Wolfram 语言

神经网络

分类性能评估

测量用手写体数字的 MNIST 数据库训练的数字识别器的准确度.

首先获取训练和验证数据.

In[1]:=
Click for copyable input
resource = ResourceObject["MNIST"]; trainingData = ResourceData[resource, "TrainingData"]; testData = ResourceData[resource, "TestData"];
In[2]:=
Click for copyable input
RandomSample[trainingData, 5]
Out[2]=

定义一个接受 28×28 灰度图像为输入的卷积神经网络.

In[3]:=
Click for copyable input
lenet = NetChain[{ ConvolutionLayer[20, 5], Ramp, PoolingLayer[2, 2], ConvolutionLayer[50, 5], Ramp, PoolingLayer[2, 2], FlattenLayer[], 500, Ramp, 10, SoftmaxLayer[]}, "Output" -> NetDecoder[{"Class", Range[0, 9]}], "Input" -> NetEncoder[{"Image", {28, 28}, "Grayscale"}] ]
Out[3]=

对网络做三轮训练.

In[4]:=
Click for copyable input
lenet = NetTrain[lenet, trainingData, ValidationSet -> testData, MaxTrainingRounds -> 3]
Out[4]=

在从验证集上随机抽样的图像上直接运行经过训练的网络.

In[5]:=
Click for copyable input
imgs = Keys @ RandomSample[testData, 5]; Thread[imgs -> lenet[imgs]]
Out[5]=

从经过训练的网络创建一个 ClassifierMeasurements 对象和验证集.

In[6]:=
Click for copyable input
cm = ClassifierMeasurements[lenet, testData]
Out[6]=

获取网络在验证集上的精确度.

In[7]:=
Click for copyable input
cm["Accuracy"]
Out[7]=

列出被误判为 8 的 3.

In[8]:=
Click for copyable input
cm[{"Examples", 3 -> 8}]
Out[8]=

获取验证集上网络预测的混淆矩阵的图形.

In[9]:=
Click for copyable input
cm["ConfusionMatrixPlot"]
Out[9]=

相关范例

de en es fr ja ko pt-br ru