Core Geometry

Automatic Region Simplification

Operations on special regions are improved in Version 11 to give the best representations in terms of special regions where possible.

Intersect the unit disk with the unit rectangle.

In[1]:=
Click for copyable input
RegionIntersection[Disk[], Rectangle[]]
Out[1]=

Apply an affine transformation to a special region.

In[2]:=
Click for copyable input
TransformedRegion[Disk[{1, 2}, {1, 2}], AffineTransform[{{{1, 2}, {3, 1}}, {1, 2}}]]
Out[2]=
In[3]:=
Click for copyable input
TransformedRegion[Rectangle[], ShearingTransform[\[Pi]/4, {1, 0}, {0, 1}]]
Out[3]=

Take the product of two regions and produce a special region of higher dimension.

In[4]:=
Click for copyable input
RegionProduct[Interval[{a, b}], Disk[{x, y}, r]]
Out[4]=
In[5]:=
Click for copyable input
RegionProduct[Parallelepiped[{1, 1, 1}, IdentityMatrix[3]], Rectangle[]]
Out[5]=

Compute the difference between special regions.

In[6]:=
Click for copyable input
RegionDifference[Disk[{0, 0}, 2], Rectangle[{2, 2}]]
Out[6]=
In[7]:=
Click for copyable input
RegionDifference[Cuboid[], Ball[{0, 0, 0}, 2]]
Out[7]=

Related Examples

de es fr ja ko pt-br ru zh