Wolframテクノロジーを使い始めませんか.弊社とともにお客様のプロジェクトに計算の専門性を適用してみませんか.
ご質問やコメントは電話1-800-WOLFRAM(アメリカ国内のみ)または電子メールでお寄せください.
自動化された現場の製造システム
自動組立てラインでの製造工程を最適化する.
machine learning framework とMathematicaを使って,製造現場の管理システムによって提供されるデータから適応的なモデルを作成する.
車,電化製品,および家庭・オフィス家具といった我々の生活必需品はますます自動工程の中で製造されるようになってきています.これらの複雑なシステムの設定を変更するには,正しい意思決定支援や自動回復の機能が不可欠です.そしてこの重要な情報を決定するためには,機械学習機能が必要となります.
uni software plusが開発したMathematicaアプリケーション machine learning framework (MLF)は,これらのシステムの問題に画期的なソリューションを提供します.MLF は過去のイベントデータとその他の統計の分析に基づいて機械がそれ自身の工程を改善することを可能にします.また,理解しやすく,高速計算を行うモデルの作成を支援します.
MLFは,データ収集やモデリング機能が不可欠である主要メーカーの製造システムにすでに統合されています.Bosch,Braun,Moeller等を重要な顧客とし,高度な自動組立てラインのシステムを提供するAMS Engineeringのような企業は,設備の全体的な効率と製造工程を改善するためにMLFを使用しています.
このような組立てラインには,優に何百ものパラメータを持つ30以上の工程モジュールが含まれる場合があり,これらのパラメータは頻繁な製品再設計のたびに変更されます.Mathematicaの総合的なディスクリプタおよびソルバは,MLFの迅速なモデル作成・評価装置と結合し,製品デザイン,設備稼動性,生産効率,品質率等の点において継続的に機械学習によって得られる「知能」を高めていきます.
MathematicaとMLFは,オフラインで正しいモデルを作成しテストすることから,稼動中の製造現場管理の不可欠な部分となることまで,自動組立て工程の中で常に使用されるものです.「Mathematicaの総合的なプラットフォームとしての力はまだまだ過小評価されています。そのハイブリッドシステムは,複雑なタスクをプログラムし,結果を出し,シームレスに他の環境に結び付けることを容易にしてくれます.このおかげで我々が machine learning framework を設計することができたのです」とuni software plusの社長Herbert Exner氏は語っています.