可视化特征函数
定义一个三维拉普拉斯算子.
In[1]:=

\[ScriptCapitalL] = -Laplacian[u[x, y, z], {x, y, z}];
设定齐次狄利克雷边界条件.
In[2]:=

\[ScriptCapitalB] = DirichletCondition[u[x, y, z] == 0, True];
找出一个球内的最小特征值和特征函数.
In[3]:=

\[CapitalOmega] = Ball[{0, 0, 0}, 2];
{vals, funs} =
DEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x, y, z], {x, y, z} \[Element] \[CapitalOmega], 2];
In[4]:=

funs
Out[4]=

用三维密度图绘制每一本征函数.
In[5]:=

Table[DensityPlot3D[
Evaluate[N[f]], {x, y, z} \[Element] \[CapitalOmega],
PlotTheme -> "NoAxes", PlotLegends -> Placed[Automatic, Below]], {f,
funs}]
Out[5]=

用坐标平面上绘制的密度.
In[6]:=

Table[SliceDensityPlot3D[
Evaluate[N[f]], {x, y, z} \[Element] \[CapitalOmega],
PlotLegends -> Placed[Automatic, Below]], {f, funs}]
Out[6]=
