products = {HoldForm[
\!\(\*UnderscriptBox["\[Product]", "k"]\)(k^2 + 7 k + 12)], HoldForm[
\!\(\*UnderscriptBox["\[Product]", "k"]\)3^k (k^2 + 11)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(n\)]
\*FractionBox[\(
\*SuperscriptBox[\((k + 1)\), \(3\)]\ \((k + 5)\)\),
SuperscriptBox[\(k\), \(2\)]]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(n\)]\((
\*SuperscriptBox[\(5\), \(k\)] +
\*SuperscriptBox[\(6\), \(k\)])\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k\), \(n\)]
\*FractionBox[\(\((
\*SuperscriptBox[\(3\), \(7\ k + 7\)] + 11)\)\(\ \)\), \(\(\ \)\((
\*SuperscriptBox[\(3\), \(2\ k\)] +
\*SuperscriptBox[\(3\), \(k\)] + 2)\)\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(n\)]
\*SuperscriptBox[\((
\*FractionBox[\(k + 3\), \(k + 1\)])\), \(k\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(n\)]
\*FractionBox[\(Sin[3\ k + 5]\), \(Cos[3\ k + 1]\)]\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(\[Infinity]\)]\((1 +
\*FractionBox[\(1\),
SuperscriptBox[\(k\), \(2\)]])\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(k =
0\), \(\[Infinity]\)]\((1 - a\
\*SuperscriptBox[\(q\), \(k\)])\)\)], HoldForm[\!\(
\*UnderoverscriptBox[\(\[Product]\), \(i = 1\), \(\[Infinity]\)]\((1 -
\*FractionBox[\(4\
\*SuperscriptBox[\(z\), \(2\)]\), \(
\*SuperscriptBox[\(\[Pi]\), \(2\)]\
\*SuperscriptBox[\((2\ i - 1)\), \(2\)]\)])\)\)],
HoldForm[
Product[1 + 1/Floor[k^2 (k + 4)/(k + 1)], {k, 1, \[Infinity]}]]};