervised Networks 267

If the unsupervised network has no neighbor feature, then the classification boundaries among the different
codebook vectors are marked with Voronoi cells. From such a plot, it is easy to see codebook vectors that are
not being used, that is, whether they can be considered dead. If Voronoi→True, then the default of CbvSymg
bol is to indicate each codebook vector with its number in the network. You may change this by submitting
a list of symbols. You may also use this option to include options of Text, which then modify only the
codebook’s marks and not the plot label and the axes.

If Voronoi→False, then the positions of the codebook vectors are indicated with crosses. You may change
the size of the crosses by setting CbvSymbol to a list of two numbers indicating the size in each dimension.

If the submitted unsupervised network has a neighbor feature (that is, if it is a SOM network), then the
default is to plot the neighbor map instead of the Voronoi cells. This can be avoided by setting SOM→False.

In a two-dimensional problem, submitting a training record, instead of the network itself, results in a plot
that shows how the codebook vectors are changed from their initial positions to the final ones. The final
classification boundaries are also shown.

10.2 Examples without Self-Organizing Maps

In this section some examples are given where unsupervised networks are used to perform clustering. The
first example is in a two-dimensional space so that the result can be visualized. The second example is in a
three-dimensional space. The last example illustrates potential difficulties you could encounter in using
unsupervised networks.

The possibility of using a neighbor feature in an unsupervised network, and turning it into a Kohonen
network, is illustrated in the next subsection.

Notice that if you reevaluate the examples you will not obtain exactly the same results due to the random-
ness in the initialization.

10.2.1 Clustering in Two-Dimensional Space

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;

268 Neural Networks

The data set x is a matrix where each row is a data vector following the standard format described in Section
3.2, Package Conventions. The number of columns indicates the dimensionality of the input space.

Check the number of data vectors and the dimensionality of the data space.

In[3]:= Dimensions@xD
Out[3]= 860, 2<
There are 60 data vectors with a dimensionality of two. Consequently, you can visualize the data by using
NetClassificationPlot.

Look at the data.

In[4]:= NetClassificationPlot@xD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

The six clusters can easily be recognized. Because the clusters are seen to follow an arc along which they
appear to be separable, they obviously share a one-dimensional relationship. The goal of using an unsuper-
vised network is to automatically find these clusters. If you also want to automatically find the one-dimen-
sional relationship among the clusters, then you should give the unsupervised network a one-dimensional
neighbor structure.

Although the unsupervised training algorithms do not use any output data, it can still be interesting to keep
track of the clusters to which the various data vectors belong. This information is contained in the variable y,
which has the general structure of an output data matrix in a classification problem, described in Section 3.2,
Package Conventions. This means that it has one row for each data vector and one column for each cluster.

Chapter 10: Unsupervised Networks 269

Check to which cluster data vector 43 belongs.

In[5]:= y@@43DD
Out[5]= 80, 0, 0, 0, 1, 0<
It belongs to cluster 5.

In the initialization of the unsupervised network you specify a number of neurons that correspond to the
number of clusters you want to fit to the data.

Initialize and estimate an unsupervised network with eight neurons.

In[6]:= unsup = InitializeUnsupervisedNet@x, 8D;8unsup, fitrecord< = UnsupervisedNetFit@x, unsup, 8, ReportFrequency → 1D;

0 1 2 3 4 5 6 7 8
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mean Distance

UnsupervisedNet::DeadNeuron :

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

A warning about dead neurons means that some of the codebook vectors were not used to cluster the data.
This is no surprise since you know that there are six clusters and you have eight codebook vectors. Unused
neurons are often a nuisance, and you will soon learn how they can be removed using NeuronDelete.

The obtained unsupervised network can be used right away to classify new data vectors to one of the
clusters. This is done by using the evaluation rule of the network.

270 Neural Networks

Classify a new data vector with the trained unsupervised network.

In[8]:= unsup@80.2, 0.6<D
Out[8]= 83<
The output is the number of the codebook vector that is closest to the data vector.

You can also illustrate the division of the space into the different clusters using NetPlot.

Illustrate the trained unsupervised network together with the data.

In[9]:= NetPlot@unsup, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

1

23

4
567

8

The position of the codebook vectors are indicated with their numbers together with the data vectors. You
may submit any Text options in CbvSymbols to modify numbers indicating the codebook vectors; in the
preceding example, a large font was used. The classification boundaries form Voronoi cells. From this plot it
is easy to see which codebook vectors are not being used, that is, whether they can be considered dead. They
can also be obtained with UnUsedNeurons.

Chapter 10: Unsupervised Networks 271

Find and remove the unused codebook vectors.

In[10]:= UnUsedNeurons@unsup, xD
Out[10]= 82, 6, 7<
In[11]:= unsup = NeuronDelete@unsup, %D
Out[11]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 19, 42<,

AccumulatedIterations → 8, SOM → None<D
Due to the randomness in the initialization and in the training, it is likely that the result will change if you
reevaluate the example.

Look at the clustering of the modified network.

In[12]:= NetPlot@unsup, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

1

2

3
4

5

272 Neural Networks

You can change the options and plot the result in a different way. For example, by setting Voronoi→False
the positions of the codebook vectors are indicated with crosses. You can change the size of the crosses with
CbvSymbol.

Plot the positions of the estimated clusters.

In[13]:= NetPlot@unsup, x, y, Voronoi → False, CbvSymbol → 80.1, 0.2<,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

By submitting a training record to NetPlot, you obtain an illustration as to how the training proceeded.

In[14]:= NetPlot@fitrecord, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

1

2
3

4

567

8

The plot shows how the codebook vectors are changed from their initial positions to the final ones. The final
positions of the classification boundaries are also shown.

Chapter 10: Unsupervised Networks 273

You can also obtain intermediate plots during the training.

Plot the clustering during the training.

In[15]:= NetPlot@fitrecord, x, y, DataFormat → DataMapArray,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<,
Intervals → 3, CbvSymbol → 8TextStyle → 8FontSize → 20<<D

Unsupervised Clustering after

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 3

1234
5

67
8

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 0

12345678

274 Neural Networks

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 8

1

2
3

4
567

8

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 6

1

23

4
567

8

If you prefer an animation of the training progress, you can load <<Graphics`Animation` and then
change the command to Apply[ShowAnimation,NetPlot[fitrecord,x,y,Intervals→1, Datag
Format→DataMapArray,DisplayFunction→Identity]].

You can also check the mean distance between the data vectors and the codebook vectors.

In[16]:= UnsupervisedNetDistance@unsup, xD
Out[16]= 0.156935

Initialization is random, by default. Instead, you can use a SOM network to initialize the unsupervised
network, which usually avoids the problem with dead neurons. You can also submit options to Initializeg
UnsupervisedNet so that the result of the initial fitting with SOM is reported.

Chapter 10: Unsupervised Networks 275

Initialize an unsupervised network with six codebook vectors.

In[17]:= unsup = InitializeUnsupervisedNet@x, 6, UseSOM → True,
CriterionPlot → True, CriterionLog → True, Iterations → 20D

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.2

0.4

0.6

0.8

Mean Distance

Out[17]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 19, 47<,
AccumulatedIterations → 0, SOM → None, Connect → False<D

Note that although it was specified that SOM should be used in the initialization, the obtained network has
no SOM. If you want the network to have a SOM, you must specify this with the option SOM. See Section
10.1.1, InitializeUnsupervisedNet, to learn how this is done.

If UseSOM is set to True, then the initialization usually gives a fairly good result, but the performance can be
improved by further training.

In[18]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, unsupD;

0 5 10 15 20 25 30
Iterations

0.06

0.061

0.062

0.063

0.064

0.065

0.066

Mean Distance

276 Neural Networks

This time there are no warnings about dead neurons. Look at the result.

Plot the obtained unsupervised network together with the data.

In[19]:= NetPlot@unsup, x, y, Voronoi → False, CbvSymbol → 80.1, 0.2<,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Unsupervised Clustering

The clustering is more successful than earlier. There is one codebook vector at each cluster.

Check if the mean distance between the data vectors and the codebook vectors is smaller now.

In[20]:= UnsupervisedNetDistance@unsup, xD
Out[20]= 0.0597949

The clustering result can also be illustrated in a table in the following way.

Verify to which codebook vector the different data vectors are mapped.

In[21]:= NetPlot@unsup, x, y, DataFormat → TableD
Unsupervised Clustering

6:10 2:10 1:10 3:10 4:10 5:10

There is one box for each codebook vector, and in each box the number of data vectors from each class
belonging to that codebook vector is indicated. If you do not submit any data indicating the correct class, all

Chapter 10: Unsupervised Networks 277

data will be considered belonging to the same class. This gives the following, less informative table, where
only the number of data vectors belonging to each cluster is indicated.

In[22]:= NetPlot@unsup, x, DataFormat → TableD
Unsupervised Clustering

1:10 1:10 1:10 1:10 1:10 1:10

10.2.2 Clustering in Three-Dimensional Space

In this example, the unsupervised network is used to cluster three-dimensional data vectors. You can mod-
ify the data generating commands and rerun the example to test other data sets.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate and plot the data along a curve.

In[2]:= << Graphics`Graphics3D`;
x = N@Table@8 Cos@tD, Sin@tD, 0.3 t<,8t, 0, 3 Pi, Piê 20<DD;
xgraphics = ScatterPlot3D@x, AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

1

2

-1
-0.5

0
0.5

1
-0.5

0
0.5

278 Neural Networks

The data set does not consist of several clusters. Instead, the data is distributed along a curve. With an
unsupervised network it should be possible to detect and describe the data along the curve.

Initialize and train an unsupervised network with ten codebook vectors.

In[5]:= unsup = InitializeUnsupervisedNet@x, 10, UseSOM → TrueD;8unsup, fitrecord< = UnsupervisedNetFit@x, unsupD;

0 5 10 15 20 25 30
Iterations

0.3

0.325

0.35

0.375

0.4

0.425

0.45

Mean Distance

UnsupervisedNet::DeadNeuron :

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

If the displayed average distance has not converged, it could be worth continuing with additional training
iterations. This can be done with the batch training algorithm, which typically allows faster convergence if
the codebook vectors are close to the minimum.

Chapter 10: Unsupervised Networks 279

Apply three training iterations with the batch training algorithm.

In[7]:= 8unsup, fitrecord< =

UnsupervisedNetFit@x, unsup, 3, ReportFrequency → 1, Recursive → FalseD;

0 1 2 3
Iterations

0.295

0.296

0.297

0.298

0.299

0.3

0.301

Mean Distance

UnsupervisedNet::DeadNeuron :

Some codebook vectors are not used by the data. They
have 'died' during the training. Use UnUsedNeurons to find
out which they are and decide if you want to remove them.

In[8]:= unsup

Out[8]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 22, 17<,
AccumulatedIterations → 33, SOM → None<D

The codebook vectors are stored in the first argument of the UnsupervisedNet object. They can easily be
extracted and plotted.

280 Neural Networks

Extract and plot the codebook vectors together with the original data vectors.

In[9]:= cbv = unsup@@1DD;
cbvgraphics =

ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;
Show@cbvgraphics, xgraphics, DisplayFunction → $DisplayFunction,
AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

1

2

-1
-0.5

0
0.5

1
-0.5

0
0.5

10.2.3 Pitfalls with Skewed Data Density and Badly Scaled Data

In this section two examples are given whose data distributions are shown to impede successful clustering.
To some extent, this difficulty may be avoided by preprocessing the data using an appropriate linear
transformation.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

Clusters with Uneven Data Density

The data used consists of two clusters with very different numbers of data samples. Also, the data of the
larger cluster is more widespread.

Load the data for the example.

In[2]:= << unevendensity.dat;

Chapter 10: Unsupervised Networks 281

Look at the data.

In[3]:= NetClassificationPlot@x, yD

1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

The smaller cluster is situated in the lower-left corner. All its data vectors are close together. The other,
larger cluster exhibits a larger spread in its data vectors.

You will see that it is hard to detect a small cluster near a large one.

Train an unsupervised network with two codebook vectors.

In[4]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, 2D;

0 5 10 15 20 25 30
Iterations

0.45

0.475

0.5

0.525

0.55

0.575

0.6

0.625

Mean Distance

282 Neural Networks

Display the trained network.

In[5]:= NetPlot@unsup, x, yD

1.5 2 2.5 3 3.5

1

1.5

2

2.5

3
Unsupervised Clustering

1

2

Both codebook vectors have been placed in the large cluster. This can be avoided if you compensate for the
skewed data distributions of the clusters. For example, it might be possible to remove some of the data
vectors of the larger cluster. It might also be possible to use more codebook vectors so that several of them
can be used to explain the large cluster.

Skewed Data Distributions

Consider now the following case where the data distribution is very skewed.

Load and look at the data.

In[6]:= << skewed.dat;
NetClassificationPlot@x, yD

1 2 3 4 5

0

1

2

3

Chapter 10: Unsupervised Networks 283

The two clusters have very unsymmetrical distributions and there is a clear “direction” in the data.

Train an unsupervised network with two codebook vectors.

In[8]:= 8unsup, fitrecord< = UnsupervisedNetFit@x, 2D;

0 5 10 15 20 25 30
Iterations

0.75

0.8

0.85

0.9

0.95

Mean Distance

Look at the result.

In[9]:= NetPlot@unsup, x, yD

1 2 3 4 5

0

1

2

3

Unsupervised Clustering

1

2

Instead of one codebook vector appearing in each cluster, they have both converged to points in between the
clusters, dividing the clusters in the middle. This is due to the skewed data distribution. If the data is prepro-
cessed with a linear transformation so that the clusters become symmetric, then this problem may be
avoided.

284 Neural Networks

10.3 Examples with Self-Organizing Maps

If the unsupervised network is supplied with a neighbor feature so that not only the distance between the
data vectors and the closest codebook vector is minimized, but also the distance between the codebook
vectors, then you have a SOM network—a self-organizing map. SOM networks are often also called Kohonen
networks.

The aim of a SOM network is to find a mapping from the space of dimension equal to the number of compo-
nents of the data vectors to a one- or two-dimensional space. The mapping should preserve “closeness”
between data vectors; that is, two data vectors that are close to one another in the original space should be
mapped to points (codebook vectors) of the new space that are also close to one another. This idea will be
illustrated with some examples.

Notice that if you re-evaluate the examples you will not obtain exactly the same results due to the random-
ness in the initialization. There are several local minima where the training may converge to.

10.3.1 Mapping from Two to One Dimensions

If not done already, make the Neural Networks package available.

Read in the Neural Networks package and the two-dimensional data in six different clusters.

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;

The data set x is a matrix with one data vector on each row. The number of columns indicates the dimension-
ality of the input space.

The SOM training algorithm does not use any output data, but it can still be interesting to keep track of the
clusters to which the various data vectors belong. This information is stored in y, following the standard
format of the package as described in Section 3.2, Package Conventions.

Chapter 10: Unsupervised Networks 285

Look at the data indicating the different clusters.

In[3]:= NetClassificationPlot@x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

The aim of the SOM network is now to find a one-dimensional relationship among the clusters. Since there
are six clusters, at least six neurons are needed. The neighbor structure is indicated with the option SOM, and
by setting it to 86, 1< you obtain a one-dimensional structure with six clusters in a column. As opposed to this
small example, the true number of clusters is usually unknown. Then you have to experiment with networks
of different sizes. Often it can be advantageous to have more codebook vectors than clusters. If you re-evalu-
ate this example with a different number of codebook vectors you will see that there are typically fewer
problems with local minima if you add a couple more codebook vectors.

Define and fit a SOM network with six clusters.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 6, SOM → 86, 1<D;

0 5 10 15 20 25 30
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mean Distance

286 Neural Networks

The specified neighbor feature is now stored as a rule in the second element of the unsupervised network.

In[5]:= somnet

Out[5]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 25, 14<,
Connect → False, SOM → 86, 1<, AccumulatedIterations → 30<D

Provide information about the network.

In[6]:= NetInformation@somnetD
Out[6]= Unsupervised net with a self−organizing map with 6 codebook vectors organized as

a 6 x 1 array. Takes data vectors with 2 components. Created 2002−4−3 at 14:25.

The obtained SOM network can be evaluated directly on new input data vectors. The neurons are related to
a structure as indicated by the option SOM, and the outputs are the coordinates of the winning neurons
within this structure.

Evaluate the SOM network on a new input data vector.

In[7]:= somnet@80.1, 1.2<D
Out[7]= 885, 1<<
The two coordinates give the position of the winning neuron within the SOM structure. In this example,
only one of the coordinates varies since a one-dimensional SOM structure was chosen. You can also evaluate
a SOM network using the option SOM→False. Then you obtain the number of the winning codebook vector.

Evaluate the SOM network obtaining the number of the winning codebook vector.

In[8]:= somnet@80.1, 1.2<, SOM → FalseD
Out[8]= 85<
Since the data space has two dimensions, the result can be displayed with NetPlot.

Chapter 10: Unsupervised Networks 287

Plot the fitted SOM network.

In[9]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

You can also check how the training process developed. This is done by submitting the training record.

In[10]:= NetPlot@fitrecord, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

In the plot you can see how the codebook vectors change from the initial position in the center toward their
final positions during the training.

If the training has not converged, you can call UnsupervisedNetFit once again. It will start with the
submitted model so that you do not have to redo the earlier iterations.

288 Neural Networks

Continue the training further.

In[11]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnetD;

0 5 10 15 20 25 30
Iterations

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Mean Distance

If the codebook vectors have gotten fairly close to their minimum, it might be better to apply a few training
iterations to the batch algorithm rather than to the recursive one.

Apply three steps to the batch training algorithm.

In[12]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;

0 1 2 3
Iterations

0.151

0.1512

0.1514

0.1516

Mean Distance

Chapter 10: Unsupervised Networks 289

Display the trained SOM network.

In[13]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

If NetPlot is evaluated with the option DataMap→Table, then a table is given that indicates which data
vectors are mapped to which codebook vectors. If the dimension of the data space is higher than two, then
this is the default (and only) way for NetPlot to display the result.

Verify to which codebook vector the different data vectors are mapped.

In[14]:= NetPlot@somnet, x, y, DataFormat → TableD
SOM Clustering

6:5 6:5 5:10 4:10 2:10

3:10

1:10

The table shows that both codebook vectors one and two are placed at the sixth cluster, and that the fifth
codebook vector is used for both clusters two and three. This could also be seen from the earlier plots with
the data and the codebook vectors. Notice that you will obtain different results if you re-evaluate the
example.

The obtained SOM network can be used to map any number of data vectors of the correct dimension. The
outputs are the indices of the codebook vector that is closest to the data vector.

290 Neural Networks

Map two vectors with the SOM network.

In[15]:= somnet@881, 2<, 80, 0<<D
Out[15]= 884, 1<, 86, 1<<
The mean Euclidian distance between a set of data vectors and their nearest codebook vector is given by the
command UnsupervisedNetDistance.

Determine the mean distance between data and codebook vectors.

In[16]:= UnsupervisedNetDistance@somnet, 881, 2<, 80, 0<<D
Out[16]= 0.0153328

This gives a measure of how well the submitted data set is described by the SOM network.

You may remove some of the codebook vectors from the SOM network using NeuronDelete. You have to
indicate the rows and the columns to be removed. In this example there is only one column; that is, there is
only one codebook vector on each row. Remove the first and the third rows. Notice, however, that dead
neurons are not necessarily a nuisance for a SOM network. In the training, the positions of the codebook
vectors are determined by both the closeness to the data and closeness to each other. Therefore, a codebook
vector which is not used by any data can still form a bridge between two clusters. You can see this by re-eval-
uating this example with SOM networks and more codebook vectors.

Remove the first and the third codebook vectors.

In[17]:= somnet = NeuronDelete@somnet, 881, 3<, 8<<D
Out[17]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 25, 16<,

Connect → False, SOM → 84, 1<, AccumulatedIterations → 63<D

Chapter 10: Unsupervised Networks 291

Look at the clustering of the modified network.

In[18]:= NetPlot@somnet, x, y,
SymbolStyle → 8Hue@.1D, Hue@.2D, Hue@.0D, Hue@.4D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

10.3.2 Mapping from Two Dimensions to a Ring

A one-dimensional SOM network can be connected into a ring. This might be favorable in some cases where
you might be trying to find a one-dimensional cyclic behavior in the data in a high-dimensional space. For
clarity, this is demonstrated in a two-dimensional space.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << classesinring.dat;

292 Neural Networks

Look at the data.

In[3]:= NetClassificationPlot@x, yD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

From the data plot you can see that the data consists of eight clusters, and they can be connected into a ring.
A SOM network will be used to find this relation. By giving the option Connect→True when the network is
initialized, you indicate that the codebook vectors should be connected into a ring.

Initialize and train a SOM network with eight codebook vectors that are connected into a ring.

In[4]:= 8somnet, fitrecord< =

UnsupervisedNetFit@x, 8, 30, SOM → 88, 1<, ReportFrequency → 5, Connect → TrueD;

0 5 10 15 20 25 30
Iterations

0.2

0.4

0.6

0.8

1
Mean Distance

A few steps with the batch training is recommended if the average distance has not converged in the recur-
sive training.

Chapter 10: Unsupervised Networks 293

Apply three training iterations in batch mode.

In[5]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;

0 1 2 3
Iterations

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Mean Distance

Plot the SOM network and the data.

In[6]:= NetPlot@somnet, x, yD

0 0.5 1 1.5 2

0

0.5

1

1.5

2

SOM Clustering

Display the result in a table.

In[7]:= NetPlot@somnet, x, y, DataFormat → TableD
SOM Clustering

5:10 4:10 3:10 2:10 1:10 8:10 7:10 6:10

294 Neural Networks

Ideally there should be only one data cluster at each codebook vector, but often the algorithm is caught in a
local minimum, and then there might be several data clusters mapped on a common codebook vector.
Notice that you will obtain a different result if you repeat the example, due to the randomness in the
algorithms.

It is also possible to use more codebook vectors than you have data clusters. Then there will be several
codebook vectors describing some of the clusters. You can go back and change the number of codebook
vectors and repeat the example.

This example considered a one-dimensional SOM mapping. Two-dimensional SOM networks can also be
given the option Connect. They are then connected only in the first of the two dimensions, and a topologi-
cal cylinder is formed.

10.3.3 Adding a SOM to an Existing Unsupervised Network

It is possible to change the neighbor structure of an already-existing unsupervised network. The example
demonstrates how this is done.

Read in the Neural Networks package and load a data set.

In[1]:= << NeuralNetworks`

In[2]:= << sixclasses.dat;

Initialize an unsupervised network without any neighbor structure.

In[3]:= unsup = InitializeUnsupervisedNet@x, 6D
Out[3]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 29, 19<,

AccumulatedIterations → 0, SOM → None, Connect → False<D
The neighbor structure is now specified in the call to UnsupervisedNetFit using the options SOM and
Connect.

Chapter 10: Unsupervised Networks 295

Train the unsupervised network and specify the neighbor structure.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, unsup, 50, SOM → 86, 1<, Connect → TrueD;

0 5 10 15 20 25 30 35 40 45 50
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mean Distance

In[5]:= somnet

Out[5]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 29, 24<,
Connect → True, SOM → 86, 1<, AccumulatedIterations → 50<D

The neighbor structure is now stored in the network with the replacement rule SOM→{} .

10.3.4 Mapping from Two to Two Dimensions

In this example a SOM network is used to quantize a two-dimensional space. The data space contains two
dimensions and a two-dimensional SOM network is used. Hence, there is no reduction in the dimensionality
of the data, but the mapping could be used to quantize the information in the original data. In addition to
the quantization, there is also the neighbor effect of the SOM network.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << two2twosom.dat;

The data vectors are placed in matrix x with one input vector on each row.

296 Neural Networks

Look at the data.

In[3]:= NetClassificationPlot@xD

0.5 1 1.5 2 2.5 3 3.5
-4

-2

0

2

4

The data vectors are unevenly distributed as shown in the plot. The training of the SOM network will place
more codebook vectors in regions where data is most concentrated.

Define and train a SOM network with 5 × 4 codebook vectors.

In[4]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 20, 30, SOM → 85, 4<, ReportFrequency → 5D;

0 5 10 15 20 25 30
Iterations

0.5
0.75

1
1.25
1.5
1.75

2
Mean Distance

Chapter 10: Unsupervised Networks 297

Plot the trained SOM network.

In[5]:= NetPlot@somnet, xD

0.5 1 1.5 2 2.5 3 3.5
-4

-2

0

2

4
SOM Clustering

When the codebook vectors have gotten fairly close to their minima, it is often advantageous to apply a few
training iterations with the batch algorithm.

Perform three additional iterations with the batch training algorithm.

In[6]:= 8somnet, fitrecord< =

UnsupervisedNetFit@x, somnet, 3, ReportFrequency → 1, Recursive → FalseD;

0 1 2 3
Iterations

0.3575

0.36

0.3625

0.365

0.3675

0.37

0.3725

0.375

Mean Distance

298 Neural Networks

Plot the final SOM network.

In[7]:= NetPlot@somnet, xD

0.5 1 1.5 2 2.5 3 3.5
-4

-2

0

2

4
SOM Clustering

As illustrated in the plot, the codebook vectors are placed closer where data concentrations are higher.

If NetPlot is called with DataMap→Table, you can see how many data vectors are mapped to each of the
codebook vectors.

In[8]:= NetPlot@somnet, x, DataFormat → TableD
SOM Clustering

1:3

1:4

1:3

1:9

1:2

1:2

1:5

1:7

1:4

1:6

1:4

1:9

1:7

1:5

1:3

1:8

1:8

1:7

1:4

Chapter 10: Unsupervised Networks 299

10.3.5 Mapping from Three to One Dimensions

This example illustrates how a SOM network can be used to find a one-dimensional relationship in a three-di-
mensional space. First, data samples are generated along a curve. You can modify the example by making
changes in the data generating commands and rerun the commands.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Generate data along a curve.

In[2]:= << Graphics`Graphics3D`;
x = N@Table@8 Cos@tD, Sin@tD, 0.3 t<,8t, 0, 3 Pi, Piê 20<DD;
xgraphics = ScatterPlot3D@x, AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

1

2

-1
-0.5

0
0 5

1
-0.5

0
0.5

A knot on the chain of codebook vectors may occur, but the risk of this is typically smaller when the dimen-
sion of the data space is larger than two. A nonsymmetric neighbor function, which is the default, reduces
the risk for knots. Here, because the data space is of dimension three, the option Neighbor→Symmetric is
chosen.

300 Neural Networks

Train a SOM network with ten codebook vectors.

In[5]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 10, SOM → 810, 1<, Neighbor → SymmetricD;

0 5 10 15 20 25 30
Iterations

0.4

0.6

0.8

1

1.2

Mean Distance

If the displayed average distance has not converged, it could be worth continuing with additional training
iterations. Doing this with the batch training algorithm is often advantageous when you are close to the
minimum.

Perform three training iterations with the batch training algorithm.

In[6]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, somnet, 3, Recursive → FalseD;

0 1 2 3
Iterations

0.25

0.255

0.26

0.265

0.27

Mean Distance

In[7]:= somnet

Out[7]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 30, 39<,
Connect → False, SOM → 810, 1<, AccumulatedIterations → 33<D

The codebook vectors are stored in the first element of the SOM object. They can easily be extracted and
plotted.

Chapter 10: Unsupervised Networks 301

Extract and plot codebook vectors together with the original data vectors.

In[8]:= cbv = somnet@@1DD;
cbvgraphics =

ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@8D, DisplayFunction → IdentityD;
Show@cbvgraphics, xgraphics, DisplayFunction → $DisplayFunction,
AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0

1

2

-1
-0.5

0
0.5

1
-0.5

0
0.5

10.3.6 Mapping from Three to Two Dimensions

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

This example illustrates how a SOM network can be used to find and model a surface in a three-dimensional
space.

302 Neural Networks

Generate data and look at the surface spanned by the data vectors.

In[2]:= << Graphics`Graphics3D`;
apts = N@Table@8Cos@tD Cos@uD, Sin@tD Cos@uD,
Sin@uD<, 8t, 0, Pi, Piê5<, 8u, Piê2, Pi, Piê10<DD;
xgraphics = ListSurfacePlot3D@apts, ViewPoint −> 8−2.325, 2.146, −1.200<D
x = Flatten@apts, 1D;

There is one data vector at each vertex in the plot.

Look at the dimensionality of the data vectors.

In[6]:= Dimensions@xD
Out[6]= 836, 3<
There are 36 data vectors in a three-dimensional space.

Chapter 10: Unsupervised Networks 303

Initialize and fit a SOM network with 4 × 5 codebook vectors.

In[7]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 20,
70, SOM → 84, 5<, ReportFrequency → 5, Neighbor → SymmetricD;

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Iterations

0.2

0.3

0.4

0.5

0.6

Mean Distance

Extract the codebook vectors, which are stored in the first element of the SOM network, and plot them.

In[8]:= cbv = somnet@@1DD;
cbvgraphics = ScatterPlot3D@cbv, PlotStyle → AbsolutePointSize@7D,

ViewPoint −> 8−2.325, 2.146, −1.200<, AxesEdge → 88−1, −1<, Automatic, Automatic<D

-1

-0.5

0

0.5

-0.8
-0.6

-0.4
-0.2

0

0

0.25

0.5

0.75

1

0

1

This plot does not show very much. It becomes a bit clearer if the codebook vectors are plotted together with
the original surface representing the data vectors.

304 Neural Networks

Plot the codebook vectors together with the surface.

In[10]:= Show@cbvgraphics, xgraphicsD

-1

-0.5
0

0.5
1

-0.8
-0.6

-0.4
-0.2

0

0

0.25

0.5

0.75

1

0

1

10.4 Change Step Length and Neighbor Influence

There is a default function guiding the step length in the training of unsupervised networks, and another
function for the neighbor strength. These defaults were described in connection with the function UnsuperÖ
visedNetFit, and they have been chosen to suffice for a large variety of different problems. Both have been
chosen so that the step length and the neighbor strength become smaller when the number of training
iterations increase. Sometimes, however, depending on the data vectors and the chosen size of the unsuper-
vised network, it might be advantageous to apply other functions than the defaults. The easiest way to
modify the step length and neighbor strength is to submit numerical values in the two options StepLength
and NeighborStrength. That gives constant values to these parameters, and that might suffice in many
cases. The following describes more advanced changes involving functions for these options.

Read in the Neural Networks packages and load a data set.

In[1]:= << NeuralNetworks`

In[2]:= << two2twosom.dat;

The step length can be chosen to be any function that takes an integer indicating the number of the training
iteration and delivers a step size in the interval 80, 1<.

Chapter 10: Unsupervised Networks 305

Define a new step length function.

In[3]:= step = Function@n, 1êH5. + nLD
Out[3]= FunctionAn, 1

ccccccccccccccc
5. + n

E
The neighbor strength function and the neighbor matrix together dictate how much the neighbors of the
winning codebook vector are changed. With a strong neighbor strength, the codebook vectors will be kept
close to one another, while loose coupling will let them adapt more independently of each other. The neigh-
bor strength function enters the algorithm as a negative exponent, so that a larger value indicates a weaker
neighbor coupling (see Section 10.1.2, UnsupervisedNetFit). The function takes the training iteration number
as an input argument and returns a positive real value. Typically, the neighbor strength should have a low
value at the beginning of the training so that the codebook vectors obtain the correct orientation with respect
to one another. Then, as the training progresses, the coupling strength between the codebook vectors should
become weaker, which can be achieved if the neighbor strength function returns a larger value.

Here, a neighbor strength function is defined to return twice the iteration number. This yields a much faster
decrease in the coupling between the neighbors than the default.

Define a new function guiding the neighbor strength.

In[4]:= neighborstrength = Function@n, n∗2.D
Out[4]= Function@n, n 2.D
With the neighbor option you can specify the codebook vectors, or neurons, that are close to each other.
Using the default option NonSymmetric, or the other prespecified alternative Symmetric, makes Unsuperg
visedNetFit create a neighbor matrix automatically with the correct dimensions. A user-specified neigh-
bor matrix should have 2 c - 1 components in each dimension, where c is the number of codebook vectors in
the corresponding dimension. The center element, which corresponds to the winning codebook vectors,
should be zero. Then the winning codebook vector will be updated with the step length given by the step
length function. The other codebook vectors will also be updated, and their change is influenced by the
neighbor strength function; if the neighbor strength function gives larger values, then the neighbors are
changed less, as described in Section 10.1.2, UnsupervisedNetFit.

Specify a neighbor matrix for a SOM network with three codebook vectors in one direction and four in the
other. This means that the network has 12 codebook vectors. The elements are chosen to become larger in all
directions from the winning codebook vectors, which means that distant codebook vectors are influenced
less than those that are close to the winner.

306 Neural Networks

Define a neighbor matrix for a SOM network with 3 × 4 codebook vectors.

In[5]:= neighborMatrix =

i
k
jjjjjjjjjjjjjjjj
10 8 6 4 5 6 7
8 6 4 2 3 4 5
6 4 2 0 1 2 3
7 5 3 1 2 3 4
8 6 4 2 3 4 5

y
{
zzzzzzzzzzzzzzzz;

The new choices of step length, neighbor strength, and neighbor matrix can now be submitted as options to
UnsupervisedNetFit.

Train the SOM network with the modified algorithm.

In[6]:= 8somnet, fitrecord< = UnsupervisedNetFit@x, 12, 10, SOM → 83, 4<, StepLength → step,
NeighborStrength → neighborstrength, Neighbor → neighborMatrixD;

0 1 2 3 4 5 6 7 8 9 10
Iterations

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mean Distance

The trained SOM network can be evaluated in the same way as shown earlier in the other examples.

Chapter 10: Unsupervised Networks 307

10.5 Further Reading

There are many general books on neural networks, and most of them cover unsupervised methods. Here are
some suggestions:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

T. Kohonen, Self-Organizing Maps, Berlin, Germany, Springer-Verlag, 1995.

308 Neural Networks

11 Vector Quantization

Vector quantization networks are intended to be used for classification. Like unsupervised networks, the VQ
network is based on a set of codebook vectors. Each class has a subset of the codebook vectors associated to it,
and a data vector is assigned to the class to which the closest codebook vector belongs. In the neural network
literature, the codebook vectors are often called the neurons of the VQ network. In contrast to unsupervised
nets, VQ networks are trained with supervised training algorithms. This means that you need to supply
output data indicating the correct class of any particular input vector during the training.

Section 2.8, Unsupervised and Vector Quantization Networks, gives a short tutorial on VQ networks. Sec-
tion 11.1, Vector Quantization Network Functions and Options, describes the functions, and their options
and examples are given in Section 11.2, Examples. Section 11.3, Change Step Length, describes how you can
change the training algorithm by changing the step length.

11.1 Vector Quantization Network Functions and Options

This section introduces the commands to deal with VQ networks. Examples of the use of the commands
follow in Sections 11.2, Examples.

11.1.1 InitializeVQ

VQ networks are initialized with InitializeVQ. The initialization algorithm can be influenced by a
number of options.

InitializeVQ is called in the following way.

InitializeVQ@x,y,sizeD initializes a VQ net of indicated
size using input data x and output data y

Initializing a vector quantization network.

VQ networks are stored in objects with head VQ, on a format following the general standard of the package,
as described in Section 3.2, Package Conventions. The first component is a list of the codebook vectors.

The supplied data matrices x and y should have the format described in Section 3.2, Package Conventions.
The parameter size should be an integer or a list of integers with one component for each class. It specifies
the number of codebook vectors in the following way:

 è The integer indicates the total number of codebook vectors of the VQ network, which are distributed
uniformly over the classes. The first classes receive one vector more than the others if the number is
not a multiple of the number of classes.

 è The list of integers indicates the number of codebook vectors for each class. The total number of
codebook vectors is given by the sum of the components in this list.

A VQ network can be initialized in two different ways. The default is a random initialization, which sets all
codebook vectors to random values around the mean value of the data vectors in x. In most cases it is better
to initialize by using an unsupervised network for each class of the data. This is done by setting the option
UseUnsupervisedNet→True, and most of the options of InitializeVQ are used to control the training
of the unsupervised networks. Since an unsupervised network can be initialized using a SOM neighbor
map, it could also be interesting to change the behavior of the SOM training by passing on some options to
InitializeUnsupervisedNet. This can be done using the option SOMOptions, where you can submit
the options in a list. More details about the initialization may be found in Section 10.1.2, UnsupervisedNetFit.

InitializeVQ takes the following options. Notice that most of the options control the initial competitive
training with an unsupervised network. Therefore, they remain inactive if you do not set UseUnsuperg
visedNet→True.

310 Neural Networks

option default value

UseUnsupervisedNet False if True,
initializes the VQ net using an unsupervised net;
otherwise, random initialization is true

Compiled True applies the unsupervised training compiled

Iterations 6 number of iterations with the unsupervised net

Recursive False applies the competitive training in batch mode

InitialRange 0.01 initial range of the parameters
if the net is randomly initialized

StepLength Automatic step length function for the competitive training

SOMOptions 8< list of options to be used in
the initial training with the SOM net

CriterionPlot False gives no plot to present the result of the
training with the competitive algorithm

CriterionLog False logs no information about the
training with the competitive algorithm

CriterionLogExtN True if the CriterionLog option is set to True,
then presents the training
log in a separate notebook

ReportFrequency 2 if the CriterionLog option is set to True,
then the performance logs with
this frequency during the training

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of InitializeVQ.

Some of the options are set differently from those of InitializeUnsupervisedNet when used directly.
For example, using the default, no training results are reported. The default value of the StepLength
option is Function[If[#<3, 0.1, 0.5]].

A random initialization is much faster than using the initialization based on unsupervised networks. How-
ever, it is often worth the effort to use the unsupervised initialization since it will usually reduce the training

Chapter 11: Vector Quantization 311

required when VQFit is subsequently applied. This is illustrated in Section 11.2.1, VQ in Two-Dimensional
Space.

You can also include any set of vectors of appropriate dimension as initial codebook vectors in an existing
VQ network. In this way you can start the training at any point you wish, or write your own training algo-
rithm. How this is done is described in Section 13.1, Change the Parameter Values of an Existing Network.

The default of the option StepLength depends on whether the training is performed recursively or in
batch. The defaults are given in the following table.

1 if Recursive→False

Function@If@#<5, 0.01, 2.êH3+#LDD if Recursive→True

Default values of the StepLength option.

The step length can be modified with the StepLength option by submitting a numerical constant or a
function of choice. This is done the same way as for unsupervised networks and is also illustrated in Section
11.3, Change Step Length.

11.1.2 VQFit

An initialized VQ network can be trained with VQFit. It is also possible to start directly with VQFit with-
out an already initialized VQ network, but then you cannot influence the initialization with any options.

VQFit@x,y, sizeD initializes and trains a VQ network of indicated
size the default number of iterations, which is six

VQFit@x,y,size,iterationsD initializes and trains a VQ network of
indicated size a specified number of iterations

VQFit@x,y,netD trains a supplied VQ network the
default number of iterations, which is six

VQFit@x,y,net,iterationsD trains a supplied VQ network a specified number of iterations

Training a vector quantization network.

An existing network can be submitted for more training by setting net equal to the network or its training
record. The advantage of submitting the training record is that the information about the earlier training is
combined with the additional training.

312 Neural Networks

The input data vectors are indicated by x and the output by y.

VQFit returns a list of two variables. The first variable is the trained vector quantizer and the second vari-
able is a training record. The training record, with head VQRecord, can be used to analyze the progress of
the training and for validation, using the command NetPlot. You can also extract intermediate information
about the training from the training record, as described in Section 7.8, The Training Record.

Intermediate results during the training are displayed in a separate notebook, which is created automati-
cally. After each training iteration, the fraction of misclassified data is written out. The value 1 means that all
data vectors are incorrectly classified, and 0 means that they are all correctly classified. Using the options of
VQFit, as described in Section 7.7, Options Controlling Training Results Presentation, you can change the
way the training results are presented.

If the number of training iterations is not supplied, the VQ learning algorithm will terminate in six itera-
tions. The necessary number of training iterations can vary substantially from one problem to another. If you
did not apply enough iterations, you can submit the VQ network to VQFit a second time to train further.
Consequently, you do not have to start from the beginning.

At the end of the training, the fraction of misclassified data versus the training iteration is displayed in a
plot, assuming this facility is not switched off with the option CriterionPlot.

A derived VQ network can be evaluated on data using the function evaluation rule. The output will indicate
the class to which the input is classified with a 1 in the corresponding column.

net@xD evaluates net on the input vector x

Function evaluation of a vector quantization network.

The input argument x can be a vector containing one input sample or a matrix containing one input sample
on each row.

VQ networks are stored in a format following the general standard of the package, as described in Section
3.2, Package Conventions. The first component contains a list of the codebook vectors, which you may
change directly as described in Section 13.1, Change the Parameter Values of an Existing Network.

VQFit takes the following options.

Chapter 11: Vector Quantization 313

option default value

StepLength Automatic positive numerical value or a function,
which determines the adaptation step
length as a function of the number of iterations

Recursive True recursive or batch training

Method LVQ1 training algorithm; alternative: Competitive

Compiled True uses the compiled version of the training algorithm

CriterionPlot True displays the fraction of misclassified
data versus the number of iterations
in a plot after the training is finished

CriterionLog True logs intermediate results during training

CriterionLogExtN True displays the fraction of
misclassified data in a separate notebook

ReportFrequency 1 report interval, in training iterations,
of the intermediate results
logged and displayed during training

MoreTrainingPrompt False prompts for more training iterations if set to True

Options of VQFit.

The options CriterionPlot, CriterionLog, CriterionLogExtN, ReportFrequency, and Moreg
TrainingPrompt are common in the other training commands in the Neural Networks package, and they
are described in Section 7.7, Options Controlling Training Results Presentation.

There are two possible training algorithms for VQ networks, and the choice is made with the option
Method. Both training algorithms can be applied recursively or in batch mode. The batch version just adds
up the contribution over the whole data set before the codebook vectors are changed. The default training
algorithm is the Learning Vector Quantization 1 (LVQ1) by Kohonen.

314 Neural Networks

LVQ1 is the recursive version of the algorithm and is described by the following steps:

 1. Begin with a given N input-output data vectors 8xk, yk<, k = 1, ..., N, in each update.

 2. k is chosen randomly from a uniform integer distribution between 1 and N, inclusively.

 3. The codebook vector closest to xk, called the winning neuron, or the winning codebook vector, is
identified. Its indices are indicated by 8i, j<, where j is the class it belongs to and i is the number of
the codebook vector within this class.

 4. The winning codebook vector is then changed in different ways depending on whether or not the
winning codebook vector is from the correct class according to yk. If xk is correctly classified, then
the winning codebook is changed as

(1)wi,j = wi,j + SL@nD ∗ Hxk − wi,jL
 otherwise the winning codebook vector is changed according to

(2)wi,j = wi,j − SL@nD ∗ Hxk − wi,jL
 where n is the iteration number.

 5. The described steps are repeated N times in each iteration.

Abbreviations have been used; SL[n] is the StepLength function, which may be changed by the option of
the same name.

With Recursive→False, all data is used in each iteration, and the training follows a deterministic scheme
where the mean value of the update given by Equation 11.1 and Equation 11.2 over all data8xk, yk<, k = 1, ... N is used.

The second possible training algorithm, Competitive, is the same training algorithm used for unsuper-
vised networks, but applied to one class at the time. The data is divided into the different classes according
to the information in the submitted output data, and in each training iteration the codebook vectors of each
class are updated using its data with the same algorithms as UnsupervisedNetFit.

11.1.3 NetInformation

Some information about a VQ network is presented in a string by the function NetInformation.

Chapter 11: Vector Quantization 315

NetInformation@vqD gives information about a VQ net

The NetInformation function.

11.1.4 VQDistance, VQPerformance, UnUsedNeurons, and NeuronDelete

The three following functions are used to test and validate VQ networks with respect to different aspects.

The function VQDistance gives the average Euclidian distance between the data vectors and the nearest
codebook vector of the supplied VQ network. There is no test when the data vectors are correctly classified.

VQDistance@vq,xD mean Euclidian distance between
data x and the nearest codebook vector

Average distance to the nearest codebook vector for a vector quantization network.

VQDistance has one option.

option default value

Compiled True uses compiled code

Option of VQDistance.

If VQDistance returns a small value, all the data vectors are close to a codebook vector, in which case the
quantization can be considered successful.

The function VQPerformance tests the classification performance of the VQ network. The output is the
fraction of misclassified data vectors. Therefore, 0 means that all vectors are correctly classified.

VQPerformance@vq,x,yD gives the fraction of data incorrectly classified by the VQ net

Fraction of misclassified data vectors.

The input data vectors are indicated by x and the output by y.

Sometimes there might be codebook vectors that are never used; that is, no data vectors are mapped to
them. These neurons are called dead neurons, or dead codebook vectors. Since these codebook vectors are not

316 Neural Networks

used by the data, they make the network more complicated than it has to be. It might be of interest to
remove them using NeuronDelete. The following command points out the dead neurons.

UnUsedNeurons@vq,xD gives the numbers of the
unused codebook vectors for each class

Find the unused codebook vectors.

The output is a list with one sublist for each class including the numbers of the unused neurons.

NeuronDelete is used to remove codebook vectors from an existing VQ network.

NeuronDelete@net, 8m, n<D deletes codebook vectors n of class m

Delete codebook vectors in an existing vector quantization network.

The second argument can also contain a list of codebook vectors to be removed.

11.1.5 NetPlot

The function NetPlot can be used to illustrate a VQ network and its training. Depending on the value of
option DataFormat, the result is displayed in different ways. If the argument net is chosen to be a trained
VQ network, you get an illustration of the network. If it is chosen to be a training record, the second output
argument of VQFit, then an illustration of the training is obtained.

NetPlot@net,x,yD information about a VQ net and
how it classifies data of given classes

NetPlot@net,xD information about a VQ net and how it classifies data

Illustrate a vector quantization network or its training.

The input data vectors are indicated by x and the output by y.

For two-dimensional data vectors, and with the default options, NetPlot plots the data, indicates the
positions of the codebook vectors with a number corresponding to the number of the class, and plots the
Voronoi cells of the codebook vectors.

Chapter 11: Vector Quantization 317

NetPlot takes the following options.

option default value

DataFormat Automatic indicates how the data is to be illustrated;
default depends on the dimension of the data,
with different possibilities described in the following

Voronoi True displays Voronoi cells

CbvSymbol Automatic changes the symbol indicating the codebook vectors

Intervals 5 interval of training iterations between
plots in the graphics array of NetPlot

Compiled True uses compiled version

Options of NetPlot.

Depending on how the option DataFormat is set, one of the functions MultipleListPlot, BarChart, or
BarChart3D is used. Any options of these functions can be given in the call to PlotVQ, and they are then
passed on to the plot command.

The option DataFormat takes the following values.

DataMap as the default for two-dimensional problems,
gives a plot of the data together with the codebook vectors

BarChart illustrates the classification result with a bar chart

Table gives a table with one box for each class;
in each box indicates the number of data
vectors from each class classified to this class

ClassPerformance as the default for training records
when the input dimension is larger than two,
plots the classification performance versus training iterations

DataMapArray gives a graphics array of the
progress of the clustering during training;
applies only to two-dimensional problems

Possible values of DataFormat.

318 Neural Networks

The two last possibilities only apply when NetPlot is applied to a training record.

If the dimension of the codebook vectors is higher than two, then the default way to illustrate the classifica-
tion is to use a bar chart.

A three-dimensional bar chart plots the VQ-derived classifications of the input data against their actual
classifications known from the original given output data. If the two match perfectly, the chart consists of
three-dimensional bars along a diagonal, the heights of which are the class populations. Misclassifications
show up as nondiagonal columns.

If no output is supplied, the result is given in a two-dimensional bar chart. It illustrates the distribution of
the classification of the supplied data.

If the training record, the second output argument from VQFit, is submitted instead of the VQ network,
then the improvements of the VQ network during the training is illustrated using the logged intermediate
results at the frequency given by the ReportFrequency option of VQFit.

By supplying the training record and by choosing DataFormat→ClassPerformance, the classification
result for each class can be plotted versus the number of training iterations. The other possible values of
DataFormat give graphics arrays of the corresponding result when NetPlot is applied to a VQ network.
Each plot in the array illustrates the result at a certain stage of the training.

If Voronoi→True, then the default of CbvSymbol is to indicate each codebook vector with its number in
the network. You can change this by submitting a list of symbols. You can also use this option to include
options of Text, which then modifies only the codebook’s marks, and not the plot label and the axes.

Instead of displaying the Voronoi cells, you can have a cross at the position of each codebook vector. This is
done by choosing Voronoi→False. The size of the crosses is automatically set, but you can change it by
setting the option CbvSymbol to a list of numbers indicating the desired size.

11.2 Examples

In this section VQ networks are used for classification in some small examples. The first two examples
illustrate the commands. Then, a series of examples follows, illustrating some possible problems you may
encounter using VQ nets. The last example illustrates the different initialization algorithms.

It is always easier to illustrate the data and the classifier in two-dimensional problems; so, most of the
examples are constrained to that dimensionality for didactic reasons.

Chapter 11: Vector Quantization 319

11.2.1 VQ in Two-Dimensional Space

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The file vqthreeclasses.dat contains two-dimensional data divided into three classes, consisting of two
clusters.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

The data vectors are stored in the matrix x with one data vector per row. The correct classes of the data
vectors are indicated in the output data y. The data format follows the general standard of the package as
described in Section 3.2, Package Conventions.

It is always instructive to look at data. By visually inspecting the plot you may understand the classification
problem better, which will help you make better decisions in the problem-solving process. In this case, you
have two-dimensional data that can be plotted right away.

Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

From the plot, it is evident that the data is divided into six clusters. Also the clusters form pairs so that there
are three classes with two clusters in each.

320 Neural Networks

Initialize and train a VQ network with seven codebook vectors for eight iterations. The codebook vectors
will be distributed among the three classes, giving three for the first class and two each for the two last
classes. This is obviously one more than necessary, which will be illustrated in the plots.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 7, 8D;

0 1 2 3 4 5 6 7 8
Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

Fraction Misclassified

VQFit::DeadNeuron :

Some codebook vectors are not used by the data. They have 'died'
during the training. Use UnUsedNeurons to find out
which they are and decide if you want to remove them.

At the end of the training, the criterion, the fraction of misclassified data vectors, is plotted. From the plot
you can decide if more training iterations are necessary.

The warning message VQFit::DeadNeuron indicates that there are codebook vectors not being used in the
classification. This will be investigated in the following section.

The training can be illustrated using the training record and the function NetPlot. In the two-dimensional
case the default is to plot the evolution of the codebook vectors during the training, the Voronoi cells of the
final classifier, and the data, all together.

Chapter 11: Vector Quantization 321

Plot the development of the classifier.

In[5]:= NetPlot@fitrecord, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1 1

1

2

2
33

From this plot you can see the unused codebook vector.

Illustrate the training with a series of plots.

In[6]:= NetPlot@fitrecord, x, y, DataFormat → DataMapArray,
SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<, Voronoi → FalseD

VQ Classification after

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 0

322 Neural Networks

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 8

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Iteration: 5

If you prefer, you can animate the results as described in Section 5.2.1, Function Approximation in One
Dimension.

The unused codebook vector can be identified from the previous plots, or with the help of UnUsedNeug
rons. Then, you can remove it using NeuronDelete. Notice that the result given from UnUsedNeurons
has to be modified slightly to fit the input format of NeuronDelete.

Chapter 11: Vector Quantization 323

Identify the unused codebook vector and remove it.

In[7]:= UnUsedNeurons@vq, xD81, Flatten@%D@@1DD<
vq = NeuronDelete@vq, %D

Out[7]= 881<, 8<, 8<<
Out[8]= 81, 1<
Out[9]= VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 33, 3<, AccumulatedIterations → 8<D

Look at the classification with the modified network.

In[10]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1

1

2

2
33

It is often good to end the training with a few iterations of the training algorithm in batch mode. You should
also always consider applying more training after the network structure has been modified.

324 Neural Networks

Apply three additional training iterations with the batch algorithm.

In[11]:= 8vq, fitrecord2< = VQFit@x, y, vq, 3, Recursive → FalseD;

0 1 2 3
Iterations

-1

-0.5

0

0.5

1
Fraction Misclassified

Although the classification performance is perfect already at the beginning of this additional training, in
general, this training will fine-tune the positions of the codebook vectors.

The obtained VQ network can be evaluated on any (new) data vectors by just using the evaluation rule for
VQ objects.

Evaluate the VQ network on two data vectors.

In[12]:= vq@881, 1<, 83, 3<<D
Out[12]= 880, 0, 1<, 80, 0, 1<<
The class to which the data vectors are classified is indicated by the columns that contain a 1. The evaluation
rule is actually everything you need to use the VQ network. You can use all available Mathematica com-
mands to illustrate the result. There are, however, some commands available to facilitate the illustration and
use of VQ networks.

Find the percentage of misclassified data vectors.

In[13]:= VQPerformance@vq, x, yD ∗100

Out[13]= 0

Chapter 11: Vector Quantization 325

Find the average distance between the data vectors and the closest codebook vector.

In[14]:= VQDistance@vq, xD
Out[14]= 0.116431

Display the obtained classifier together with the data.

In[15]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<,
CbvSymbol → 8TextStyle → 8FontSize → 30, FontFamily → "Times"<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1

1

2

2
33

Using the command NetPlot, the classification result can be presented in several ways. If the DataFormat
option is set to BarChart, you obtain a three-dimensional bar chart where the diagonal bars correspond to
correctly classified data vectors, and the off-diagonal ones correspond to misclassified data vectors.

Display the result with bar charts.

In[16]:= NetPlot@vq, x, y, DataFormat → BarChartD
1

2
3Data

1

2
3 Model

0

5

10

15

20

Samples

1

2
3 Model

326 Neural Networks

The heights of the columns in the bar chart correspond to the number of data vectors. When the classifica-
tion is exact, the bar chart has only diagonal columns, each of which represents a class and has a height
equal to that class’s population. If some vectors of a given class are classified incorrectly by the VQ network
model, an off-diagonal column will be shown with the appropriate height.

If no output is supplied, the result is given in a two-dimensional bar chart. It illustrates the distribution of
the classification of the supplied data.

Illustrate the classification result without output data.

In[17]:= NetPlot@vq, x, DataFormat → BarChartD

1 2 3
Class

5

10

15

20

Samples

If the training record, the second output argument from VQFit, is submitted instead of the VQ network,
then the improvements of the VQ network during the training can be illustrated. The intermediate result
during the training was logged by the frequency given by the ReportFrequency option of VQFit.

By choosing DataFormat→ClassPerformance the classification result for each class is plotted.

Chapter 11: Vector Quantization 327

Plot the classification versus training iteration.

In[18]:= NetPlot@fitrecord, x, y, DataFormat → ClassPerformanceD
Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8
Iterations

5

10

15

20
Samples Class: 3

0 1 2 3 4 5 6 7 8
Iterations

5

10

15

20
Samples Class: 2

0 1 2 3 4 5 6 7 8
Iterations

5

10

15

20
Samples Class: 1

You can have a cross at the position of each codebook vector instead of the Voronoi cells. This is done by
choosing Voronoi→False. The size of the crosses is automatically set, but you can change it by setting the
option CbvSymbol to a list of numbers indicating the size desired.

328 Neural Networks

Illustrate the classification with crosses of specified size instead of Voronoi cells.

In[19]:= NetPlot@vq, x, y, Voronoi → False,
SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<, CbvSymbol → 80.2, 0.2<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

The label of the codebook vectors can be changed by using the option CbvSymbol, and you can also submit
any option of MultipleListPlot. Here the plot range is changed.

Choose other labels for the codebook vectors and modify the plot range.

In[20]:= NetPlot@vq, x, PlotRange → 88−0.5, 2.2<, 8−0.5, 2.5<<,
CbvSymbol → 8"a", "b", "c", "d", "e", "f", TextStyle → 8FontSize → 20<<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5
VQ Classification

a

b

c

d
ef

In the plot above there was no true output signal submitted in the call. Then all data are marked identically
in the plot. If you do not have the true output available, and you want to distinguish the data items classi-
fied to the different classes, you can include the classification according to the VQ network in the function

Chapter 11: Vector Quantization 329

call. However, notice the difference from the case when you submit the true output. It is only in the second
case that you can see misclassified data and get a feeling of the quality of the classifier.

Indicate the data classified to the different classes.

In[21]:= NetPlot@vq, x, vq@xD, SymbolStyle → 8Hue@.0D, Hue@.6D, Hue@.8D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

VQ Classification

1

1

2

2

33

The classification result can also be displayed in a table. Each entry in the table represents one class of the
VQ network and includes information about the data vectors assigned to that class. For each class, a series of
entries of the form a : b are given where a indicates the class label of the data, and b indicates the number of
samples from this class. For example, if the second entry is 2 : 20, 3 : 2, then this means that 20 samples from
class 2 and two samples from class 3 are assigned to class 2 by the network.

First the class label according to the supplied output data is given, followed by “:” , and then the number of
data vectors of this kind assigned to the class is given.

Present the classification with a table.

In[22]:= NetPlot@vq, x, y, DataFormat → TableD
VQ Classification

1:20 2:20 3:20

330 Neural Networks

11.2.2 VQ in Three-Dimensional Space

In this three-dimensional example it is harder to illustrate the classification result. However, since many real
problems are based on higher-dimensional data vectors, this example illustrates how you can proceed when
the data cannot be visualized in two-dimensional plots.

Read in the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << vqthreeclasses3D.dat;

The three-dimensional data set consists of three classes, each of which is divided into two clusters. The input
vectors are stored in the matrix x and the output vectors in the matrix y, following the standard format of
the package described in Section 3.2, Package Conventions.

Check the dimensionality.

In[3]:= Dimensions@xD
Dimensions@yD

Out[3]= 860, 3<
Out[4]= 860, 3<
Obviously, there are 60 three-dimensional data values divided into three classes.

You can check how the data is distributed between the different classes. If the distribution is very skewed,
you might want to take some measures (for example, selecting more data from the classes that might not be
well represented) prior to the training.

Chapter 11: Vector Quantization 331

Plot the distribution of data vectors over the classes.

In[5]:= NetClassificationPlot@x, yD

1 2 3
Class

5

10

15

20
Samples

Each bar represents the number of data vectors in that class.

It is possible to project the high-dimensional data vectors to a two-dimensional space and then look at the
projection. This is done by multiplying the input data vectors with a projection matrix.

Look at a projection of the data.

In[6]:= NetClassificationPlot@x . 881, 0<, 80, 0<, 80, 1<<,
y, SymbolStyle → 8Hue@.7D, Hue@.5D, Hue@.0D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

The problem is, of course, to decide how the projection matrix should be chosen. It is hard to give any
general recommendations other than that you should try several different projections.

332 Neural Networks

Choose a different projection.

In[7]:= NetClassificationPlot@x . 881, 0<, 80, 1<, 80, 0<<,
y, SymbolStyle → 8Hue@.7D, Hue@.5D, Hue@.0D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

If you find a projection so that the classes are well separated, then in most cases it is better to work on the
projected data. Here the original three-dimensional data is used. Train a VQ network to the data using six
codebook vectors.

Train a VQ network.

In[8]:= 8vq, fitrecord< = VQFit@x, y, 6D;

0 1 2 3 4 5 6
Iterations

0

0.2

0.4

0.6

0.8

Fraction Misclassified

The obtained VQ network can be evaluated in different ways. You can always use the standard evaluation
rule and then use general Mathematica commands to illustrate the result in a plot.

Chapter 11: Vector Quantization 333

Evaluate the VQ network on two data vectors.

In[9]:= vq@881, 1, 1<, 83, 3, 3<<D
Out[9]= 880, 0, 1<, 81, 0, 0<<
The number of the column designated by 1 is the class to which the corresponding data vector is assigned.

You can also use the special commands for illustrating VQ networks and their performance.

Get the fraction of the misclassified data vectors.

In[10]:= VQPerformance@vq, x, yD
Out[10]= 0

Check the mean distance between the data vectors and the codebook vectors.

In[11]:= VQDistance@vq, xD
Out[11]= 0.226935

By applying NetPlot to the training record you obtain one plot for each class showing the improvement of
the classifier versus training iterations.

Plot the improvement of the classification performance.

In[12]:= NetPlot@fitrecord, x, yD
Correctlyêincorrectly classified data

0 1 2 3 4 5 6
Iterations

5

10

15

20
Samples Class: 1

334 Neural Networks

0 1 2 3 4 5 6
Iterations

5

10

15

20

25
Samples Class: 3

0 1 2 3 4 5 6
Iterations

5

10

15

20
Samples Class: 2

Plot the classification result with bar charts.

In[13]:= NetPlot@vq, x, yD
1

2
3Data

1

2
3 Model

0

5

10

15

20

Samples

1

2
3 Model

The classification result can also be presented with a table. There is one entry for each class according to the
classification by the VQ network. At each entry the number of data vectors and their classes, as indicated by
the output data, are listed.

Chapter 11: Vector Quantization 335

Illustrate the classification with a table.

In[14]:= NetPlot@vq, x, y, DataFormat → TableD
VQ Classification

1:20 2:20 3:20

11.2.3 Overlapping Classes

When input data exhibits major overlaps among their various classes, the training algorithm for VQ net-
works must be able to cope. The LVQ1 algorithm’s codebook vectors will not be able to converge to the class
cluster centers when data vectors from other classes are in the vicinity. In fact, the code vectors will repel
away from vectors of incorrect classes. In contrast, the competitive algorithm is capable of dealing with this
situation by creating codebook vectors that are independent of data that are not from the class of interest.
This will be illustrated in a small example with two overlapping Gaussian clusters. See Section 10.1.2,
UnsupervisedNetFit, and Section 11.1.2, VQFit, for details on the algorithms.

Load the Neural Networks package and a data set consisting of two overlapping classes.

In[1]:= << NeuralNetworks`

In[2]:= << overlapping.dat;

The input data vectors are stored in the matrix x and the output in y following the standard format in Sec-
tion 3.2, Package Conventions.

336 Neural Networks

Look at the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-2 -1 0 1 2 3

-1

0

1

2

3

First a VQ network is trained using the default LVQ1 algorithm.

Train a VQ network with two codebook vectors using LVQ1.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 2, 15D;

0 2 4 6 8 10 12 14
Iterations

0.26

0.28

0.3

0.32

0.34

Fraction Misclassified

The mean distance between the data points and the codebook vector is the smallest possible if the codebook
vectors are placed in the center of the clusters.

The mean distance between the data vectors and the codebook vector.

In[5]:= VQDistance@vq, xD
Out[5]= 0.968518

Chapter 11: Vector Quantization 337

You can easily plot the position of the codebook vectors.

Plot the data and the classifier.

In[6]:= NetPlot@vq, x, y, Voronoi → False,
CbvSymbol → 81, 1<, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-2 -1 0 1 2 3
-2

-1

0

1

2

3
VQ Classification

This result will now be compared to the Competitive command.

Train a VQ network with competitive training algorithm.

In[7]:= 8vq, fitrecord< = VQFit@x, y, 2, 15, Method → CompetitiveD;

0 2 4 6 8 10 12 14
Iterations

0.3

0.4

0.5

0.6

Fraction Misclassified

Check the mean distance between the data points and the codebook vectors. It is a little bit smaller than
before when the LVQ1 algorithm was used. The reason for this is that the codebook vectors converge to the
cluster centers when the competitive algorithm is used.

338 Neural Networks

Find the mean distance between the data vectors and the codebook vector.

In[8]:= VQDistance@vq, xD
Out[8]= 0.881444

Look at the position of the codebook vectors and compare this plot with the earlier one obtained with LVQ1.

Plot the data and the codebook vectors.

In[9]:= NetPlot@vq, x, y, Voronoi → False,
CbvSymbol → 81, 1<, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-2 -1 0 1 2 3
-2

-1

0

1

2

3
VQ Classification

11.2.4 Skewed Data Densities and Badly Scaled Data

Input data vectors are classified to the closest codebook vector using the Euclidian distance. This might not
be a good distance measure if the data distributions are very skewed. Sometimes it is possible to scale the
data to circumvent this problem, but not always. In this example one possible problem is illustrated.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The file vqskewed.dat contains two-dimensional data from two classes with different distributions.

Load the data.

In[2]:= << vqskewed.dat;

Chapter 11: Vector Quantization 339

The input vectors are contained in x and the output in y according to the standard format of the Neural
Networks package described in Section 3.2, Package Conventions.

Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-1 0 1 2

0

1

2

3

4

As seen in the plot, the data distributions are very skewed. Consider a VQ network to classify the data
vectors using two codebook vectors, one for each class.

Train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 2D;

0 1 2 3 4 5 6
Iterations

0.02

0.03

0.04

0.05

0.06
Fraction Misclassified

Plot the data together with the classifier. Some data vectors will be incorrectly classified.

340 Neural Networks

Plot the data vectors and the classification result.

In[5]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-1 0 1 2

0

1

2

3

4

VQ Classification

1

2

Find the percentage of misclassified data vectors.

In[6]:= VQPerformance@vq, x, yD∗100
Out[6]= 3.5

Consider now a VQ network with more codebook vectors for each class. This will make it possible to
describe the extension of the data.

Train a VQ network with three codebook vectors for the first class and two for the second.

In[7]:= 8vq, fitrecord< = VQFit@x, y, 83, 2<D;

0 1 2 3 4 5 6
Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

Fraction Misclassified

Chapter 11: Vector Quantization 341

Plot the data vectors and the classification result.

In[8]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.7D, Hue@.0D<D

-1 0 1 2

0

1

2

3

4

VQ Classification

1
1

1

2

2

Now you have three codebook vectors representing the first class and two for the second one. In the plot
this is indicated by three codebook vectors labeled 1 and two labeled 2.

Is the classification any better than if only two codebook vectors are used?

Find the percentage of misclassified data vectors.

In[9]:= VQPerformance@vq, x, yD∗100
Out[9]= 0.5

11.2.5 Too Few Codebook Vectors

In this example you will see what can happen if you have too few codebook vectors for some of the classes.
There is no general rule describing how to choose the number of codebook vectors, so they have to be
chosen by trial and error in most cases.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << vqthreeclasses.dat;

The data vectors are stored in the matrix x with one data vector on each row. The data format follows the
general standard of the package as described in Section 3.2, Package Conventions.

342 Neural Networks

Plot the data.

In[3]:= NetClassificationPlot@x, y, SymbolStyle → 8Hue@.1D, Hue@.5D, Hue@.0D<D

0 0.5 1 1.5 2

0

0.5

1

1.5

2

The data is divided into three classes, each consisting of two clusters.

Initialize and train a VQ network with four codebook vectors. They will be distributed among the three
classes, giving two for the first class and one each for the other two classes.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 4D;

0 1 2 3 4 5 6
Iterations

0.3

0.4

0.5

0.6

0.7

0.8

Fraction Misclassified

Chapter 11: Vector Quantization 343

Display the obtained classifier together with the data.

In[5]:= NetPlot@vq, x, y, SymbolStyle → 8Hue@.1D, Hue@.5D, Hue@.0D<D

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

VQ Classification

1

1

2

3

The result is not very impressive, as is also evident in the bar chart.

Display the result with bar charts.

In[6]:= NetPlot@vq, x, y, DataFormat → BarChartD
1

2
3Data

1
2

3 Model

0
5
10

15

20

Samples

1
2

3 Model

The off-diagonal bars correspond to misclassified data vectors and, as you can see, there are plenty of them.
The reason for this is that there is only one codebook vector to describe two clusters. This happens for two of
the classes.

344 Neural Networks

11.3 Change Step Length

The option StepLength works for VQ networks exactly as it does for the unsupervised networks. If the
default does not suffice, you can supply another function that takes the iteration number as input and gives
the step length as output. You can also submit a numerical value, which gives a constant step length. These
possibilities are illustrated here.

Read in the Neural Networks package.

In[1]:= << NeuralNetworks`

A set of test data is used to illustrate the StepLength option.

Load the data vectors and output indicating class.

In[2]:= << vqthreeclasses.dat;

The input data vectors are stored in the matrix x and the output in y. The data format follows the general
standard of the Neural Networks package as described in Section 3.2, Package Conventions.

Define a function to give the step length as a function of the iteration number.

In[3]:= step = Function@n, 1êH5. + nLD;
The initialized VQ network is then trained with the new step length function.

Initialize and train a VQ network.

In[4]:= 8vq, fitrecord< = VQFit@x, y, 6, StepLength → stepD;

0 1 2 3 4 5 6
Iterations

0

0.1

0.2

0.3

0.4
Fraction Misclassified

Chapter 11: Vector Quantization 345

Instead of supplying a function, you can also submit a constant step length.

Train with a constant step length.

In[5]:= 8vq, fitrecord< = VQFit@x, y, 6, StepLength → 0.1D;

0 1 2 3 4 5 6
Iterations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fraction Misclassified

11.4 Further Reading

Most general books on neural networks cover vector quantization algorithms. Here are some suggestions:

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., New York, Macmillan, 1999.

J. Herz, A. Krough, R. G. Palmer, Introduction to the Theory of Neural Computation, Reading, MA, Addison-Wes-
ley, 1991.

T. Kohonen, Self-Organizing Maps, Berlin, Germany, Springer-Verlag, 1995.

346 Neural Networks

12 Application Examples

This chapter contains examples in which several different neural network models are applied and compared.

12.1 Classification of Paper Quality

In this example different neural classifiers are compared using data from a hybrid gas array sensor, an
electronic nose. The odors from five different cardboard papers from commercial manufacturers were
recorded with the electronic nose. Different kinds of classifiers will be trained to determine the origin of an
unknown sample.

The data was kindly contributed by the Swedish Sensor Centre, S-SENCE. (See their website at
www.ifm.liu.se/Applphys/S-SENCE.) More information on the data set can be found in “Identification of
paper quality using a hybrid electronic nose” by Martin Holmberg, Fredrik Winquist, Ingemar Lundström,
Julian W. Gardner, and Evor L. Hines, Sensors and Actuators B 26-27 (1995), pp. 246–249.

Load the Neural Networks package and the data.

In[1]:= << NeuralNetworks`

In[2]:= << paper.dat;

There is one data set for estimation, xs and ys, and one for validation of the classifiers, xv and yv.

Check the dimensions of the data.

In[3]:= Dimensions@xsD
Dimensions@ysD

Out[3]= 848, 15<
Out[4]= 848, 6<
There are 48 data samples available for estimation. Each paper sample is characterized by 15 x values from
the 15 sensors in the electronic nose sensor array.

Five different types of cardboard paper and plain air were measured, making six possible output classes.
The correct class of each data sample is stored in y, with a 1 in the appropriate column indicating the class of
the sample. This follows the general format of classification data described in Section 3.2.1, Data Format.

Check the class of the 27th sample of validation data.

In[5]:= yv@@27DD
Out[5]= 80, 0, 1, 0, 0, 0<
The 27th sample belongs to class 3.

It is always a good idea to check how many data samples there are from each class.

Look at the distribution of estimation data over the classes.

In[6]:= NetClassificationPlot@xs, ysD

1 2 3 4 5 6
Class

2

4

6

8

Samples

348 Neural Networks

Look at the distribution of validation data over the classes.

In[7]:= NetClassificationPlot@xv, yvD

1 2 3 4 5 6
Class

2

4

6

8

Samples

12.1.1 VQ Network

First, try a VQ network on the paper data. You need at least one codebook vector for each class, a minimum
of six codebook vectors. More information on the VQ network can be found in Chapter 11, Vector Quantiza-
tion. The result will vary each time the commands are evaluated, due to the random nature of the initializa-
tion and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;

Chapter 12: Application Examples 349

Initialize a VQ network with six codebook vectors and train it ten iterations with the Competitive algorithm.

In[4]:= 8vq, fitrecord< = VQFit@xs, ys, 6, 10, Method → CompetitiveD;

0 1 2 3 4 5 6 7 8 9 10
Iterations

0

0.2

0.4

0.6

0.8

1
Fraction Misclassified

Obtain some information about the trained network.

In[5]:= VQInformation@vqD
Out[5]= VQInformation@VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 39, 23<, AccumulatedIterations → 10<DD
The trained VQ network can now be used to classify paper samples by simply applying it to new data
vectors.

Use the trained VQ network to classify data sample 15 of the validation data.

In[6]:= vq@xs@@15DDD
Out[6]= 880, 0, 1, 0, 0, 0<<
The classification result can also be illustrated using NetPlot. Using NetPlot on a data set with more than
two dimensions produces a bar chart with the correctly classified samples on the diagonal. It is interesting to
compare the classification results of the estimation and validation data.

350 Neural Networks

Present the classification evaluated using estimation data.

In[7]:= NetPlot@vq, xs, ysD
1

2
3

4
5
6Data

1
2

3
4

5
6 Model

0
2

4

6

8

Samples

1
2

3
4

5 Model

Present the classification evaluated using validation data.

In[8]:= NetPlot@vq, xv, yvD
1

2
3

4
5

6
Data

1
2

3
4

5
6

Model

0

2

4

6

8

Samples

1
2

3
4

5 Model

From the plots, it is clear that most samples were correctly classified by the VQ network, although no
perfect classifications were obtained on the validation data. The off-diagonal bars correspond to incorrectly

Chapter 12: Application Examples 351

classified data and the x and y axes show from which classes they come. Another way to illustrate this is to
use the option Table.

Illustrate the classification on validation data with a table.

In[9]:= NetPlot@vq, xv, yv, DataFormat → TableD
VQ Classification

1:6 2:6 3:8 1:2
2:2
4:8

5:8 6:8

Each box illustrates the data assigned to a class. For example, the second box from the left shows that six
data samples from class 2 were assigned to the second class. Note that this may turn out differently if you
repeat the example.

You can also look at how the classification improves for each class as a function of the number of training
iterations. In this way you can see if there is a problem with any specific class.

Plot the progress of the classifier on the validation data.

In[10]:= NetPlot@fitrecord, xv, yvD
Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8 9 10
Iterations

1
2
3
4
5
6

Samples Class: 2

0 1 2 3 4 5 6 7 8 9 10
Iterations

1
2
3
4
5
6

Samples Class: 1

352 Neural Networks

0 1 2 3 4 5 6 7 8 9 10
Iterations

5

10

15

20

25
Samples Class: 6

0 1 2 3 4 5 6 7 8 9 10
Iterations

2
4
6
8

10
12

Samples Class: 5

0 1 2 3 4 5 6 7 8 9 10
Iterations

2.5
5

7.5
10

12.5
15

Samples Class: 4

0 1 2 3 4 5 6 7 8 9 10
Iterations

2

4

6

8
Samples Class: 3

The dashed lines indicate incorrectly classified data.

Chapter 12: Application Examples 353

12.1.2 RBF Network

An RBF network will be used on the cardboard paper data. RBF networks are often not suitable for use in
high-dimensional problems like this one, which has 15 input dimensions. It is, however, possible to choose
to use only a subset of the inputs. Choosing a subset of inputs can be seen as a simple form of feature extrac-
tion. To simplify the problem, only four inputs will be used and only four of the paper types will be classi-
fied. The result will vary each time the commands are evaluated due to the random nature of the initializa-
tion and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;

The data is described in the beginning of Section 12.1, Classification of Paper Quality.

Select input data from sensors 5, 6, 7, and 8, and class data from classes 3 through 6.

In[4]:= x2s = TakeColumns@xs, 85, 8<D;
y2s = TakeColumns@ys, 83, 6<D;
x2v = TakeColumns@xv, 85, 8<D;
y2v = TakeColumns@yv, 83, 6<D;

For classification, it is advantageous to add a sigmoidal nonlinearity at the output of the RBF network. This
constrains the output to the range 0 to 1. Also, a better-conditioned training problem is often obtained if the
linear submodel is excluded.

Initialize the RBF network with six neurons, no linear submodel, and a Sigmoid output nonlinearity.

In[8]:= rbf = InitializeRBFNet@x2s, y2s, 6, OutputNonlinearity→ Sigmoid, LinearPart → FalseD
Out[8]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82003, 9, 19, 8, 14, 50.0479376<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 4<D

354 Neural Networks

Train the RBF network for 20 iterations.

In[9]:= 8rbf2, fitrecord< = NeuralFit@rbf, x2s, y2s, 20D;

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.3

0.35

0.4

0.45

RMSE

The trained RBF network can now be used to classify input vectors by applying the network to them.

Classify the 24th paper data sample from the validation data.

In[10]:= rbf2@x2v@@24DDD
Out[10]= 80.163261, 0.164305, 0.106444, 0.562666<
The output of this RBF network is a real-valued function that takes values between 0 and 1. A crisp classifica-
tion can be obtained in various ways. A simple way is to set values larger than 0.5 to 1 and smaller than 0.5
to 0 in the following manner. (Here, True rather than 1 indicates the sample’s class.)

In[11]:= Map@# > 0.5 &, rbf2@x2v@@24DDDD
Out[11]= 8False, False, False, True<
The classification can also be displayed with a bar chart in which the correctly classified data is on the
diagonal and the incorrectly classified samples off the diagonal. A crisp classification can be obtained by
changing the output nonlinearity from the smooth step sigmoid to the discrete step by entering the option
OutputNonlinearity → UnitStep.

Chapter 12: Application Examples 355

Plot the classification result on the validation data.

In[12]:= NetPlot@rbf2, x2v, y2v, DataFormat → BarChart, OutputNonlinearity→ UnitStepD
1

2
3

4Data

1
2

3
4 Model

0
2
4

6

8

Samples

1
2

3
Model

The classification result is not particularly impressive, but due to the randomness in the initialization, you
may re-evaluate the example, and the result might become better.

Use NetPlot to look at the classification performance improvement during training for each class.

Plot the progress of the classifier on the validation data.

In[13]:= NetPlot@fitrecord, x2v, y2v,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD

Correctlyêincorrectly classified data

0 2 4 6 8 101214161820
Iterations

2.5
5

7.5
10

12.5
15

Samples Class: 1

356 Neural Networks

0 2 4 6 8 101214161820
Iterations

2
4
6
8
10
12
14

Samples Class: 4

0 2 4 6 8 101214161820
Iterations

2
4
6
8
10
12
14

Samples Class: 3

0 2 4 6 8 101214161820
Iterations

2

4

6

8

Samples Class: 2

You can repeat the example, selecting different components of the input values and different classes for the
output. Because the radial basis functions have local support where they are nonzero, the training often gets
trapped in poor local minima. Quite frequently, one of the classes will be totally misclassified. You will see
this if you re-evaluate the example with a different initialization of the RBF network. Correct classification is
obtained when there is one basis function at each class center. If any of the class centers has not managed to
attract a basis function during the training, then this class will not be correctly classified.

Chapter 12: Application Examples 357

12.1.3 Feedforward Network

Now try an FF neural network. As with RBF networks, a sigmoidal nonlinearity is added to the output so
that the outputs are constrained to the interval 0 to 1. The result will vary each time the commands are
evaluated due to the random nature of the initialization and training processes.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << paper.dat;

The data is described at the beginning of Section 12.1, Classification of Paper Quality.

Initialize an FF network without any hidden neurons.

In[4]:= fdfrwrd = InitializeFeedForwardNet@xs, ys, 8<, OutputNonlinearity → SigmoidD
Out[4]= FeedForwardNet@88w1<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 41, 47<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 15<D

Train the initialized network for ten iterations.

In[5]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, xs, ys, 10D;

0 1 2 3 4 5 6 7 8 9 10
Iterations

0

0.1

0.2

0.3

0.4

RMSE

The trained network can now be used to classify input vectors by applying the network to them.

358 Neural Networks

Classify sample 27 of the validation data.

In[6]:= fdfrwrd2@xv@@27DDD
Out[6]= 80.112388, 1.58075×10−11, 1., 1.59305×10−7, 0.0000494222, 0.000177795<

A crisp classification is obtained by setting all output values greater than 0.5 to True.

In[7]:= Map@# > 0.5 &, fdfrwrd2@xv@@27DDDD
Out[7]= 8False, False, True, False, False, False<
The 27th sample is correctly classified in class 3.

As with VQ and RBF networks, classification with FF networks can also be illustrated by a bar chart with
correctly classified data on the diagonal and incorrectly classified data on off-diagonal bars. By choosing
OutputNonlinearity → UnitStep the sigmoids at the outputs are changed to a discrete step. This
gives crisp classification.

Plot the classification result on the validation data.

In[8]:= NetPlot@fdfrwrd2, xv, yv, DataFormat → BarChart, OutputNonlinearity → UnitStepD
1

2
3

4
5
6Data

1
2

3
4

5
6 Model

0
2

4

6

8

Samples

1
2

3
4

5 Model

Chapter 12: Application Examples 359

Next, plot the classification performance improvement during training for each class.

Plot the progress of the classifier on the validation data.

In[9]:= NetPlot@fitrecord, xv, yv,
DataFormat → ClassPerformance, OutputNonlinearity → UnitStepD

Correctlyêincorrectly classified data

0 1 2 3 4 5 6 7 8 9 10
Iterations

5

10

15

20

25

Samples Class: 3

0 1 2 3 4 5 6 7 8 9 10
Iterations

5

10

15

20

Samples Class: 2

0 1 2 3 4 5 6 7 8 9 10
Iterations

5

10

15

20

Samples Class: 1

360 Neural Networks

0 1 2 3 4 5 6 7 8 910
Iterations

2.5
5

7.5
10

12.5
15

Samples Class: 6

0 1 2 3 4 5 6 7 8 910
Iterations

2.5
5

7.5
10

12.5
15

17.5
Samples Class: 5

0 1 2 3 4 5 6 7 8 9 10
Iterations

5

10

15

20

25
Samples Class: 4

You can repeat the example using different options for the neural network structure. For example, you can
introduce a layer of hidden neurons.

Three types of neural networks have been used to classify the paper quality data: VQ, RBF, and FF net-
works. What conclusion can you draw from the comparison? As mentioned before, RBF networks often
have problems with local minima, especially if the dimension of the input space is high. To reduce this
problem, only three of the available 15 dimensions were used. Of course, when 12 dimensions are
neglected, there is a danger that the remaining three dimensions do not contain enough information to
separate the classes. Therefore, RBF nets are not very good for this problem.

An FF network also may have problems with local minima, especially if you change the network and
include a hidden layer, but these problems are not as severe as for the RBF network. You can test for

Chapter 12: Application Examples 361

problems by re-evaluating the example a few times. Though the VQ does not have any problems with local
minima in this example, it may with other data. It is hard to say which classifier is the best, but the VQ
network was the easiest one to train.

12.2 Prediction of Currency Exchange Rate

In this example, data consist of the daily exchange rates of the British pound and the German mark com-
pared to the U.S. dollar from the beginning of 1987 to the end of 1997.

The data was contributed by Agustin Leon, Quantitative Research, Rotella Capital Management, whose
contribution is gratefully acknowledged.

Load Neural Networks, the additional Mathematica standard add-on package, and the data.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

In[3]:= << currency.dat;

Two time series have now been loaded. The variable ybr contains the exchange rate for the British pound,
and ydeu contains the rate for the German mark.

Check the time-series dimensions.

In[4]:= Dimensions@ybrD
Dimensions@ydeuD

Out[4]= 82856, 4<
Out[5]= 82849, 4<
Exchange rates from approximately 2850 days are available. There are four rates given for each day, repre-
senting the opening, high, low, and closing prices.

First concentrate on the German mark.

362 Neural Networks

Plot the high price of the German mark versus the day number.

In[6]:= ListPlot@Flatten@TakeColumns@ydeu, 82<DDD
500 1000 1500 2000 2500

1.4

1.5

1.6

1.7

1.8

1.9

Suppose you want to predict the opening price using the exchange rates from the previous day. Therefore,
the opening price is defined as the output of the process, which will be stored in y, and the three other rates
are defined as inputs and will be stored in u.

Divide the columns into input and output.

In[7]:= u = TakeColumns@ydeu, 82, 4<D;
y = TakeColumns@ydeu, 81<D;

The predictor model can be described by the following equation:

(1)ŷ HtL = g Hθ, x HtLL
Here ỳ HtL is the prediction of the output yHtL, the function g is the neural network model, q represents the
parameters of the model, and x(t) is the model’s regressor. The regressor is given by the following equation:

(2)x HtL = @y Ht − 1L u1 Ht − 1L u2 Ht − 1L u3 Ht − 1LDT
To have a fair test of the predictor, the data set is divided into training data and validation data. The second
data set will be used to validate and compare the different predictors. The following commands write the
training data into matrices ue and ye and the validation data into uv and yv.

Chapter 12: Application Examples 363

Divide the data into training and validation data.

In[9]:= ue = u@@Range@1000DDD;
ye = y@@Range@1000DDD;
uv = u@@Range@1001, 2000DDD;
yv = y@@Range@1001, 2000DDD;

NeuralARX is the appropriate neural model for this problem. Such a network is initialized and estimated by
the command NeuralARXFit as described in Chapter 8, Dynamic Neural Networks. First, a linear predic-
tor model will be estimated. To find this prediction, choose FeedForwardNet without hidden neurons. To
obtain the regressor in the form Equation 12.2, the regressor indices have to be chosen as follows: na = 81<,
nb = 81, 1, 1<, and nk = 81, 1, 1<.

Estimate a linear model for the currency prediction.

In[13]:= 8model1, fitrecord< = NeuralARXFit@ue, ye,881<, 81, 1, 1<, 81, 1, 1<<, FeedForwardNet, 8<, CriterionPlot → FalseD;
NeuralFit::LS :

The model is linear in the parameters. Only one training iteration is necessary
to reach the minimum. If no training iteration was performed, it is
because the fit was completed during the initialization of the network.

A linear model is just a linear combination of the regressor components and a DC-level parameter; that is, a
linear model in Equation 12.1 can be expressed as

(3)ŷ HtL = a1 y Ht − 1L + b1 u1 Ht − 1L + b2 u2 Ht − 1L + b3 u3 Ht − 1L + b4

If you look at the parameters of the trained model, you see that b3 is close to 1 and the rest of the parameters
are close to 0. This means that the opening exchange rate is most closely correlated with the closing rate of
the day before. This seems to be a very natural feature and you can, therefore, have some faith in the model.

In[14]:= model1@@1DD@8yy@t − 1D, u1@t − 1D, u2@t − 1D, u3@t − 1D<D
Out[14]= 80.00367334 − 0.0142261 u1@−1 + tD −

0.00706428 u2@−1 + tD + 1.02698 u3@−1 + tD − 0.00762763 yy@−1 + tD<
Before a nonlinear model is trained on the data, the one-step prediction on the validation data is evaluated.
Since the market is changing with time, the prediction is evaluated only on the 100 days following the
estimation data.

364 Neural Networks

Evaluate the one-step prediction on validation data.

In[15]:= NetComparePlot@uv, yv, model1, PredictHorizon → 1, ShowRange → 84, 100<D

20 40 60 80 100

1.45

1.5

1.55

1.6

1.65

1.7

Output signal: 1 RMSE: 0.00446857

The plot shows the predicted rate together with the true rate. The two curves are so close that you can
hardly see any difference between them. The RMSE of the prediction is also given, and you can also use it as
a measure of the quality of the predictor.

It is now time to try nonlinear models to see if they can predict better than the linear one. An FF network
with two hidden neurons is chosen. The regressor chosen is the same as for the linear model. A linear model
is included in parallel with the network. Because the validation data is included in the following training,
the estimate is obtained with stopped search.

Train an FF network with two neurons on the exchange rate data.

In[16]:= 8model2, fitrecord< = NeuralARXFit@ue, ye, 881<, 81, 1, 1<, 81, 1, 1<<,
FeedForwardNet, 82<, uv, yv, 5, LinearPart → True, Separable → FalseD;

0 1 2 3 4 5
Iterations

0.004

0.005

0.006

0.007

0.008

RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 0th training iteration.

Chapter 12: Application Examples 365

The improvement of the neural network during the training is very small because the initialization of the
network uses least-squares to fit the linear parameters.

Compute the one-step prediction on the same data interval used for the linear model.

In[17]:= NetComparePlot@uv, yv, model2, PredictHorizon → 1, ShowRange → 84, 100<D

20 40 60 80 100

1.45

1.5

1.55

1.6

1.65

1.7

Output signal: 1 RMSE: 0.00437657

The RMSE is slightly lower for the nonlinear model than for the linear one. Thus, the prediction is slightly
better. It is typical for the improvement of economic data to be small. Otherwise, it would be too easy to
make money.

Now consider an RBF network. Keep the same arguments used for the FF network, except change to an RBF
network with two neurons.

366 Neural Networks

Initialize and train an RBF network on the exchange rate data.

In[18]:= 8model3, fitrecord< = NeuralARXFit@ue, ye,881<, 81, 1, 1<, 81, 1, 1<<, RBFNet, 2, uv, yv, 8, Separable → FalseD;

0 1 2 3 4 5 6 7 8
Iterations

0.004

0.005

0.006

0.007

0.008

RMSE

NeuralFit::StoppedSearch :

The net parameters are obtained by stopped search using the supplied
validation data. The neural net is given at the 6th training iteration.

The performance of the RBF network on validation data became worse during the training, causing the
initialized RBF network to be returned.

Evaluate the one-step prediction with the RBF network.

In[19]:= NetComparePlot@uv, yv, model3, PredictHorizon → 1, ShowRange → 84, 100<D

20 40 60 80 100

1.45

1.5

1.55

1.6

1.65

1.7

Output signal: 1 RMSE: 0.00440242

Chapter 12: Application Examples 367

The RBF network is slightly better than the linear network, but not as good as the FF network. If you
re-evaluate the example, the result might change slightly due to the randomness in the initialization.

You can repeat the example changing several options, such as the following:

 è Change the number of neurons.

 è Change the regressor to contain more past values.

 è Exclude some of the input signals from the regressor.

You can also change the data interval used in the training and in the validation. Also, try to predict the
British pound instead of the German mark.

The example illustrates that it is possible to predict the opening exchange rate using the rates from the
previous day. The relationship is obviously nonlinear, since the nonlinear models based on FF and RBF
networks performed slightly better than the linear model.

368 Neural Networks

13 Changing the Neural Network Structure

The three sections in this chapter describe how you can modify a network structure. The first section
describes how to change the parameter values in an existing network or remove a neuron. The remaining
two sections apply only to RBF and FF networks. These sections explain how to obtain special model struc-
tures by fixing some parameters at predefined values during the training and specifying the neuron activa-
tion function.

13.1 Change the Parameter Values of an Existing Network

This section describes how you can change a neural network by changing the values of the numerical parame-
ters. You will need to do this if, for example, you want to implement your own training algorithms and then
insert the parameters into an existing network.

The following subsections explain how to change each type of network available in Neural Networks, except
for the perceptron and the Hopfield network. Changing the parameters of the perceptron and Hopfield
network is straightforward, considering their storage format described in Section 4.1.1, InitializePerceptron,
and Section 9.1.1, HopfieldFit.

13.1.1 Feedforward Network

First, consider the way in which network parameters are stored. FF networks are stored in objects with head
FeedForwardNet. These objects consist of two components as described in Section 3.2, Package Conven-
tions. The first component contains the parameters and the second component is a list of rules.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Initialize an FF network with two inputs, two outputs, and one hidden layer containing four neurons. This is
done by indicating the number of inputs and outputs with matrices of the appropriate size; that is, without
using any data. A linear submodel is included in parallel with this example network. The additional parame-
ters for the submodel are placed in the variable c in the first component of the network.

In[2]:= fdfrwrd = InitializeFeedForwardNet@8Range@2D<,8Range@2D<, 84<, LinearPart → True, RandomInitialization→ TrueD
Out[2]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 55, 29<,
OutputNonlinearity → None, NumberOfInputs → 2<D

This FF network can be described by the following equation. This matrix description of the FF network is
more compact than the description in Section 2.5.1, Feedforward Neural Networks, and makes it easier to
explain the parameter storage. The input vector x is augmented with a unit component to include the bias
parameters in the same way as the rest of the parameters. Also the output from the hidden layer is described
as a vector and augmented with a unit component.

(1)ŷ = @σ H@x 1D w1L 1D w2 + xχ

The matrices wi are specified by the following two rules:

 è There is one column for each output of a layer.

 è There is one row for each input to a layer and an additional row for the bias parameters, indicated by
b in Section 2.5.1, Feedforward Neural Networks.

The linear part is described by the matrix c, containing one row for each input and one column for each
output. The last term only exists if the network contains a linear part.

This description holds for FF networks with any number of hidden layers. You just iterate the rules for each
layer.

In the example, w1 has three rows and four columns since there are two inputs and one bias in the input
layer and four neurons in the hidden layer. The second matrix w2 has two columns and five rows since the
model has two outputs and four hidden neurons along with the associated bias.

Using this description of the storage format, it is easy to insert your own parameter values. In general, create
the matrices wi and c, if you have a linear submodel. Then, put all these matrices in a list 88w1, w2, ... wn<, c<
and place it in the first position of the FF object.

You can also change values of a subset of the parameters in the network model. This is done by manipulat-
ing the corresponding element in the network structure. Here is an example of a safe way to change an
element.

370 Neural Networks

Extract the matrices.

In[3]:= 88w1, w2<, χ< = fdfrwrd@@1DD;
Look at the first matrix.

In[4]:= MatrixForm@w1D
Out[4]//MatrixForm=ikjjjjjjj 0.799754 0.722728 −0.0949863 −0.823133

−0.388832 0.272681 −0.200368 −0.254374
0.41106 −0.0473895 0.114941 0.873398

y{zzzzzzz
Suppose you want to set the parameters in the third column to zero so that the input to the third neuron
becomes zero—that is, independent of the input to the network. This is done as follows.

In[5]:= w1 = w1 ê. 8a_, b_, c_, d_< → 8a, b, 0, d<;
MatrixForm@w1D

Out[6]//MatrixForm=ikjjjjjjj 0.799754 0.722728 0 −0.823133
−0.388832 0.272681 0 −0.254374
0.41106 −0.0473895 0 0.873398

y{zzzzzzz
You can now insert the changed matrix w1, along with the rest of the unchanged parameters, into the FF
network model.

Insert the changes into the model.

In[7]:= fdfrwrd@@1DD = 88w1, w2<, χ<;
13.1.2 RBF Network

First, investigate the storage format of the network. RBF networks are stored in objects with head RBFNet.
The first component contains the parameters and the second component is a list of rules, as discussed in
Section 3.2, Package Conventions.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

Chapter 13: Changing the Neural Network Structure 371

Initialize an RBF network with three inputs, two outputs, and five neurons. This is done by initializing a
network with matrices of the appropriate size without any data.

Initialize an RBF network with five neurons.

In[2]:= rbf = InitializeRBFNet@8Range@3D<, 8Range@2D<, 5, RandomInitialization→ TrueD
Out[2]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 55, 49<,
OutputNonlinearity → None, NumberOfInputs → 3<D

The variables w1, λ, w2, and c contain the parameters. Compare this to Figure 2.7 in Section 2.5.2, Radial
Basis Function Networks.

The RBF network can be described using the following matrix form that is comparable to the description in
Section 2.5.2, Radial Basis Function Networks. Here, G is the basis function.

(2)ŷ = @G Hλ2 » x − w1 »2L 1D w2 + xχ

Parameter storage is explained by the following rules:

 è w1 is a matrix with a center of a basis function in each column.

 è l is a vector with one component describing the width of the basis function for each neuron.

 è w2 is a matrix with one column for each output of the network. The last row contains the bias parame-
ters.

 è c is a matrix with one column for each output of the network and one row for each network input.

Retrieve some information about the RBF network.

In[3]:= NetInformation@rbfD
Out[3]= Radial Basis Function network. Created 2002−4−3 at 14:

55. The network has 3 inputs and 2 outputs. It consists of 5
basis functions of Exp type. The network has a linear submodel.

The values of the parameters can be changed by modifying the corresponding element in the network object.
To do this safely, follow the idea described in Section 13.1.1, Feedforward Network.

372 Neural Networks

13.1.3 Unsupervised Network

Consider the case that you want to change the parameters in unsupervised networks.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

The procedure is demonstrated on an unsupervised network with two inputs and four codebook vectors.
Instead of submitting input data when initializing the network, enter a row matrix where the number of
components equals the number of inputs.

Initialize an unsupervised network.

In[2]:= unsup = InitializeUnsupervisedNet@8Range@2D<, 4D
Out[2]= UnsupervisedNet@8−Codebook Vectors −<, 8CreationDate → 82002, 4, 3, 14, 56, 3<,

AccumulatedIterations → 0, SOM → None, Connect → False<D
Retrieve information about the network.

In[3]:= NetInformation@unsupD
Out[3]= Unsupervised network with 4 codebook vectors. Takes

data vectors with 2 components. Created 2002−4−3 at 14:56.

The first component of the model is a list of four codebook vectors.

Look at the codebook vectors.

In[4]:= unsup@@1DD êê MatrixForm

Out[4]//MatrixForm=i
k
jjjjjjjjjjj

3.30475 3.73196
−0.163529 3.10258
1.19623 3.13703
0.357123 1.18737

y
{
zzzzzzzzzzz

There is one codebook vector on each row of the matrix. You may modify the values of the vectors by
changing the corresponding elements of the matrix and inserting the modified matrix on the first position in
the network.

Chapter 13: Changing the Neural Network Structure 373

13.1.4 Vector Quantization Network

Because a VQ network’s codebook vectors are divided into several classes, it is slightly more complicated to
change the parameters in a VQ network than it is to change the parameters in an unsupervised network.
This is explained next.

Load the Neural Networks package.

In[1]:= <<NeuralNetworks`

In this example, a VQ network with two inputs, two classes, and six codebook vectors is used.

Initialize a VQ network with six codebook vectors.

In[2]:= vq = InitializeVQ@Table@Range@2D, 81<D, Table@0, 81<, 82<D, 6D
Out[2]= VQ@8−Codebook Vectors −<,8CreationDate → 82002, 4, 3, 14, 56, 15<, AccumulatedIterations → 0<D

View some information about the network.

In[3]:= NetInformation@vqD
Out[3]= VQ network for 2 classes with 83, 3< codebook vectors per class, altogether

6. It takes data vectors with 2 components. Created 2002−4−3 at 14:56.

The six codebook vectors are divided between the two classes, so that three codebook vectors are used to
explain the data in each class. The codebook vectors are contained in the first element of the network.

Look at the codebook vectors.

In[4]:= vq@@1DD
Out[4]= 8880.759012, 0.0104138<, 80.381793, −0.387363<, 8−0.042416, 2.56475<<,881.80341, 1.3081<, 80.933643, 2.53618<, 85.04324, 1.13064<<<
You may modify any codebook vector by giving new numerical values to the corresponding parameters in
this structure. Then you insert it at the first position of the network.

374 Neural Networks

If you are interested in a particular class, you can extract the codebook vectors of that class and display them
as a matrix.

Look at the codebook vectors of the second class.

In[5]:= vq@@1, 2DD êê MatrixForm

Out[5]//MatrixForm=ikjjjjjjj 1.80341 1.3081
0.933643 2.53618
5.04324 1.13064

y{zzzzzzz
There is one codebook vector on each row of the matrix. You may modify the values of the vectors by
changing the corresponding elements of the matrix and inserting the modified matrix on the appropriate
position in the network.

13.2 Fixed Parameters

For FF and RBF networks, you can modify the network structure by setting some of the parameters to
predefined values. Then you can exclude the predefined parameters from the training with the FixedParamg
eters option. These parameters will maintain their defined values during the training; thus, fewer parame-
ters are adapted to the data. This might be good from a bias-variance tradeoff perspective, as described in
Section 7.5, Regularization and Stopped Search.

In some problems, you might know that the dependence is linear with respect to some inputs but nonlinear
with respect to other inputs. The following example demonstrates how this characteristic can be built into
the neural network model so that no more parameters than necessary have to be estimated. A more
advanced example can be found in Section 8.2.5, Fix Some Parameters—More Advanced Model Structures.

The default of the FixedParameters option is None, which means that all parameters are trained. You can
set FixedParameters to a list of integers specifying the parameters to hold fixed during the initialization
of the network. You can also fix parameters when training with NeuralFit. A specification of FixedParamg
eters at the training stage overrides any earlier specification at initialization. The information about fixed
parameters is stored in the network model. If you want to train all parameters at a later stage, you must give
the option FixedParameters → None.

The fixed parameters are indicated by their position in the flattened parameter structure of the
network—that is, the position in the list Flatten[net[[1]]], where net is an FF or RBF network model.

Chapter 13: Changing the Neural Network Structure 375

Suppose you know, through physical insight or just by assumption, that the unknown function looks some-
thing like the following, where f is an unknown nonlinear function and a is an unknown constant. This
problem has two inputs and one output.

(3)y = f Hx1L + a x2

Therefore, you know that the function is linear in the second input x2. If the model is specified to be linear in
x2 from the beginning, then the training should produce a better model.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

The next two steps produce data from a function of the form shown in Equation 13.3.

Obtain a “true” function.

In[2]:= trueFunction = Function@ArcTan@Abs@#1^4DD + 0.5 #2D
Out[2]= ArcTan@Abs@#14DD + 0.5 #2 &

376 Neural Networks

Generate data and plot the output.

In[3]:= Ndata = 20;
x = 4∗

Flatten@Table@N@8iêNdata, jêNdata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D, 1D − 2;
y = Apply@trueFunction, x, 1D;
Plot3D@trueFunction@x1, x2D, 8x1, −2, 2<, 8x2, −2, 2<D

-2

-1

0

1

2 -2

-1

0

1

2

-1

0

1

2

-2

-1

0

1

From the plot, it is evident that the true function is linear in one of the inputs.

Now, only the data and the knowledge that the true function is linear in the second input will be used to
develop an FF network model. A linear part must be included in the model. This is done with the option
LinearPart.

Initialize an FF network including a linear part.

In[7]:= fdfrwrd =

InitializeFeedForwardNet@x, y, 82<, RandomInitialization→ True, LinearPart → TrueD
Out[7]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 56, 39<,
OutputNonlinearity → None, NumberOfInputs → 2<D

The nonlinear dependence of the second input has to be removed. This is accomplished by setting its compo-
nents in the w1 matrix to zero. The position of the w1 matrix in the network model is evident from the

Chapter 13: Changing the Neural Network Structure 377

previous output. Also consult the figures and the description of the w1 matrix in Section 2.5.1, Feedforward
Neural Networks.

View the matrix w1.

In[8]:= w1 = fdfrwrd@@1, 1, 1DD
Out[8]= 88−0.641267, 0.170774<, 8−0.119565, 0.494298<, 80.651846, 0.201474<<
The first row is the dependence on the first input x1, the second row is the dependence on the second input
x2, and the third row contains the bias parameters. It is the second row that has to be set to zero. This can be
done in two steps. First, the position of the row is identified.

Find the position of the second row of w1.

In[9]:= pos = Position@fdfrwrd@@1DD, w1@@2DDD
Out[9]= 881, 1, 2<<
Next, the elements of the second row are set to zero.

Set the second row of w1 to zero.

In[10]:= fdfrwrd = ReplacePart@fdfrwrd, 80, 0<, Flatten@81, pos<DD
Out[10]= FeedForwardNet@88w1, w2<, χ<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 56, 39<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Whenever you manipulate the parameters directly, it is wise to check that the structure of the parameter
part of the network has been changed correctly.

Check that the manipulation is correct.

In[11]:= fdfrwrd@@1DD
Out[11]= 8888−0.641267, 0.170774<, 80, 0<, 80.651846, 0.201474<<,88−0.0517033<, 80.792547<, 80.273493<<<, 88−1.04737<, 8−0.103775<<<
Only the second row of w1, now set to 0, has changed. For the parameters to remain 0, they have to be
excluded from the training. This is done by using the option FixedParameters.

378 Neural Networks

To find the parameter numbers to be held fixed, search for the 0 in the parameter structure.

Find the parameters to be fixed and assign them to a variable.

In[12]:= fixparameters = Flatten@Position@Flatten@fdfrwrd@@1DDD, 0DD
Out[12]= 83, 4<
Now the initialized FF network is ready to be trained. The two parameters to be held fixed are indicated in
the FixedParameters option.

Train the network with some fixed parameters.

In[13]:= 8fdfrwrd2, fitrecord< =

NeuralFit@fdfrwrd, x, y, 40, FixedParameters → fixparametersD;

0 5 10 15 20 25
Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RMSE

Check that the two parameters have not changed.

In[14]:= fdfrwrd2@@1DD
Out[14]= 8888−5.05883, −5.51404<, 80, 0<, 84.93321, −5.41119<<,88−1.60494<, 81.43627<, 81.56832<<<, 88−0.0476594<, 80.5<<<
The second row of w1 is still {0,0}. The fact that some parameters were fixed in the training is now speci-
fied as a rule in the second argument of the network object.

Chapter 13: Changing the Neural Network Structure 379

Fixed parameters are indicated as a rule in the network.

In[15]:= fdfrwrd2

Out[15]= FeedForwardNet@88w1, w2<, χ<, 8AccumulatedIterations → 27,
CreationDate → 82002, 4, 3, 14, 56, 46<, Neuron → Sigmoid,
FixedParameters → 83, 4<, OutputNonlinearity → None, NumberOfInputs → 2<D

If you submit the network fdfrwrd2 to NeuralFit again for more training iterations, then the fixed
parameters do not have to be specified because they are already indicated in the network. If you want to
change the fixed parameters, simply indicate the new set of fixed parameters in the call to NeuralFit. This
will override any specification in the initial model.

Complete this example with a plot of the estimated function. If you repeat the training without forcing the
network to be linear in one direction, then the plot of the estimated function will probably not match the
defined function as well as the following plot.

In[16]:= NetPlot@fdfrwrd2, x, yD

-2

-1

0

1
-2

-1

0

1

-1

0

1

2

-2

-1

0

1

380 Neural Networks

13.3 Select Your Own Neuron Function

The symbolic computation capability of Mathematica allows you to specify the neuron activation functions
for RBF and FF networks. The Neural Networks package then uses standard Mathematica commands to
compute the derivative, and the expression is optimized before the numerical computation begins in the
training.

13.3.1 The Basis Function in an RBF Network

The Gaussian function is the most commonly used basis function in RBF networks. There is, however, no a
priori reason for this choice, and you may use the Neuron option in the initialization to define a different
basis function.

Recall that a general RBF network with nb basis functions is described by the following equation.

(4)ŷ HθL = ‚
i=1

nb

wi
2 G I−λi2 Hx − wi1L2M + b

In addition to this expression, you also may have a parallel linear part as described in Section 2.5.2, Radial
Basis Function Networks. The default value of G(x) is Exp so that the Gaussian function is obtained.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Look at the default basis function.

In[2]:= Plot@Exp@−x2D, 8x, −3, 3<, PlotRange → AllD

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Chapter 13: Changing the Neural Network Structure 381

Another possible choice for the basis function is one that decays linearly with the distance from the basis
center. Such a choice can be obtained with the help of the SaturatedLinear function. Notice that G is a
function of the distance squared in Equation 13.4. To make the basis function linear with respect to the
distance, you must compensate for this square by introducing a square root. This is done in the following
example.

Plot a linear saturated basis function.

In[3]:= Plot@SaturatedLinear@Sqrt@x2DD, 8x, −3, 3<, PlotRange → AllD

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Since a layer of linear parameters is included in the network, in w2 , it does not matter that the basis function
is inverted.

Now use this basis function in a small example.

Generate data and plot the function.

In[4]:= Ndata = 10;
x1 = Table@N@8i êNdata, jê Ndata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x1, 82<D;
ListPlot3D@y1D;
x = Flatten@x1, 1D;
y = Transpose@8Flatten@y1D<D;

382 Neural Networks

2
4

6
8

10
2

4

6
8
10

-1
-0.5

0
0.5
1

2
4

6
8

Initialize an RBF network with the proposed basis function.

In[10]:= rbf = InitializeRBFNet@x, y, 3, Neuron → Function@x, SaturatedLinear@Sqrt@−xDDDD
Out[10]= RBFNet@88w1, λ, w2<, χ<,8Neuron → Function@x, SaturatedLinear@è!!!!!!!−x DD, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 57, 17<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Notice that a negative sign was used inside the square root to compensate for the negative sign in the func-
tion defined by Equation 13.4.

Train the RBF network using the data.

In[11]:= 8rbf2, fitrecord< = NeuralFit@rbf, x, y, 20D;

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Iterations

0.35

0.375

0.4

0.425

0.45

0.475

0.5

RMSE

Chapter 13: Changing the Neural Network Structure 383

Plot the result.

In[12]:= NetPlot@rbf2, x, y, DataFormat → FunctionPlotD

0

0.2

0.4

0.6

0.8 0

0.2

0.4

0.6

0.8

-0.5
0

0.5
1

0

0.2

0.4

0.6

0 8

You can vary the number of basis functions and repeat the example. You can also try different types of basis
functions.

13.3.2 The Neuron Function in a Feedforward Network

You can set the neuron activation function to any smooth function. Some of the commonly used functions
are demonstrated here.

Load the Neural Networks package.

In[1]:= << NeuralNetworks`

Sigmoid is the default activation function.

(5)Sigmoid@xD =
1

cccccccccccccccc
1 + e−x

384 Neural Networks

Plot the sigmoid.

In[2]:= Plot@Sigmoid@xD, 8x, −7, 7<D

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

The sigmoid function is also recommended as the output of an FF network when you work on classification
problems. Setting OutputNonlinearity → Sigmoid during initialization of an FF network will set the
output of the network to Sigmoid. Sigmoid is used because it saturates to zero or one, which are the
values used to indicate membership in a class. See Section 3.2 Package Conventions.

Another common choice of activation function is the hyperbolic tangent function.

(6)Tanh@xD =
ex − e−x
ccccccccccccccccccc
ex + e−x

Plot the hyperbolic tangent.

In[3]:= Plot@Tanh@xD, 8x, −7, 7<D

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

Chapter 13: Changing the Neural Network Structure 385

The hyperbolic tangent and sigmoid functions are equivalent when used in the hidden neurons because
there is a similarity transformation for the parameters that takes an FF network with one of the activation
functions to the other. It does, however, make a difference which function you apply to the output with the
OutputNonlinearity option.

An interesting alternative neuron function is the saturated linear activation function. It is linear between -1
and 1 but saturates at these values for large positive or negative numbers.

Plot the SaturatedLinear function.

In[4]:= Plot@SaturatedLinear@xD, 8x, −3, 3<D

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

This activation function gives a local linear model that might be of interest in many situations.

Another possibility is the inverse tangent function.

386 Neural Networks

Plot the inverse tangent.

In[5]:= Plot@ArcTan@xD, 8x, −7, 7<D

-6 -4 -2 2 4 6

-1.5

-1

-0.5

0.5

1

1.5

The following demonstrates the use of the SaturatedLinear function in an FF network model.

Generate data and plot the actual function to be modeled.

In[6]:= Ndata = 10;
x1 = Table@N@8i êNdata, jê Ndata<D, 8i, 0, Ndata − 1<, 8j, 0, Ndata − 1<D;
y1 = Map@Sin@10. #@@1DD #@@2DDD &, x1, 82<D;
ListPlot3D@y1D;
x = Flatten@x1, 1D;
y = Transpose@8Flatten@y1D<D;

2
4

6
8

10

2

4

6

8

10

-1
-0.5

0
0.5
1

2
4

6
8

Chapter 13: Changing the Neural Network Structure 387

Initialize an FF network with the SaturatedLinear activation function.

In[12]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<, Neuron → SaturatedLinearD
Out[12]= FeedForwardNet@88w1, w2<<, 8Neuron → SaturatedLinear, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 57, 50<,
OutputNonlinearity → None, NumberOfInputs → 2<D

Fit the FF network to the data.

In[13]:= 8fdfrwrd2, fitrecord< = NeuralFit@fdfrwrd, x, y, 30D;

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0.2

0.25

0.3

0.35

0.4

0.45
RMSE

Plot the result.

In[14]:= NetPlot@fdfrwrd2, x, y, DataFormat → FunctionPlotD

0
0.2

0.4
0.6

0.8 0

0.2

0.4

0.6

0.8

-1
-0.5

0
0.5
1

0
0.2

0.4
0.6

0 8

388 Neural Networks

The approximation obtained is locally linear, due to the special choice of activation function.

Try repeating this example with the other common functions. Edit the notebook and repeat the evaluations.

13.4 Accessing the Values of the Neurons

You might want to access the output values of the neurons from an FF or RBF network. If you just want a
plot of the values, use NetPlot with the option DataFormat → HiddenNeurons. More direct access to
the neuron values can be achieved by creating a second network with a slightly changed network structure,
as shown in the following two examples.

13.4.1 The Neurons of a Feedforward Network

Load the Neural Networks package and some test data.

In[1]:= << NeuralNetworks`
<< one2twodimfunc.dat;

Initialize an FF network with four hidden neurons.

In[3]:= fdfrwrd = InitializeFeedForwardNet@x, y, 84<D
Out[3]= FeedForwardNet@88w1, w2<<, 8Neuron → Sigmoid, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 33<,
OutputNonlinearity → None, NumberOfInputs → 1<D

View the network information.

In[4]:= NetInformation@fdfrwrdD
Out[4]= FeedForward network created 2002−4−3 at 14:58. The

network has 1 input and 2 outputs. It consists of 1 hidden
layer with 4 neurons with activation function of Sigmoid type.

This network has two outputs.

In general, an FF network has the following structure:

(7)ŷ = @σ H@x 1D w1L 1D w2

Chapter 13: Changing the Neural Network Structure 389

To gain access to the output of the hidden neurons, you must turn them into the outputs of the network.
This can be done using NeuronDelete to remove all the outputs of the network. The outputs of the new
network will be the neurons of the hidden layer of the original network. This means that the matrix w2 is
removed. Consult Figures 2.5 and 2.6 in Section 2.5.1, Feedforward Neural Networks, to understand the
equivalence of w2 and the output layer. After the output layer is removed, the network is described by the
following equation:

(8)ŷ = Sigmoid H@x 1D w1L
The following command removes the output layer from the example network.

Remove the last layer of the network.

In[5]:= newfdfrwrd = NeuronDelete@fdfrwrd, 882, 1<, 82, 2<<D
NeuronDelete::NewOutputLayer :

All outputs have been deleted. The second−to−last layer becomes the new output.

Out[5]= FeedForwardNet@88w1<<, 8Neuron → Sigmoid, FixedParameters → None,
AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 33<,
OutputNonlinearity → Sigmoid, NumberOfInputs → 1<D

In[6]:= NetInformation@newfdfrwrdD
Out[6]= FeedForward network created 2002−4−3 at 14:

58. The network has 1 input and 4 outputs. It has no hidden
layer. There is a nonlinearity at the output of type Sigmoid.

As predicted, the new network has four outputs and no hidden layer. The four hidden neurons outputs
have become the outputs of the modified network.

The new FF network can now be applied to the data.

Values of the neurons when the network is applied to input data {0.5}.

In[7]:= newfdfrwrd@80.5<D
Out[7]= 89.25426× 10−6, 0.978406, 0.99999, 0.999998<

390 Neural Networks

The technique just described can also be used when you work with several hidden layers. To access the
values of the hidden neurons in a specific layer, you must first turn this layer into an output layer. This is
done by removing all layers of neurons after the one of interest to you.

13.4.2 The Basis Functions of an RBF Network

To access the values of the basis functions of an RBF network is slightly more complicated than for an FF
network since the output layer cannot be removed. Instead, you can change the output layer to an identity
mapping. This is described here.

Load the Neural Networks package and a Mathematica standard add-on package.

In[1]:= << NeuralNetworks`
<< LinearAlgebra`MatrixManipulation`

Load some test data.

In[3]:= << one2twodimfunc.dat;

Initialize an RBF network with four hidden neurons.

In[4]:= rbf = InitializeRBFNet@x, y, 4D
Out[4]= RBFNet@88w1, λ, w2<, χ<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 52<,
OutputNonlinearity → None, NumberOfInputs → 1<D

It is convenient to express the RBF network using a less formal matrix notation:

(9)ŷ = @G Hλ2 » xT − w1 »2L 1D ⋅ w2 + x ⋅ χ

First the distances between the input vector x and each column of w1 are computed. These distances are
multiplied with the square of their corresponding width in the vector l before the basis function G is
mapped over the vector. This forms the output of the hidden layer. A unit DC-level component is appended
to the output of the hidden layer, and an inner product with w2 gives the first term of the output. The
second term is the linear submodel formed as an inner product between the inputs and the parameter
matrix c.

You can access the values of the basis functions by changing the matrix w2 to an identity matrix with dimen-
sion equal to the number of neurons plus a row of zeros for the DC-level parameters. You will then obtain a

Chapter 13: Changing the Neural Network Structure 391

new RBF network with one output for each neuron. Also, if the original RBF network has a linear part, the
linear part must be removed, and this can be done with NeuronDelete.

Check the number of neurons.

In[5]:= NetInformation@rbfD
Out[5]= Radial Basis Function network. Created 2002−4−3 at 14:

58. The network has 1 input and 2 outputs. It consists of 4
basis functions of Exp type. The network has a linear submodel.

There are four neurons and this is the dimension of the identity mapping that is inserted.

Add a new matrix for w2.

In[6]:= rbf@@1, 1, 3DD = AppendColumns@IdentityMatrix@4D, 880, 0, 0, 0<<D
Out[6]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Delete the linear part.

In[7]:= rbf = NeuronDelete@rbf, 80, 0<D
Out[7]= RBFNet@88w1, λ, w2<<, 8Neuron → Exp, FixedParameters → None,

AccumulatedIterations → 0, CreationDate → 82002, 4, 3, 14, 58, 52<,
OutputNonlinearity → None, NumberOfInputs → 1<D

The newly obtained RBF network can be evaluated on input data. The output will be the values of the
neurons of the original RBF network. Therefore, there will be one output for each neuron.

Check the values of the neurons for a numerical input value.

In[8]:= rbf@84.1<D
Out[8]= 80.216709, 0.976699, 0.608883, 0.527926<
You can also plot the value of a single neuron.

392 Neural Networks

Plot the fourth neuron.

In[9]:= Plot@rbf@8x<D@@4DD, 8x, 0, 7<D

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

Chapter 13: Changing the Neural Network Structure 393

Index

AccumulatedIterations, 41

Backpropagation, 23
Backpropagation, NeuralFit, 158
BarChart
NetPlot, FF and RBF networks, 86
NetPlot, Perceptron network, 58
NetPlot, VQ , 318

BiasParameters, InitializeFeedForwardNet, 81
BoundaryDash, NetPlot, perceptron network, 57

CbvSymbol
NetPlot, unsupervised network, 267
NetPlot, VQ , 318

Classification, 9
Classification of paper quality, 347
Classifier, NetPlot, FF and RBF networks, 86
ClassPerformance
NetPlot, FF and RBF networks, 86
NetPlot, perceptron network, 58
NetPlot, VQ, 318

Clustering, 9
Codebook vectors

unsupervised network, 31
vector quantization networks, 32

Competitive, 260
Connect
UnsupervisedNet, 254
UnsupervisedNetFit, 258

Continuous, Hopfield, 234
CreationDate, 41
CriterionLog, 176
CriterionLogExtN, 176
CriterionPlot, 177
CriterionValidationValues, 181
CriterionValues, 181

Data Preprocessing, 10
DataFormat

dynamic network, 196
NetPlot, FF and RBF networks, 85
NetPlot, Hopfield network, 236
NetPlot, perceptron network, 57
NetPlot, unsupervised network, 267
NetPlot, VQ , 318

DataMap
NetPlot, perceptron network, 58
NetPlot, unsupervised network, 267

DataMapArray
NetPlot, perceptron network, 58
NetPlot, unsupervised network, 267
NetPlot, VQ, 318

DeleteSOM, 265
Discrete, Hopfield, 234
Dynamic models, 8
Dynamic neural networks, 187

Energy, NetPlot, Hopfield network, 236
ErrorDistribution
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

FeedForwardNet, 80
FixedParameters
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
NeuralFit, 150

Function approximation, 7
FunctionPlot
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

Gauss-Newton, 155
Gauss-Newton, 23
GaussNewton, NeuralFit, 155

HiddenNeurons
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

Hopfield, 233
Hopfield networks, 233
HopfieldEnergy, 235
HopfieldFit, 233

InitialInput, dynamic network, 192
Initialization, FF network, 82
InitializeFeedForwardNet, 80
InitializePerceptron, 54
InitializeRBFNet, 119
InitializeUnsupervisedNet, 253

InitialOutput, dynamic network, 192
InitialRange
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
InitializeVQ, 309, 311

Kohonen networks 9, 32, 253

Learning Vector Quantization 1, 314
Levenberg-Marquardt, 23
Levenberg-Marquardt, NeuralFit, 153
Linear models, 12
LinearizeNet

dynamic network, 195
FF network, 87
RBF network, 122

LinearParameters
NetPlot, dynamic network, 196
NetPlot, FF and RBF networks, 86

LinearPart
InitializeFeedForwardNet, 81
InitializeRBFNet, 120

LVQ1, 314

MakeRegressor, dynamic network, 197
Method
NeuralFit, 151
VQFit, 314

MinIterations, NeuralFit, 151
Momentum, NeuralFit, 151
MoreTrainingPrompt, 177
Multilayer networks, 19
MultiplePrediction, dynamic network, 192

Neighbor
UnsupervisedNet, 255
UnsupervisedNetFit, 258

NeighborStrength
UnsupervisedNet, 255
UnsupervisedNetFit, 258

NetClassificationPlot, 42
NetComparePlot, dynamic network, 194
NetInformation

dynamic network, 190
FF network, 84
Hopfield network, 235
perceptron network, 56
RBF network, 122
unsupervised network, 264
VQ, 315

NetOutput, NetPlot, FF and RBF networks, 86
NetPlot

dynamic network, 195
FF and RBF networks, 85
Hopfield network, 235
perceptron network, 57
unsupervised network, 266
VQ, 317

NetPredict, dynamic network, 191
NetPredictionError, dynamic network, 192
NetSimulate, dynamic network, 193
NetType, HopfieldFit, 234
Neural network

data format, 37
network format, 40

NeuralARFit, 189
NeuralARX, 188
NeuralARXFit, 188
NeuralD, 89
NeuralFit, 149

FF network, 83
NeuralFitRecord, 150, 181
Neuron
HopfieldFit, 234
InitializeFeedForwardNet, 81
InitializeRBFNet, 120

NeuronDelete
FF network, 87
RBF network, 123
unsupervised network, 264
VQ, 317

Neuron function, 381
NNModelInfo, 89
NumberOfInputs, 80

OutputNonlinearity
InitializeRBFNet, 120
NetPlot, FF and RBF networks, 85

ParameterRecord, 181
ParameterValues, NetPlot, FF and RBF networks, 86
ParametricPlot, NetPlot, Hopfield network, 236
Perceptron

generally, 53
object, 54

PerceptronFit, 55
PerceptronRecord, 55
PredictHorizon

dynamic network, 192
NetComparePlot, 194

396 Neural Networks

Prediction of currency exchange rate, 362
Preprocessing, 10

Radial basis function network, 119
RandomInitialization
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
Perceptron, 54
PerceptronFit, 55

RBFNet, 119
Recursive
InitializeVQ, 311
UnsupervisedNet, 255
UnsupervisedNetFit, 258
VQFit, 314

Regressor, 190
Regularization, 161
InitializeFeedForwardNet, 81
InitializeRBFNet, 120
NeuralFit, 151

ReportFrequency, 176, 181

SaturatedLinear, 386
Self-organizing feature maps, 32
Separable, NeuralFit, 151
SetNeuralD, 88
ShowRange, NetComparePlot, 194
Sigmoid, 384
SOM, 253, 254
NetPlot, unsupervised network, 267
UnsupervisedNet, 254
UnsupervisedNetFit, 258

SOMOptions, InitializeVQ, 311
Steepest descent, 23
SteepestDescent, NeuralFit, 156
StepLength
NeuralFit, 151
PerceptronFit, 55
UnsupervisedNet, 255
UnsupervisedNetFit, 258
VQFit, 314

Stopped search, 161
Surface, NetPlot, Hopfield network, 236
System identification, 26

Table
NetPlot, unsupervised network, 267
NetPlot, VQ, 318

Time series, 8
ToFindMinimum, NeuralFit, 151
Training

controlling presentation of results, 176
dynamic networks, 149
FF networks, 22, 149
Hopfield networks, 29
RBF networks, 22, 149
Separable , 169
unsupervised networks, 259
vector quantization network, 314

Training neural networks with FindMinimum, 159
Training record, 180
Trajectories, NetPlot, Hopfield network, 236

Unsupervised networks, 253
UnsupervisedNetDistance, 264
UnsupervisedNetFit, 256
UnsupervisedNetRecord, 257
UnUsedNeurons

Unsupervised network, 265
VQ, 317

UseSOM, UnsupervisedNet, 255
UseUnsupervisedNet, InitializeVQ, 311

Vector quantization, 309
Voronoi
NetPlot, unsupervised network, 267
NetPlot, VQ , 318

VQ, 309
VQDistance, 316
VQFit, 312
VQPerformance, 316
VQRecord, 313

Index 397

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

