problems = {HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
FractionBox[
SuperscriptBox[\((\(-1\))\), \(m + n\)], 
SuperscriptBox[\((m + n)\), \(2\)]] m\ n\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(\[Infinity]\)]\ \ 
FractionBox[\(\((m + n)\)!\), \(\((\(m!\))\)\ \((\(n!\))\)\)] 
\*SuperscriptBox[\((
\*FractionBox[\(x\), \(2\)])\), \(m + n\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(\[Infinity]\)]
FractionBox[\(\((m + n + 
            k)\)!\), \(\((\(m!\))\) \((\(n!\))\) \((\(k!\))\)\)] 
\*SuperscriptBox[\((
\*FractionBox[\(x\), \(3\)])\), \(m + n + k\)]\)\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 2\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 2\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((a + n)\), \(m\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 2\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((2  n)\), \(m\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((4  n - 1)\), \(2  m\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((4  n - 1)\), \(2  m + 1\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((4  n - 2)\), \(2  m\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(
SuperscriptBox[\(i\), \(2\)] j\), \(
SuperscriptBox[\(3\), \(i\)] \((j\ 
\*SuperscriptBox[\(3\), \(i\)] + \ i\ 
\*SuperscriptBox[\(3\), \(j\)])\)\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = \(-\[Infinity]\)\), \(\
\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = \(-\[Infinity]\)\), \(\
\[Infinity]\)]
FractionBox[\(1\), 
SuperscriptBox[\((
\*SuperscriptBox[\(i\), \(2\)] + 
\*SuperscriptBox[\(j\), \(2\)])\), \(s\)]] Boole[{i, j} != {0, 
          0}]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((i\ j\ k)\), \(2\)]]\)\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), \(
SuperscriptBox[\(2\), \(i\)] 
SuperscriptBox[\(2\), \(j\)] 
\*SuperscriptBox[\(2\), \(k\)]\)]\)\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[
SuperscriptBox[\((\(-1\))\), \(i + j\)], 
SuperscriptBox[\((i + j)\), \(3\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((i + j)\), \(3\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(\(\ \)\(Zeta[\ i + j]\)\), 
SuperscriptBox[\(2\), \(i + j\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), \(\((i + j)\)!\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), \(Max[i, j]!\)]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\(Max[i, j]\), \(3\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((i\ j + j\ k)\), \(s\)]]\)\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(\[Infinity]\)]\ \(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(\[Infinity]\)]
\*FractionBox[\(Zeta[m + 2  n]\), 
SuperscriptBox[\(4\), \(
FractionBox[\(1\), \(2\)] m + n\)]]\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 1\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((i*j + j*k)\), \(s\)]]\)\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 0\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(\[Infinity]\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(\[Infinity]\)]
\*FractionBox[\(1\), 
SuperscriptBox[\((i + 2  j + k)\), \(4\)]]\)\)\)]};