# Wolfram Mathematica

## Digit Classification

Use the MNIST database of handwritten digits to train a convolutional network to predict the digit given an image.

First obtain the training and validation data.

In[1]:=
```resource = ResourceObject["MNIST"]; trainingData = ResourceData[resource, "TrainingData"]; testData = ResourceData[resource, "TestData"];```
In[2]:=
`RandomSample[trainingData, 5]`
Out[2]=

Define a convolutional neural network that takes in 28×28 grayscale images as input.

In[3]:=
```lenet = NetChain[ {ConvolutionLayer[20, 5], Ramp, PoolingLayer[2, 2], ConvolutionLayer[50, 5], Ramp, PoolingLayer[2, 2], FlattenLayer[], 500, Ramp, 10, SoftmaxLayer[]}, "Output" -> NetDecoder[{"Class", Range[0, 9]}], "Input" -> NetEncoder[{"Image", {28, 28}, "Grayscale"}] ]```
Out[3]=

Train the network for four training rounds.

In[4]:=
```lenet = NetTrain[lenet, trainingData, ValidationSet -> testData, MaxTrainingRounds -> 3];```
Out[5]=

Evaluate the trained network directly on images randomly sampled from the validation set.

In[6]:=
```imgs = Keys @ RandomSample[testData, 5]; Thread[imgs -> lenet[imgs]]```
Out[6]=