Wolfram Language

Partial Differential Equations

Solve a Wave Equation with Periodic Boundary Conditions

Solve a 1D wave equation with periodic boundary conditions.

Specify a wave equation with absorbing boundary conditions. Note that the Neumann value is for the first time derivative of .

Click for copyable input
eqn = D[u[t, x], {t, 2}] == D[u[t, x], {x, 2}] + NeumannValue[-Derivative[1, 0][u][t, x], x == 0 || x == 1];

Specify initial conditions for the wave equation.

Click for copyable input
f[x_] = D[0.125 Erf[(x - 0.5)/0.125], x]; vInit[x_] = -D[f[x], x]; ic = {u[0, x] == f[x], Derivative[1, 0][u][0, x] == vInit[x]};

Specify a periodic boundary condition such that the solution at the right-hand boundary is propagated to the left-hand side.

Click for copyable input
bc = PeriodicBoundaryCondition[u[t, x], x == 0, TranslationTransform[{1}]];

Solve the equation using the finite element method.

Click for copyable input
ufun = NDSolveValue[{eqn, ic, bc}, u, {t, 0, 2}, {x, 0, 1}, Method -> {"MethodOfLines"}];

Visualize the periodic wavefunction.

Click for copyable input
plots = Table[ Plot[ufun[t, x], {x, 0, 1}, PlotRange -> {-0.1, 1.3}], {t, 0, 2, .1}]; ListAnimate[plots]
Play Animation
Stop Animation

Related Examples

de es fr ja ko pt-br ru zh