Wolfram 语言

神经网络

数字分类

用手写数字的 MNIST 数据库训练卷积网络预测一个给定图像的数字.

首先取得培训和验证数据.

In[1]:=
Click for copyable input
resource = ResourceObject["MNIST"]; trainingData = ResourceData[resource, "TrainingData"]; testData = ResourceData[resource, "TestData"];
In[2]:=
Click for copyable input
RandomSample[trainingData, 5]
Out[2]=

定义一个接受 28×28 的灰度图像为输入的卷积神经网络.

In[3]:=
Click for copyable input
lenet = NetChain[ {ConvolutionLayer[20, 5], Ramp, PoolingLayer[2, 2], ConvolutionLayer[50, 5], Ramp, PoolingLayer[2, 2], FlattenLayer[], 500, Ramp, 10, SoftmaxLayer[]}, "Output" -> NetDecoder[{"Class", Range[0, 9]}], "Input" -> NetEncoder[{"Image", {28, 28}, "Grayscale"}] ]
Out[3]=

对网络做四轮训练.

In[4]:=
Click for copyable input
lenet = NetTrain[lenet, trainingData, ValidationSet -> testData, MaxTrainingRounds -> 3];
Out[5]=

在从验证集上随机抽样的图像上直接运行训练过的网络.

In[6]:=
Click for copyable input
imgs = Keys @ RandomSample[testData, 5]; Thread[imgs -> lenet[imgs]]
Out[6]=

相关范例

de en es fr ja ko pt-br ru