Wolfram 语言

神经网络

多任务学习

训练一个卷积网络,同时对 CIFAR-100 数据集中图像的标签和子标签进行分类.

获取训练数据集.

In[1]:=
Click for copyable input
obj = ResourceObject["CIFAR-100"]; trainingData = ResourceData[obj, "TrainingDataset"]; RandomSample[trainingData, 5]
Out[1]=

获取图像的标签和子标签.

In[2]:=
Click for copyable input
labels = Union@Normal@trainingData[All, "Label"] sublabels = Union@Normal@trainingData[All, "SubLabel"]
Out[2]=
Out[2]=

定义一个简单的卷积网络.

In[3]:=
Click for copyable input
convnet = NetChain[{ ConvolutionLayer[20, {5, 5}], ElementwiseLayer[Ramp], PoolingLayer[{2, 2}, {2, 2}], ConvolutionLayer[50, {5, 5}], ElementwiseLayer[Ramp], PoolingLayer[{2, 2}, {2, 2}], FlattenLayer[], DotPlusLayer[500], ElementwiseLayer[Ramp] }, "Input" -> NetEncoder[{"Image", {32, 32}}]]
Out[3]=

创建一个用卷积网的结果对标签和子标签进行预测的网.

In[4]:=
Click for copyable input
net = NetGraph[{convnet, 100, SoftmaxLayer[], 20, SoftmaxLayer[]}, {NetPort["Image"] -> 1 -> 2 -> 3 -> NetPort["SubLabel"], 2 -> 4 -> 5 -> NetPort["Label"]}, "Label" -> NetDecoder[{"Class", labels}], "SubLabel" -> NetDecoder[{"Class", sublabels}]]
Out[4]=

训练网络,使 NetTrain 能够自动推断它应该对两个输出都附加交叉熵损失函数.

In[5]:=
Click for copyable input
net = NetTrain[net, trainingData]
Out[6]=

对图像进行分类,从而获取标签和子标签.

In[7]:=
Click for copyable input
net[\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJwtlHdQ01m7x3fu/ePdO2/ZdS1Ib2mUBAgQSiAJpAEJJJBiCkkgIYQUEtIo BiT0qlIV1EXFq+jrYlvLigUVkVVYZFdZ6wICFooiAlJC8rt5Z+7M95x5zvnj Oef5zme+nmJNSuZ/ffPNN/pv7VtKel6MTpdewPjefmCp9XKZWpoRrzZIZVJd uPi/7Zce/7/+U8+uAR/XgM9rtg8rm+9WrLMrts9rwLIVmF8HJhetYwvA60/A C7sWgdHPwB8fgZE5YGQWeDwDDM8Av723DEyu908Dd6aB25PArXGgZwy4+hq4 9Ao49xL46Tnw71FgcgmYWtycXbXNfLVNL1omP2+8XbS8W7a+ml//8+3Sszfz zyfnX8+tvZy3Pp0Ffp+zjczYnnwAfp+2DI59ujYw3H37wcDrxQcTtrvjttvj mzfGrNdeWy+/sl18aTv/3PbTqO3tMjC1sD6zZFlYtc4vb84uW959WZtaWL39 8I+T3ZeaDrQeO9HRN/Tb2Nzqi4/A04+Wp3OWP99v9j+ZPvpTd1tHa+uhlku9 94fGVwbebN57Y+mdsNwc37w+Zr3yl/XnV9aLL2x2cz593Vxc21z5urG6alnd sK5YgXdzs11dJ5qbalVKYUFBVmW9eWDk2bOZldGF5ecfV+6OjHVdvF7fUtXc uKe1qbSpff+V+48eTSwNfrAOvLfdmbTemLD8Mr559S/rlVd2t61LG9Y1AFi3 bC5/WVpfW19b25iaeN26t6SiWFNSpCgxqxRKQWNTfdeFS3+8+/Rs9uvZqz0H DjfW1JvKzDl11caikpzSuqrua3eHXs0Nz1j73lp7JzduTVhvjtt6XgOf162f Vi2fN6wLK+tDI0+GRx733rnZdaK9pd602yjW5wjy8zIKTSpJ+q4MhbL/6ZvR d8vtnZ2V1fkGvTRLyskzSvTGzDRp2p6K+u4bj/onVn79APRNrd+dtPVOALfG 7PDY5lYssyuWua+2Y2cuFJaaq+vNlRX6/TXGipJsnVaYKWOpsgW8VBaVwa1s On7/yfjJ7u5Ck9aoy0wTJOYaxCq1mMllMtMza4+ev/NyvufPmYG36/1vbX1T tntvgLk1wE7mzFernZ/jZ382lRQXFuWUlWi06lQ+N0GnlzHZFBQKgcbhCFQm ky81Ve3b19xabMpVy4UVJZpcg4SaSPKGgcJi8XnV+6rbO8sOnb794uOvby0D 05aBKevcOvDhq82u+TVg6OmLtvZ2dVZ6Xk5GEhWLCoWz2Ux/f/gPW7Z7QBAR MXFRMbHRJDKHL5QIUnOyRJWlaqWcA0f4eEFBkbFoiVysyTNIDMUnekcfvlsf fG959M46vwHMrG7OrtmmF5Z6em83N9Vly0VcVnwCOSochUSFhoWiIqG+cHdw gAc4wBvmExIVliri81n0st26AqMshUklkMmJdIpCwSkrz+FIJFiOovzk7aH3 GyOz1gcTywubdoss8+vWD19WOk92ZmZw2ex4Mjmanhgrz+IxmfQMqTw+iQbx Re5w8nJwcQsICaIlUzPSOTWludQ4HNjHB4MnpqVxqsuU5WVqQgoHw9Pl7Ou6 9OjZ4NTMhYfDXzaBhTXrFwvwfHyy6/RJjTJdJEhJF/JFfEZNbY4hVyaWKHB4 spsn2D8wCOIHc3B2dXJxhYDdC3LlAl5KSCgqAh2VId7VWGfMVgjQeGpYvIin Lt3b2XXx13sdV39asgALq5t29Q8+7DjasreqQCXjc9l0RSZfb+ASyMh4ShwE BkFHR1CTEnz9/bZtd9q6zcHdw53JTOKwkwtNhWw2m8+Jry5VUSkkn6CoYFxy qiK/qfP0hXu3jl8583UTWN6wvZ9fPHPu1IED5ub63D35Mqk4Wa8VJVIxBFJI lootlXFlcl5ICAIG8QeBYS6u7g6Ort4QP7A3SKfR5mjUxhyhuVCWQKchMRQq V8YQSasPNJ+/c+7ElcPrNuDTl6X+B30XL3dWVekNGuFug9ioSzPoBJJ0Wn5+ hlSWQmMSY/ARzs6OTi4ebu4eYAjExcMbiYr19w2ORmPUWmlDnS5XKyAmECks HjIaDwoKMNXlH7vY2Ha6xAoA858/nuk61NhgytHImMlxxQWyLDErMyPFXCwx aAUJcbHuIC9fXzgaHeMJ9v1hyw5nZ2cX+yu+IVCfIBw+XpeX1bI/p6Faa58x GhftiwwVa1THL3V0dDc0HzPb+y+tLt/qOZetFMSRCbxdlKZ9uUatJDEhZheL hMeFQcFgLwgY4Q+PI8V5evt4g3ycnd12Ork4OLtDA+DynAJVtmp/jbKmND2Z gUNjo5JYwvqDP9a21bR1tTQfa7IAwJpl7dnoQ71WGhQI57BIe3ansVLIIchA Px+Im4vrtq07COQoHjdeImZ6gd1dPUE/bHcCQ2EpTJpCK207dKSxrurAXm1N mZTBIvgFIIjUXew0BSON03Ts4Kkrl+3/t9gsczN/lZi1DAZFmyMQcPCRqEAo DOzk5OTh7g2HB2CxEQW5mVwm2d3Nzdkd4uoJ2+6wE08IN+9R7SvLO91e3NFs 1KpSiaQoDy8wAoV1BPkFR2PLGxtOXbvRc/fXv6beDg3e6+ps3FuTr9NwM4Q0 Is4eA0QCgQTz8fHyggbCg1WyTGJsLAjkh4rEhIZjvEFQOAIiEVAaSxQde5UG OYMYg4HBYFAfBJGSHBIdGxWX0NRx5PztG/K8mpPd15+NjnQeLG+t1ZUVZaUy KbhIVBw5js3mxcRg/WCBBGwsn8OjJNJ8AwJJceTEpGR0FN4fESTgJ5l0fJMm lcugJFASEUEoNBbPYPODw9FkBr2gvLjlaOsumXG3uerc6SPNVXqzPk2XyU5j JSPhflFojEiYQaVS6TSWSinF47HBwSGhYZGxeHJkJB6LjYfC4AEBCH8YKJ4Y QyKTMuRKvkgcEIwCwfz8AoLik2nk5ESGiEdmCtQGg1GdurdEWZUvNYiZ6vRU KpnEZvGkGSoikazV5O8xm4KCEBgMls8T6g27xWKVQmHg8vlgMAwZjCYm0NNk 2SGRGHhQMNjH93/++a/tjo6oiHAPkHc0AYdERzJ5bHkWq7wovb1a/WOFrkSf lUCOwWFJaUK5vWFdbVtxSV3BbnNKMguLxiCDQu15SaOn7OKliMUcjVaLwpLi aLtCw6OCw0LD0JGuHu6BIcHRGBwmKqIoL1uVnY4MRVCTcDnZrKYK5cEyjUEh wESHh6EwdBo3GhNTXr6/41i3yVTB54lCkEgXN9dtDtsDgxHpGRxaUmyqkJdn rrAzHxKOcfXydPb0CAoPDQwLE4rlnT8evn/t7IWztRmiRDwukMMgqiWsTE4C kxITR8DFYnFRURGIIFhpZZHJVEAgkINDw+BIRAQm0hPiERiCiCXgvbxAYIhP anqWylCUKlEggkO3OOyEIZFJPN7lGzenx54uTv9+6piptlyhUbIlnEQ+EaNM IWfSiQxilIhLk0rYaLSfUsXPN2oYdDoYDIL5g2OJOH8E1A8OCwgM/g+lAQH2 3BZJs079+3RzSz2BFBMaGSnJkp2/cOTWL4fvXD9448LRg3vLuDQqnUAoUatO 1FVUa5Qiavyh+uozHe0UAmZPvu5M5+H25gYOKzk+DoOOhApEZL4wITgcHhIW AoJ4OzjtgPpCCwpyThxv0uvk0dFRoWEoiZyfkc3nSBLn39wd7DtZW6reV2ns aqvo6Wy+duRAXprwt5u/vBx8KKTTfz59avj+9VNHWo1qmUrGKcwX1VQpOHy8 g+v3UH9fJxe3v337t3/+/Vsvd0e4n7eHh5OTi6OblzskAAYLDwwlo578Vvp0 pGL094bRgabXd5qnbx568r9N+7MELbs1LUWGGH+IIB4vpJFIkShidBg9HiPi UIS8JBDI5du//+OH7S47HT22fL9t63dbtn73r21bvw9C+tAYJBaXrDNw8ovT 247m9t0zP35Y92Lk4Iu+5ueXG4aPV/ZW5p3MkZXzmVoKXhQVIsJG4P39Ed5e vmBPONTb29MFCgU7Ou3cuuM7VzdHKMTT3887PNyfz4szFwnPnS2+1VN+/Wrh /d6y+3fLBgeqtQWswmJhqVlUVCDQK1kaEcUkYdZq+I25/P16TletuqMkKz8z SSqIFfAwHFZEKg+TJiSmC4nZKkpFGa+5Udp2IKvrlLG/v+Hx46bHw1XDQ+an I9UjQ9WPHpQN9Jn/D3Y/x6I= "], {{0, 32}, {32, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{32, 32}, PlotRange->{{0, 32}, {0, 32}}]\)]
Out[7]=

获取子标签输出的最有可能的分类.

In[8]:=
Click for copyable input
net[\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJwtlHdQ01m7x3fu/ePdO2/ZdS1Ib2mUBAgQSiAJpAEJJJBiCkkgIYQUEtIo BiT0qlIV1EXFq+jrYlvLigUVkVVYZFdZ6wICFooiAlJC8rt5Z+7M95x5zvnj Oef5zme+nmJNSuZ/ffPNN/pv7VtKel6MTpdewPjefmCp9XKZWpoRrzZIZVJd uPi/7Zce/7/+U8+uAR/XgM9rtg8rm+9WrLMrts9rwLIVmF8HJhetYwvA60/A C7sWgdHPwB8fgZE5YGQWeDwDDM8Av723DEyu908Dd6aB25PArXGgZwy4+hq4 9Ao49xL46Tnw71FgcgmYWtycXbXNfLVNL1omP2+8XbS8W7a+ml//8+3Sszfz zyfnX8+tvZy3Pp0Ffp+zjczYnnwAfp+2DI59ujYw3H37wcDrxQcTtrvjttvj mzfGrNdeWy+/sl18aTv/3PbTqO3tMjC1sD6zZFlYtc4vb84uW959WZtaWL39 8I+T3ZeaDrQeO9HRN/Tb2Nzqi4/A04+Wp3OWP99v9j+ZPvpTd1tHa+uhlku9 94fGVwbebN57Y+mdsNwc37w+Zr3yl/XnV9aLL2x2cz593Vxc21z5urG6alnd sK5YgXdzs11dJ5qbalVKYUFBVmW9eWDk2bOZldGF5ecfV+6OjHVdvF7fUtXc uKe1qbSpff+V+48eTSwNfrAOvLfdmbTemLD8Mr559S/rlVd2t61LG9Y1AFi3 bC5/WVpfW19b25iaeN26t6SiWFNSpCgxqxRKQWNTfdeFS3+8+/Rs9uvZqz0H DjfW1JvKzDl11caikpzSuqrua3eHXs0Nz1j73lp7JzduTVhvjtt6XgOf162f Vi2fN6wLK+tDI0+GRx733rnZdaK9pd602yjW5wjy8zIKTSpJ+q4MhbL/6ZvR d8vtnZ2V1fkGvTRLyskzSvTGzDRp2p6K+u4bj/onVn79APRNrd+dtPVOALfG 7PDY5lYssyuWua+2Y2cuFJaaq+vNlRX6/TXGipJsnVaYKWOpsgW8VBaVwa1s On7/yfjJ7u5Ck9aoy0wTJOYaxCq1mMllMtMza4+ev/NyvufPmYG36/1vbX1T tntvgLk1wE7mzFernZ/jZ382lRQXFuWUlWi06lQ+N0GnlzHZFBQKgcbhCFQm ky81Ve3b19xabMpVy4UVJZpcg4SaSPKGgcJi8XnV+6rbO8sOnb794uOvby0D 05aBKevcOvDhq82u+TVg6OmLtvZ2dVZ6Xk5GEhWLCoWz2Ux/f/gPW7Z7QBAR MXFRMbHRJDKHL5QIUnOyRJWlaqWcA0f4eEFBkbFoiVysyTNIDMUnekcfvlsf fG959M46vwHMrG7OrtmmF5Z6em83N9Vly0VcVnwCOSochUSFhoWiIqG+cHdw gAc4wBvmExIVliri81n0st26AqMshUklkMmJdIpCwSkrz+FIJFiOovzk7aH3 GyOz1gcTywubdoss8+vWD19WOk92ZmZw2ex4Mjmanhgrz+IxmfQMqTw+iQbx Re5w8nJwcQsICaIlUzPSOTWludQ4HNjHB4MnpqVxqsuU5WVqQgoHw9Pl7Ou6 9OjZ4NTMhYfDXzaBhTXrFwvwfHyy6/RJjTJdJEhJF/JFfEZNbY4hVyaWKHB4 spsn2D8wCOIHc3B2dXJxhYDdC3LlAl5KSCgqAh2VId7VWGfMVgjQeGpYvIin Lt3b2XXx13sdV39asgALq5t29Q8+7DjasreqQCXjc9l0RSZfb+ASyMh4ShwE BkFHR1CTEnz9/bZtd9q6zcHdw53JTOKwkwtNhWw2m8+Jry5VUSkkn6CoYFxy qiK/qfP0hXu3jl8583UTWN6wvZ9fPHPu1IED5ub63D35Mqk4Wa8VJVIxBFJI lootlXFlcl5ICAIG8QeBYS6u7g6Ort4QP7A3SKfR5mjUxhyhuVCWQKchMRQq V8YQSasPNJ+/c+7ElcPrNuDTl6X+B30XL3dWVekNGuFug9ioSzPoBJJ0Wn5+ hlSWQmMSY/ARzs6OTi4ebu4eYAjExcMbiYr19w2ORmPUWmlDnS5XKyAmECks HjIaDwoKMNXlH7vY2Ha6xAoA858/nuk61NhgytHImMlxxQWyLDErMyPFXCwx aAUJcbHuIC9fXzgaHeMJ9v1hyw5nZ2cX+yu+IVCfIBw+XpeX1bI/p6Faa58x GhftiwwVa1THL3V0dDc0HzPb+y+tLt/qOZetFMSRCbxdlKZ9uUatJDEhZheL hMeFQcFgLwgY4Q+PI8V5evt4g3ycnd12Ork4OLtDA+DynAJVtmp/jbKmND2Z gUNjo5JYwvqDP9a21bR1tTQfa7IAwJpl7dnoQ71WGhQI57BIe3ansVLIIchA Px+Im4vrtq07COQoHjdeImZ6gd1dPUE/bHcCQ2EpTJpCK207dKSxrurAXm1N mZTBIvgFIIjUXew0BSON03Ts4Kkrl+3/t9gsczN/lZi1DAZFmyMQcPCRqEAo DOzk5OTh7g2HB2CxEQW5mVwm2d3Nzdkd4uoJ2+6wE08IN+9R7SvLO91e3NFs 1KpSiaQoDy8wAoV1BPkFR2PLGxtOXbvRc/fXv6beDg3e6+ps3FuTr9NwM4Q0 Is4eA0QCgQTz8fHyggbCg1WyTGJsLAjkh4rEhIZjvEFQOAIiEVAaSxQde5UG OYMYg4HBYFAfBJGSHBIdGxWX0NRx5PztG/K8mpPd15+NjnQeLG+t1ZUVZaUy KbhIVBw5js3mxcRg/WCBBGwsn8OjJNJ8AwJJceTEpGR0FN4fESTgJ5l0fJMm lcugJFASEUEoNBbPYPODw9FkBr2gvLjlaOsumXG3uerc6SPNVXqzPk2XyU5j JSPhflFojEiYQaVS6TSWSinF47HBwSGhYZGxeHJkJB6LjYfC4AEBCH8YKJ4Y QyKTMuRKvkgcEIwCwfz8AoLik2nk5ESGiEdmCtQGg1GdurdEWZUvNYiZ6vRU KpnEZvGkGSoikazV5O8xm4KCEBgMls8T6g27xWKVQmHg8vlgMAwZjCYm0NNk 2SGRGHhQMNjH93/++a/tjo6oiHAPkHc0AYdERzJ5bHkWq7wovb1a/WOFrkSf lUCOwWFJaUK5vWFdbVtxSV3BbnNKMguLxiCDQu15SaOn7OKliMUcjVaLwpLi aLtCw6OCw0LD0JGuHu6BIcHRGBwmKqIoL1uVnY4MRVCTcDnZrKYK5cEyjUEh wESHh6EwdBo3GhNTXr6/41i3yVTB54lCkEgXN9dtDtsDgxHpGRxaUmyqkJdn rrAzHxKOcfXydPb0CAoPDQwLE4rlnT8evn/t7IWztRmiRDwukMMgqiWsTE4C kxITR8DFYnFRURGIIFhpZZHJVEAgkINDw+BIRAQm0hPiERiCiCXgvbxAYIhP anqWylCUKlEggkO3OOyEIZFJPN7lGzenx54uTv9+6piptlyhUbIlnEQ+EaNM IWfSiQxilIhLk0rYaLSfUsXPN2oYdDoYDIL5g2OJOH8E1A8OCwgM/g+lAQH2 3BZJs079+3RzSz2BFBMaGSnJkp2/cOTWL4fvXD9448LRg3vLuDQqnUAoUatO 1FVUa5Qiavyh+uozHe0UAmZPvu5M5+H25gYOKzk+DoOOhApEZL4wITgcHhIW AoJ4OzjtgPpCCwpyThxv0uvk0dFRoWEoiZyfkc3nSBLn39wd7DtZW6reV2ns aqvo6Wy+duRAXprwt5u/vBx8KKTTfz59avj+9VNHWo1qmUrGKcwX1VQpOHy8 g+v3UH9fJxe3v337t3/+/Vsvd0e4n7eHh5OTi6OblzskAAYLDwwlo578Vvp0 pGL094bRgabXd5qnbx568r9N+7MELbs1LUWGGH+IIB4vpJFIkShidBg9HiPi UIS8JBDI5du//+OH7S47HT22fL9t63dbtn73r21bvw9C+tAYJBaXrDNw8ovT 247m9t0zP35Y92Lk4Iu+5ueXG4aPV/ZW5p3MkZXzmVoKXhQVIsJG4P39Ed5e vmBPONTb29MFCgU7Ou3cuuM7VzdHKMTT3887PNyfz4szFwnPnS2+1VN+/Wrh /d6y+3fLBgeqtQWswmJhqVlUVCDQK1kaEcUkYdZq+I25/P16TletuqMkKz8z SSqIFfAwHFZEKg+TJiSmC4nZKkpFGa+5Udp2IKvrlLG/v+Hx46bHw1XDQ+an I9UjQ9WPHpQN9Jn/D3Y/x6I= "], {{0, 32}, {32, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{32, 32}, PlotRange->{{0, 32}, {0, 32}}]\), "SubLabel" -> "TopProbabilities"]
Out[8]=

相关范例

de en es fr ja ko pt-br ru