Mailles à partir de tableaux
Désormais, la version 11 vous permet de générer facilement des tétrominos de couleurs et construire des échiquiers ou des formes géométriques arbitraires à partir de motifs.
In[1]:=

arrays = {\!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "0", "0", "0"},
{"1", "0", "0", "0"},
{"1", "0", "0", "0"},
{"1", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\), \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "1", "0", "0"},
{"0", "1", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\), \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "1", "0", "0"},
{"1", "0", "0", "0"},
{"1", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\), \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"0", "1", "0", "0"},
{"1", "1", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\),
   \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "0", "0", "0"},
{"1", "1", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\), \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "1", "0", "0"},
{"1", "1", "0", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\), \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"1", "1", "0", "0"},
{"0", "1", "1", "0"},
{"0", "0", "0", "0"},
{"0", "0", "0", "0"}
},
GridBoxAlignment->{
         "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, 
          "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]}, 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]}, 
Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, 
          "ItemsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$, 
MatrixForm[BoxForm`e$]]]\)};In[2]:=
col = ColorData[97, "ColorList"];In[3]:=
Table[ArrayMesh[arrays[[i]], MeshCellStyle -> {2 -> col[[i]]}], {i, 
  7}]Out[3]=

Construisez un échiquier en 3D.
In[4]:=

m = Join @@ 
   ConstantArray[{{{0}, {1}, {0}, {1}, {0}, {1}, {0}, {1}}, {{1}, \
{0}, {1}, {0}, {1}, {0}, {1}, {0}}}, 4];In[5]:=
p = First /@ Position[Flatten[m], 1];In[6]:=
style = {{1, All} -> {Thick, Black}, {3, All} -> 
    White, {3, #} & /@ p -> Black};In[7]:=
r = ArrayMesh[ConstantArray[1, {8, 8, 1}], MeshCellStyle -> style]Out[7]=

Construisez un maillage de Seidel, une région avec des tunnels allant dans toutes les directions sans se croiser.
Afficher l'entrée complète de Wolfram Language
In[9]:=
transparentMesh[ArrayMesh[seidelArray[{2, 2, 2}]]]Out[9]=

Implémentez le Jeu de la vie de Conway.
In[10]:=
gameOfLife = {224, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}};
board = RandomInteger[1, {40, 40}];In[11]:=
sim = NestList[Last[CellularAutomaton[gameOfLife, #, {{0, 1}}]] &, 
   board, 70];In[12]:=
ListAnimate[ArrayMesh /@ sim]Out[12]=

