SEARCH Advanced Search Topic All Topics Algebra Applied Mathematics Calculus and Analysis Chemistry Computer Science Courseware Differential Equations Discrete Mathematics Earth Sciences Economics and Finance Engineering Geometry Graphics Life Sciences Modeling and Simulation Number Theory Physics Probability and Statistics Programming Recreational Social Sciences Tutorial and Reference Language All Languages English Bulgarian Catalan Chinese Dutch Finnish French German Greek Hungarian Italian Japanese Korean Lithuanian Norwegian Polish Portuguese Russian Spanish Swedish
 BROWSE TOPICS Algebra» Applied Mathematics» Calculus and Analysis» Chemistry» Computer Science» Courseware» Differential Equations» Discrete Mathematics» Earth Sciences» Economics and Finance» Engineering» Geometry» Graphics» Life Sciences» Modeling and Simulation» Number Theory» Physics» Probability and Statistics» Programming» Recreational» Social Sciences» Tutorial and Reference»
Some Concepts of Functional Analysis using Mathematica
by Gyorgy Popper
• Year: 2006
• 94 pp
Description
This textbook contains the course of lectures about some concepts in functional analysis for Ph.D. students of engineering. Functional analysis is a study of abstract linear spaces resulting from a synthesis of geometry, linear algebra and mathematical analysis. Some of the calculations of this textbook were made using symbolic-numeric computer algebra system Mathematica. The author found this system very useful for presenting these concepts because it does algebra and calculus computations quickly in an exact, symbolic manner.

The book also contains an easy introduction into the Lebesque measure and integration theory. Contents
Vector spaces, subspaces, linear manifolds | Dimension, spanning sets and (algebraic) basis | Linear operator | Normed spaces | Convergence, complete spaces | Continuous and bounded linear operator | Dense sets, separable spaces | Inner product, Hilbert space | Sets of measure zero, measurable functions | The space L2 | Generalized derivatives, distributions, Sobolev spaces | Weak (or generalized) solutions | Orthogonal systems, Fourier series | The projection theorem, the best approximation Related Topics
Applied Mathematics, Engineering