Vectorice un ícono de mapa de bits
ImageMesh convierte segmentos de primer plano de una imagen raster en regiones de malla por polígonos. Mediante la partición de un imagen en segmentos de color, usted puede luego transcribir estos constituyentes en polígonos y acomodarlos como una versión de Graphics de la imagen original. Este proceso es conocido como vectorización y constituye el proceso inverso de Rasterize.
Una imagen de ícono para ser vectorizado.
img = \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnQd4FNXax0M6oZO+u9mWQgsdUaqA9N4JJQQIvVdBOgiI9JZCr0oV9epV
uZbP67VcRS9NipQIKF0IhJIAIfO957wzZ86U3SSbQBRznpd5zk52l905v/2/
5ZyZsQ0Y03mwu5ub2wRf2HTuP7nx+PH9X+tSGh50Gz1h2JDRgwa2Gj1x0JBB
418a4AE7vxT/kb5Q2ApbYStsha2wFbbCVtgKW2ErbIWtsBW2wlbYClthK2z5
2n4+9nPC6jVDBw3q1KFjjSpVbaYwW5i50P4yZgqLLle+S6dO/ePiVixf/sMP
Pzx58uQZYHP40KE5s2a9WLOW1RhmMZqspjC72RJusRbaX85g4MBgBGEcwapX
qfrqxInffP31UyLn0P8O9ejS1Wwwwv9Y4N+90PLdCEtUENq1afvF51/kIzlp
aWmTJkywGIyFUvN3MEAIbFD8wMuXL+cdnl9TUl6u38CR5tgtVpvZYgkzm8NM
ZrLNhVmeocF/B/BHWG2qzw974Cs84w/zJzErPSaOKAKP9kKNmj/99FNe4Pnm
628qREbp/i9moykgILCsf0CY0RRls1ewh5dDC1eaPUJp4cr+M7IqUeUqR5WD
uNFOmZctzFzOZq8UEZnr97RpOtgXzc71tXvsaOWljmpP+fww+j7sg0n/u/RR
y9vDw83W0JDQMgGBwSEhcGR0hQh+X/vf2e8aPHv37tUlxxBqAGyiI6OGte+0
bfLUH1YnXN259+6779/e9y6xPe/c3r3v9p79t3ftJbZzN1rqWztvv7UzdQfY
26Jtfyt121upW3ekbtmuY5u3ibYJO9vFziZu/6atqRu3OLdbG7ekb3vr9vrN
DSqUdytSxFvZ3NzcGpSv8GjL9jvrNqaup7Z2g9hhD8GSN6QmrU9NZkZ3wh6w
xHWpiWuJQT8hOTUhidpasl2VmLomKXV1IrGV2Kc7VySg3VqxhnTYnuVrbi1f
k7oyAba3lq2Wje6/tWzVraUrxD2ks+rWctphO5UvIe+2YjX5ePCBVyeTz7Aq
iX3a24nrTi9dfmDq9CX9BnSq1zDMaCwbGGjRUIQB9uqVq3ILzxeff66FxxIW
VsY/oG616htenXL9nXeFf/9H+Ppb4f/+LRz4LOvjf2V99Amxjw9kffixbO//
E+3Ju/8Qbf/7or3zHrG9+8Gy9r0L9mTPO7yJe3btwyeQzq69ZA+8ZM9+8nDn
XtF2KY3s3EPsrd3CnneF9z7sXqceoOKpaUCUr7f32RUrBXjbHbvh+U/e2vXk
7d3MMre/Ldu2tzK3gm3P3KbcuWUHMfjT5u2Zm7YR27yD9DdsIduNW0XbBNst
ZOf6zbJt2Czt2ZS5jrO1G2XDPckbMpPWky3tPAZLWEf2sJ3M8CXwhuvpm5PP
s530YSd00LZsE7a/Lex+R9j/D9geW75qXOeuFlNYQGCQLkJbt2zNOTwpKSlR
9ghFnACyExJqMhgXDhry4L0PhS//I3x04NE//vnwvQ+IvfsPsIx972bs3S9u
qaXv3pe+ay9axlu7M97alf72bmp7JNudsWMn20/6zLaDvU1s29vYSd/6VvrW
HdLOt0BVyJ80Bs8Rbcv2h9veEt55b0zrtgiPl16DPyX1jwd+Hmzelo62cats
6zenb9gsb9HWbSK2ge3cJO5ZtzF9LbXkDdTWk23iOtmS1vMPHySsfbA68cGa
5HTorEmWLInrJz9YnUSeA9tVicRWJ4od9pDtWZlAbFWi+CbwkoS16QnwDgnk
Y2zYkr6Wfir4eOTDb0kHZd60NQOOEoC0F35lHxxftSam8SulAwJUQgQIQZT7
3Xff5QSejIyMZo2bhCvFJzAwqGq58t8sXS58/mXW+x+KnIDteYcaBQY5ge3O
PYAEse07ZSPDjYYDLT6kA71DfAh40HEnBuO4aSsx7OBOMNzJ22a+T59Mhp4c
HGHP/uR+A4AQdwfwID/NK1cRduzKkDHYRA41M0IF7SAPaykSMDQAAxo+REsk
RgcdjI7+qgTJpLHmd65Y82DlGrGD/ZVSn7dlq+T+8tXiw5XcX9FUz8F3XrUG
/l+CDaAOn5Z8yHXyV9soHls4/kSL3vvwzfhBIcEhZpNJFQu9UKPGjRs3suVn
6eLFfLYVQeFpVLPWxc1bwU9lvPOeCM+edwgnu/fxRvbs4LFB6dhJwGD8MEJ0
DQCAn8aGLSIMPEX8Q4RE+hGJL9m4VexvJA+FnXu/nDqjiLs7OClH8ECDJxTz
8U1ZtESAl4vMSMAwQnRR4YxoCJUR8aHIT5KSH9SHBJmWFWvUD1esEWUEAFi6
kjAAHYQBO0tWEMM/geHDxcuJQYc9GZ/P3pDSm560jnw1hlAy5QeggoOGwr5j
V+ae/cJH/9r96pTQUINZmXRDRjZ+7Djn8Fy9clWV5EKIXqNCxd8Bng8+IZAA
NlRhZJFR6YzkX6grEcEmYHBuRYGBrDDbiPF/gj48GTlBZ0Fsi9rWbyGKsV76
ExUQYcv2G6sTTQGBIC+6msPvh/7avv0E+MBJ1MWI22yYEU10MQqDncLaDRng
O1ZK2KDxoiHqxmpRLvihRwNIEA+tAS2LlqlN9Rx4OUMI/4uVCRShDWSbuE50
ZHjoqAqRUYPIYdde4eN/7ZgwMTAo2Ma5IeLFwsz/+9//nPAzc/p0PmyGgMpo
MP538VLhw09EbCBKeYvGKtt3iuRI2qIvJqzDRxf86DPR0OLBQguJCse2UXQ6
tPN47UZh8/b21Wto4XF3J2cZxMXFjRw5kv2VuLDoysLWtzIcoUJDEYZKOtfn
dCYRxeTh6kRh09Y3O3c5NmP2E3jaitUK58LrA0KC0qFiA3fqcvLmUmLa/SqD
1zKZQkOG1ySlr91EfDGvQngYkaLtOx/t3CP88+PXYnpBuqSSoAH9+juC586d
OyrxKRsQuLBfPCiPRI7GN6lo4VUFOdm0VVSG9Vz8uZ7nZ4v8+VW2doP6T2Ls
Sv2L+BwarCZJkQkNXIW3dy/v2VsbMyM8I0aMgC977Ngxcv6Jhwe6sKI+PhcX
LhHWbVaSI3klkR+Ok5UJSsck/swzVqwRNmxZ1KUrOcFl7AQhab2+pEAH+1rp
YMyo4GHYYIc3FVTQYUyy/4hpEXTgu6zdRKP3JJkiHBoYDurLssDXvLWrYbUa
kDfxEgR28uRJXX52bN/BRz6gPC9FV34Ab7Vzr+SSuBhGRcumrTqehTkUWUA2
igEGDj0fporZwQaRDQLGeodPQGCSNSFKwlph07afZs7x9PRQhT0Iz4IFC/DL
PnnyxG638xK0qmdvYcsOpapI4S50VkqBrhIY3gg86zYv7twV/eOe+MGEH9QZ
rQ/Suh4GjJYQpd1fuOT+G4vBHixcQkyXKAYhvi2vRSvWiPE/IoS/EXjIfBl1
HMK+9w5MnxkUHKJwSUbTmwsX6vLTtXMXlfisHzZK2P8BgQeBYREsC3Gxz2IP
ltuqZIQAo6FFZUlcUpMswqATwUqciD8cFp/Qfua6TU+SN1QzW1WeC+GZP38+
/32HDBnC89OwXHlh/aaM1VReVHHvKil6EZNlTdC7fHXG8tXC+i0iPB7kxLrV
3XoISRtkWthQOqJIFxXKiUOb/yYx7C9YRAz7lCsCmMrTsdgbPjNgA3hTR5xO
+2KOKcVFDzduEXbtbVenXggnQaAwdWq/qF3sAWk777wg9q4cGXV97QbhrV2i
b9qopy0IDPMmjiBJWi8LCOKBH9UJGypz/lfJIIaZ0bY98VyagHn48OGqr/zB
Bx8wHwcuzMPT8/SceULSOp3kmkdIz9IpPCu79YA3hLfC/3FGi5ZC4no1JCyw
UaECw41KImmLM2B07fWF9+e9qfsqWaMUAfYK8o3QI0OCj79B/lDTSGDnyNFl
uaIi0SKz5cyZM6qD+d233/LOKzA4ZGCzlgKEPSySUTGjrZM4IceRjCSuk/WT
S37Fb0H/ij8TRo4YwfKJj1R/E9Zv/t/0me4eHjiCPDxt27bVjffKli3LS9BS
UIyN2+S0epVDYPhcKX3ZKmHtph1x/YjySE4TukPqNxDWbtTRGaXUiHLBg5Qr
ZpjNmS92YD9q0bw35IcIEvvfmR5iJL9SKk/hsZV+sxDL/bZoWcXwcDNXUTQb
jHv37lUdzA3r19u55/gHBW8ZMkzYtpNLcCTDuCWZi0acEMLrA9ZdxYxGDEqp
s0jUSYGxJKuKRphbUT8/8SFNmetFRqo8Fzy0Wq1paWm6Lhu44vmpGxEpJKx/
CEeS5wRDUFUYLEXC6UtXCskbdvRVwIPv1qV6DQHYRp/FB7pICA4x73G0/Mxf
RCRl7gKCAW55m0uZ0Rr+FeCBl8BD6DDeqEdT+zUWXROQ1rDDK0r62o3tX6wT
HGqQXZjRNGfWbNWRnDNzNguT7BZrcEjod7PmCJt3OBMWNHyYsA6zWoUxxcCE
V0xhEnWBcWZMDbAvRrZcXWVlgrBha1Kv3irPVaRIEdjz3//+VxceaGvWrGH8
FIGgxd392LRZQuJakRCOE9H4HGrx8vQlK3ThQX4aRZXPgqAaBohFuTwkjiSF
EQUdZEbFBlLBbPY8Yto+PA0MHsIWISSdNxRaxChCr4o/EywcrRQpAn4mt20P
/ogPgbRZ/LgxYxg/ljBzpM1+auEiYdNWOWjhAxh+EocXB0UHHFOS6GXEgkmi
IiKVn5+ofLnGWL68ms7y4E4uGhES1l57Y0lAiZK8+JDpUS7h0m0pKSkQWhfh
nM78dh3AGemX7FDtmfIsXi4krtOFB9+qmiksY9HSDBYDw8Axz4L9eUqTtWUB
sblKDBAP3AOdWa/LzPB93thLmCFL85BV8jEeoCJh9IVahDiJirQKUoDEPn3L
BgXz/HRs1151JOP79WdzXmajqVq5cpeWrHiyfpOYFgEAietYJUQx1quklITX
Cjbuq6QIbRW3Z6UklTjds5Kr22vzYngmxiF8NKKcJwLxGfpyY63nql69uhN4
sMFzeBf2gtUmgGioZIfV9KSZAhGe2DhdePCtwvz978xf+IjxM1+ChDkU2RMt
kDtMXhgDjB/gBFGBhzPmkP7MuaQP21nzqL0uw4N/ZS/h8RN9nBRyM0O/hiIp
ZYvCyoT1feJ4fmymsKaNm6gO44C4/lzyZaoSVe7iwiWZkIzIU35JLMRSVFxl
bKT4RBzfNTIh8swOFvC5Giz7q2oGkC/y42+BPZMvhUHik7T+p8nTSNrDhc3o
uQ4ePJgtP+PHj+ddWBEP9yOTpwrwRbT8SCFuxpvLhDVrt/Xp6wgefKuivr43
5i54vHi5LD4EoTeo0T7Sgh6KkaPSEAQAYUDDh9PnEITg4Qxq02YTIzvpQ/LM
18kTZtA9/Fuxd2ZhFd9hDm6e6EmFpSvW9eqTO37CIHkHfhZnQiTAg8GEhXmc
larJHWWSy88Layd3xKB0tT4//JQQmxlkc4jSy0EoQAdaRUdrxUebsOu2L7/8
kq9UQ39e23bwnrLaKMt64I+E1clLOnZyAg80nPE/O2Va1uJlHDxvyirEVIXX
HBQZxglsAQmGCqNlxhxx//Q5916bCeTcmzoLjDwkndkiTsymz6avnUOeCQ9n
KkFSeUnoIOdkz3xh0bJ1PXrniR+UmpVrNJagHncc35zwwxv7kzZqZX3Vn6T5
HSFx/YdDhpMVGnQmgjFQunTpnCw2gHbv3r3g4GDehdW0WAUgU6+gBzsh1lrS
oROr8zjhByToxzHjBfBfoua8IQ4T/t75EIWJjEpqOE5wzz0EgErNvakzAZ57
r81AeDh+6E5i0hOmTMe/EkPAUJfEd35d/QHgU6F7nTlXWLB4XbeYsiG54sdc
OTLq4oI3MxOSpbpZgloW+PSW8cOPMjMVGNpcWPUzZ2VSLtPRiWaXrHi4bJWw
KrFeeLhWfFSlZuetffv2Mj8eHp5eHidemy6AMCrheQQxT8LaxR066sKD4Tp7
6EEfHhg4hPDDnBQf0/I+hfdN6Hc0/CA5BA+kgkECHeSH7QdaiFFsEJ7JxEQH
B28iPnMWytE9pHG63BfDqgUgkvOFeW+u69LdFX7mv5kJysM7DjZlvJxzOipC
+GyF1VpVD/nn8FmkqkjLnszPEHHvAF7m7bgBqnlSeBgQEHDnzp2c87N+/XrV
co5lHTuTEIiD5/GSlbBnctOmuvDg/EiNGjVU/OyP7SdAaoPBBgs/RGZel0MU
xg8yg0aZEQed+ikcdBEMZIOJDDx8dRox1gGbPE3mZwp7Mv/ymQqTIAR/R+iC
j/f6QmHBorWdu5XlpjByxE9E1MV5Cwk/WnfDHAq/fomfreOVRPUnvnSvO+mj
2snoYlVcqZYLavBk6cqqJlMexQfauXPngEA+i68fHgFZWLo0Wfl40XJ4OK5R
Y+oo9eGZMmXKyZMnGcye9H3WdeoqvLmMY2OurCeSx5G1Zdos1AQxnhEHeoY0
rDMoBqKYEENIJk0VbcIUsoU9E18jfdgykHiWyHaGTJQoVtI7i2jNFD/AtNmu
+6/X38gEz6Ust+pIh2rcddei6M4jS8VY1TQQDpm4X/c96ROElYlv9YmjBUOF
+AQGBuZKfLBVrVpVdmFFivj5+v46beaTxcvuLlgEATDEkH1r1tZdB4uJHq4J
OX/+vIqf5W07wGvlMJgzkR9Gixy0SIZD+SrlBIcbtkgIGgKj4gewQX7QoI9/
xc7kaWr88M3xf0Hk2P9F/zthxty1XXv451Z/gJ858zMBHl5MVGsDNNPEPEhi
hRNngaXJQbF0Js0OKxYhSMbv1O2ApS9c8ujNpVWMOuIzffr03MIDbeLEiSoX
tql7DKSuwqKl6Qve7Fq1uhN45s2bh2/C64/4YZo0lfmZocOPRI4Uz0yZoaYI
FYaNOKMFOeEfjp9MDJjBDm8IEm55ulRPYB32nuNeFSZOW9uuY675Af81e14m
yI4WGKYbrCbPDzq3kEBRpceqAj/jo2vixB+dR16wWHwhLlHg1ioIKxP2aiIf
GE1fX9+LFy+6wM+//vUv1dC3r1RZWJF4Z9b8JhFR2gl9Bg/vKy9cuODh4cHK
UPDXcfXrCwuXSvxI/kvWHArPVCn8mMw8iOS5GDAoDjwwDCE27uNevTd2krzV
GqNlzERi0tPu8g9xy72hMGlacpsO/qF54IebtZHn/rBiiR1VWX6+VB6f96Zc
98CJYMWfFqnnEIktEosP7L9gM8gSh4CosHglhCha8YmNjXUBHoGe4+/v78+7
MGPpMsfHTaoVZtYugvWSVlCrAq1r166VKlWKLwX0q1FTeH3hg2kSM7DlZWeq
FNWwmETlWRgnTBYYM0xwwHDEERIAgPEzZiKyAdu7oycQSGA7esJdye7RneSv
I8fdHTWe9OkWn4l9YdLUte06uKA/F2bMfvwmq33haL4hLglghmMtl1Xf4IBR
lsexz3biln8hK8yyGWf2f4n/tVh/E5Ys/xxrPpz4YBD7/fffu8YPtNatW7Oh
h/f19vYuW6y4E3g2bNigeoerV6+WLFmS56dnlarCnAX35eRaSrQnc+kSMsO8
FY8NMsPDw3slST3u8tKB/CAVlAfZABI01cOR8JDbOULaP3zs3RFjhXGvJrdu
l3v9ibzw2szH85dw4/imGh5WDZvHleL5/VrTzvJoJ5T5yT5VdX3uggfzgJ8V
bSvpFJxr1arlMjzQEhMTFdOvtBbkCJ6NGzdq30HLT7OIqCczX39ASi5S+swn
4NpkStdJsegFmEE8OJERxYQ6IDUzo1WcABtj04aPkfAYkzZsDGzvDif70chf
KTbwpzTyhNHCmInJLdv6c+s3csrP1JmPFyxRrjnhSFBVv9mUinYi2NEaA9VL
+Fdp1ydIO4U3Fh8dM4FMdnHig7W7zZs354WfU6dO8XPxug3h2bRpk+47AD8l
SpTg+WkSHpk1e366WCvmKjDosJjP4gNjFTy84PDwMFqooyGjz+vMCESCaosE
D/JAbPgYuU8NmEkbNpb0h45CuztkJG6FUeOSm7d2lZ9FMjBaKlSlVDZ9oyqU
qaYCVfODOfyrZBCODq9TVys+pUuXvn37dl74gVahQgVdh8X+FwDsww8/dPRy
iH/KlCnD81M5JDRj+tx0rP7xmsNXZhAePjNifUfMqMgZPhZFQ8JG2iMpDBGT
YWN4PBgkdwePAMM/YV80+NOg4XcHDhOGjElu1soVfqbMeAzxiaO5YNV+spxg
nmJemJ8HZFOBrK+a7mFTPFr28D2pPZk9/8qkqWWLF9cu1ho4cGAe4YHGnxSm
hQek6aOPPnLy8gcPHthsNgU/wSHpU2enE5+FIoOmLNrw7onFwFIkIwa3XBgs
YoNhjCg11DERJRmjtNEiHkNHUhtFkFDZwGF344fJHWbwwgFDwVzn59Xpj19/
Q5rzVc7IzOT2TJ+tLqjS5FRbMRNfgmX56cqZwRlzNXvmiOsQpkszfTPmCguX
rGzTXjXEHvRkh6/z48J9/Ip6FTxFixb95JNPnL8c+FGcE1TEze4fcH/KjHTw
U6o0ipHD6jB8oo3Y8KjwzMiaI8YqYqxLfNBoohsqAxJkWoYrIAEDSPoP0TH4
E+0Ig0YmN22Za37CIy9MmPIYfv7TpUl/biLvvjQLzBXBZvEFeWV9bJbMj1QA
kSfv4Ani6gIFQvd4CClFGTNfz5w9v7pezbBKlSp5h0egK+r5BJy9P0Q1ObkS
V3p6ejg3mQvhd8miRW+Pn/KQFYf5mjCtzqmwUfgplgTxeAxHfzSaoUI6IDXg
jxg8vLwwT4RGqBiqi01av0G83e03mHTiBgnxQ5JeaeGK/oyf/Gj6XC0hcgTI
rRxQoyKNvr4QcfywrWJuiCOTPV94/c1P+8XD6Hh4earGd9GiRfnCD7SWLVvy
/IDPCgoKcn7SN2t3794NCwvj+Snt55c2ccpDnHdgTgoMWeIzbi7vVvMjmcTP
WDGYYRQhG0xwUGcGDpMRcsBPGoXkbv/BWn7S+g4k1meA0G9wUuNm/gaX+JnB
+NHMzjhEaCYryIv80JlBcdnA1JnS+gF+4YFyHQJDlHvCfeBnweJYzSnt+PC3
337LL36WL1+umsjo27dvDl975coVRf7u4VGqqN8fYyY9RP/FuyrcKmNjkZ9R
E5iTShOZEeERE6XhY8T8CINeBga6qoFKP0VjGNKBPdjvR2i5OwA0Z7CIShw1
oAWxiR1AjMKT1quf0HdgUqOm/sZc83N+/CSZH746qpqj0a1mYEFMXIsyQ547
niJ15ClCB1jiO0t0Zc58/dKEyaX8/Nzc1ZFz69at8wseaCdOnMBQmb1/+fLl
c3htbXX9x8PDx9vr5OChWfCV+ckmVUqF1RtWKx6BhTsSFTOdEaMdKadWBDYs
kkHNIWwMRVNKCvqjeEoI1RbsAzlASx9qEjPEevdP6xWX1rOvEDsg6eVXcs9P
xPkxEx5Nny0OPcsXFEsCpssTfMwmc8sA8E9TNO/AmGHrCnSNQ1GYuyChVTvV
PBSWffbt25eP/AjKLB6D85SUFFf58T45eJjID5ui0vLDQmXYjkC1oZW9keNE
P0XDGwU8YKpImCA0TIpnBivgAVTiaAc5ATbAgBbsgOHOnnHiQ+gAQj375oGf
yPOjxj3SVrdUa054MNgerKOqiOLfQfW2rB7CpoG4VXNgD6bOFGbMrWu2aJ1X
SEhIRkZG/vIzduxYeSKDIrpjx4488DOc8KOaX+CxARsplfvEio3ED60Dy2qD
wTBxUsNEP6VFyBE/GM/EDhQRYiARTuKIxcSm9YglzMC2e5+0mL7EuscKPeOS
GjT2Nxpd4Qcddw4Nf2IIA/Zz+ELG0uTpaqNCJMyce2jICDdycoSHih8Y6/yF
B9qBAwdUc/E5XIqvnj8l/PicGjQsC74azw/LzUeMkzRnHFfxGy1rDrHRYmys
SMOHiVGNmhyMh5WxjUjOAAU5THCoyCjg6dYb7U7XXmldewkxfZPqN/I3mlzk
h18uojWc6Ed4MAnVfQ4+TbuHn+5R9ZlMTZkhzF4wvWEjlfjg8okjR47kOz/3
7t1TlZEbNmyYkxeePXvWTbqmkBddQu/h6fl9bH9h0jQ5POa9FcY5dCpKLONQ
kFitWE6m+ASKr9twmiN6KDEejpfJQSNRTZy4BU5IX9IcrQE8XXqiCT37JdV3
SX9GjHkEg8gyBX4BCfPmjBnd1Sa6+1VP4I0VRpBJdF5TZmRMnl5OcyU6eNig
QYN8hwdbly5deH5Kly4NUGX7KtX6MbIE2t39sx69RX5U8HBTD1g6lvVHFSRj
Js6nVDTj5qp8g+UECix2oJhA8ZqDUoNRDRCC7gldFagNbCXlYeTc6QwWI3SP
Tarnkv4MG/VYVVHnK126+3Wfo13C5Igf1Tpe6tSEqbP+r2dftyLq5X85D0tc
aBs3bmQkYAj9ww8/ZPuq06dPa/n5vEcfAX4I0hob9doJPbcluiqy5XwWV/HD
jFuu27CUiuVQxD2xCEdyUqKr6quQGuQHrGtvAgyS0ymG9GHbKUbo2tt1fmAo
cWUaDwz9KenULriwENcgiX32cm7NmzMVUi6tFGbOG/XCC88mcmbt4sWLqhX1
69aty/ZV3333nQ4/3XoJ46dIyyekejJXGFQFPHKoDKacaNCJh1mfhTR8Ao7w
ICcxfeXYmAlO9z6izpBtDAWmB9l26EasYw/YCp1ikurUzzU/4ZHnh458DF9c
XF7CqS6biOGlmJ+sYcbWubEqB8MMIXTi3eA5414Vpsw8ET+0tJ+f9pI+U6dO
fTrsiK1evXq8Cxs6dGi2L/nkk090+OkaI4x9lSzFGSkVdpQlZdlhMWwGaQIe
vSkGViJW51O94qSUSgJGNBISqw2xYfx07E7Iad+VmdCpe9JL9Vzg59fBwx+N
mSRN8krLA0ZqDH9QbNnAiLE6z6HwyIUyaW3kXalcr5r6QaUSJk29NnJc+YAg
beTsla81Z902d+5cnp/GjRtn+xKH/IybLK6swNhYtYJCNdfJ5sEpPGks1GH8
MPFhpRs0ICcGA5tYJTbECCooNaAwICydeohS00mSHVFzusvwtOtyp01noUNX
F/kZOOzRyPH8j0XBzwhuPz9N44gfUuVQLqHkCyBKA34eTpiSOX5yI4tVu6AC
9sTHxz8dauT2888/s2QKQ+i7d+86fwlGTexzcvy8KgvO0NGKiSq+pIzKg3Ey
V0NWKA+fjKOfYtazL8ue+BycpOHYYbENQIL8MD+FtHCyc6dtZ2KtOwntXeGn
SnhEyoDBD7F+JWaUYyTJHSNXRDWm4E1Bl/QOasDGq/eMGn9/9ATh1WmDqlXX
woPrnI8fP/7UwBFbVlZWxYoVeQkqV67cV1995eQlqvNYRX669BDGUH4k5RHn
zVWLuMRJz+FcDXCIDjkKP9VPpKhnXxkepjkkJJbcE82kqOxQqQF+eD9FdUbk
hzJDDDptSEdo2zmpdl1/U274MVN++g16yFXOxS87mH7ZIVIhVDUjww4Lx5IS
sDFs4Yq4wAkXsbDwkkqcMHFqwivN3fROuYKdXbt2fZrgyO3VV19VzaVCmzZt
mqPnL1682AE/k/isXD5EbPYTp67ihytqOyI/gxV1YzbXoJIdFhVTbNJ4teks
dfjwBpUH4UFm2oiCc6dVR2LQadkeOlmtOibVeinX/NgjUuLiH/LSymcE/KoA
+ld+RQqPFltJq5GpMQp+ho+ROmOFcVO+6967iLv6MpgY+UB0AWnyUwZHbHiN
cdVyDnhYt25d7QVIoUFIr+Xns87dhDETFdNY0rJA+Rjyc+UDWCV5sKw8bNKK
GdZzWBkHHRZ0xDgnRg5vMBPvTI0xw7yVpDOi5lB+brdoR6w5Mdf56TuA8DNw
uNqwfj6QW6GEW97Yn6RZG9XKWy1IqFdPRk+8OXR0RBl/refCqajRo0c/E3bE
hiGNtnrg5+e3fft21ZP5S1HJ/HTsIoyewIsP0XDtUZVlRyInTirsxHLT4n0o
PGRmqo+Yg/MxDw8PSE1nCZ4O3cXYmOcHIxyEBwQH1KZle8IMkNOsrWhN22S1
7JBUq44r/gv4GTSSBXLkd8HP88IexRHgiOJ38qvglPOAWpYekLONJneJKu8o
7OnevfvTq/k4aps3b9ZFCNqoUaP4Z/bu3Vvh7zw8vL28jvbplwmumZ/A4sJj
eX0O2Tnkbr+BiiQrdoDaW4nTmlLRTxvtADAY3shJVg851FHw00WUHeqwJM1p
K/PTtM3tJq2ymrdLqpF7/QF+evd7CB6532BpxZFy3aPO1x8qL1IaOEzMQ5lk
ibrEzR1L6sRAEkZPSmjcVLsCGeGZMGHCM6RG0f75z39iFVr7qcCXsfsU9+rV
S8WPj7f3id79MsE1M1keqISHCo54PPsPTOs/kOhP3wFynsVKOljVUUXIkuzI
oXJHKTzu2E3OqgAbFBzcguYQ2ekshjoIT3POgBywxi3Bspq1TapRO5f8WKrY
w5EfcTUs/YJpNJyjAivOvFClHSxlmrSDyyNZyZ1f2sQqG+whB5IwfOyJXnHF
fLx171tRgPBg++ijj7QIoUs1Go2HDx+G5zRv3lzLz7FecZnDRstBsnIFOzmA
/TnNIb9WDJV5t8XNksfE8tNVXA2whxIe6qrQQyE2bWiEjNi0FgOe20BOyw63
W0o+C7GhskMM+XmldVKNF/y5a8vnmJ+4hwPgC8ZzZXP8jjj5ImWXcfGiyyZz
vvG8TJGjoYgMObGKl1YgUJDSBw3PGjK6nlF9sjkOEMQVBYGMun3yySf86YG8
LytatOiXX37Zrl07FT++RH84fuKHsVAnTVxEOgSPmzyHFctFy7g4J4ab7uRS
LZEcVjfGbUcu1GH8oOYwtSHMUEOHxXwWMPNKa7Jt1ILC00Lkp7oL/ESc69k3
I06ayWVr2Fjxk+wcLM72xnFLTfrJLIk/qAHcOn8VPwPEFQjCiPFv1mnopnff
Coh5CoQW3Xbw4EF+hRj/Ob29vf39/flrwOL655vxQzLYlCjAg/oMh0JU8sFy
baevkp+ecaLyEKlRRMuKYqBKdkhKRWMbERvmrUiELDKDUoPYoOCgzwJsmrS8
3aj57ZebkT7dZjVqkVS1liv8xMRm4HcBhFTfkRkQgnUJRIjEe/3FWWD5OfKK
JlmdmPcfMFQYOvpI995Fvb20a5srVar07ANm5w1cFcSHWoSK0Kb4/JSfWwOG
ZgyVzpJg8aF6SoI7vEx8xAydqwpKSbrMT+eesuxgtMPScLEG2FnMrfgguVkb
ojPNJH6gjz4LyGnYTLQGr9xu0BQ6T+q/kli1pgv+61yP2Ax+ei6Wq2L1HSgv
0ceVtKi9vajkxg5QY6aa+OMWdd8DfgaPelnjueChj4/PiRMnCgQS5+3XX3+N
iFBfPUbbIJALK1nqzpAR6VjwUdYGRaFmFR4860E1K8GvtcC5cpzrZNOdbD4C
EyuxEthJLAAyhwXygg6LaQ64J/RWosNqLhrCU/8VsNS6jW/Xa/Kk3iuJVWr6
h+Wen26gP/Fy/tiH+3aYF8RK5dDYgfKagT4aeJhSsV8ZO2EkbpAwdGRywya6
C+O1F0j587Tr16/XqKFzf0wVP5UDg9KHjnqAa91Z0sovTlb5LHndhXJKC8SH
TYCqqjpY6mHFQJaSQ3iMaiMGOVKQ3FwKdWh4TDstZNmpT2QntV4Twk+dl1Nf
akj0p0oNl/jpndELq51c/sjWQLLfiBjm0QSBVddjpcIXW9Sk9GiI0+OBQy/2
jivrV0zruVq1alUgYOS83bt3r1mzZtpqA/8t6hpMwvAxD0jYw5a1Dxb50Y15
2PEU15dypR7gR6wnY8DTQzFXzs9EcAiRmIdRBIaC80obUXa0/AA8gA1VHtgS
fuo1SaxcPdf8hIef69wzI6avIvIHX4xfiixGwqRSubatV5yi2MU0mdXB2NJK
yNRAfIaMGFChotZz+fn5Pe3lGfnSMjMze/Qg94xz17uWuLunp6+X19bGzSHA
u9dvsCKHjdObD2UrvmJidQrLmGqBBKmiZZXy8PzQyEcUn+ZUhfj0qgnNsEic
3JyEOtRnEX5eaojkiPrzUuPE6NzzYws/1ykmA5WTfRcCEvewh7RoX21xCmni
ieLcnDBw2JdtOrjpXcln2bJlBcKDa23MmDH8KYeK3wItXm1p9IowbNQ95rb4
MLKvRnlUcxMY9oieS5qbUC7xYmstGDkKzWFBsiraadiUYIPwoElhD4EH7EVi
T2q/nFipmiv+q2OPjB6xiiI5rTmI83Rswk7UKKkjihKVKbYQTiRH7j/o3T8z
buALwaFa8YmOji4QDPLS3njjDe0ch4xQEbfFdRoIQ0Y+wDII4ydWqjCzdaf4
A2T8sHVfxNi6nRjF0gtWUqaFHTU8zdrKrgoM1AbhAWyoh0LNIbJTvwmEPamS
20J4Ul+o7zo/7bukd5Pgxzon7ZNqOV88Z+VQ5uOQJezzi29jYhldQv+hyXUb
qA44FngPHDhQIAzksW3ZssUhQvR7TahaQxgw7FHcIDml5bMt5rliYjXKgzFP
d4dui5sDvd2Cqwo2VcIDxsU5hByIk+tJ2FBvRbYvSvDUbpAnftp2Tu/SS6mc
MXL+SHBiP42e4i8F0OJqpPAEqdLeS8SMKlVGr7ibMbGG4iW0l4Fq3rx5gYx+
vjQgv3hx/UtuulO/3M0eAcKb1W/wnT7x6lXuPZUVZnnFaYy8dIdVlXFWq00n
eekFK+80Q3LacNi0wEqyKD4NxPScuCqmNig4/JaKD+GnVoPEilXLml3ih03m
dpJi/s49FWd5MH7Y4gGKlmI5Ad3KFbDufYS+g6dWUa8tzPsFVP8M7ciRIxaL
+jxrMbSjP5A6waEXu8cK8cO4GQpJnNG/8z6rs2Z9Msuz2nVRBzystgzGBAfs
5WbEW2FVWart3EbBQWPAgNWqh7KTWrMu6des+6RG3cQKLvBjP9emc3qnHvK8
P6+fSBRLJ+U1/D3l/bjsVkVUt96ZPeNOt+9W3MfXTXNKRf5eSaOg2tWrV198
8UVHeT3sN5co+e/W7cGX3Y2NF6fU+YRLKztY6mFxsl6qJdd5mvHi00LSnKZM
c2S3BcrDw0OwaYDMEKteh2xr1HGVn/Bzrdqna5erMRNXmHDraVVcqUyiSOgz
IJ5e0f35Ex/WHj161K1bN0d5Pfnunh4b678MQWAGhEA9FDMUHDl6k+l8bq4b
KvO1wcYtRM3hcytkRkrPRbVh2CA5zKq9mFm1dmKFyq7w07JdOoOHLVdj60nw
S+HCEpmo7mqueJnq0jMrJu7HFm3JbSI1J5Pq3qL9L90mTZrkLClzcxtdsRKE
glk9+4nwsDwdl36pKoRah0VNDnvkVItLsjh4bvNBMkuykB80FTzUnlR/yRV+
bOHnmrdJx/CsTSfFShJ+6SwzhS51x1MXtVAJMXExVrub3iKNb775pkBG+ak2
PCNDF6Ei9Fs3CAm90LGb0Kt/muz6lbKDxxkPu674NJeUB6wxnT1vRN2WMs+S
ZYdFyAAMwFNb8lk1ZM0Rt9Qyq76QUC66rNnsOj9YCWdL9NtIHV1TgYQdeliy
uvb+d+Pmbu5FtGeyv/TSSwUyvs+gffbZZ2XLlnUSUYf4FfuowStCTL/7IkI9
FOUd1ayWPCXaVtYcJIcv72A9kCIk5+agOWB8eq51W4gN6bx0q3ItsMzKNROi
XOKnWev01mJgL5/ToWs8P0ydmNej/i6tY3ehe2wbY5j2SLo9hWuI/alaSkpK
lSpVHEbURUic9HqVGk+6xz7u2ltRW+antBwFPCzPQs0hi3aay7KDzDB76WXZ
W/HwID+S5tyqWvtWlVq3Kta4ValmZvQLCZGVXODn7CutHtAVRzL2yp+AYp6O
GXN2begXl35BWZ1j/t2ouVsRHfGx2WyPHz8ukJF9Zu3+/ftdu3Z1NM2BvqyN
yXypbSehS2+ZHEW2xcU5aGyVKa674BdgAD8MHua50DDOQYdVQ+G2CDNo0TWJ
AT8Va2RWrJUQUdEl/9VW1J/mUqiGOEmLkWSieBVqwy1eYvLbtrPQsUcbg/rS
zV4u3W7yWTaQjqNHjx45cuTw4cMnTpyA3Dwv7zZz5kxH4RD6MlOJ4h/VbwwI
3Wf8sLXKuvNZDB5QG34Nhqq8g6ZNtYCfai+JmsOwYQb8lK+WWb6aK/xY7eea
tUkHd9ymEymJN+ewb85WlYjBvyJAaiOt6mdC1LpTVvtuXzZs4uahzmbhx+jn
53flypW8DMrTa3hTOb5BJBMdHR0bG7t79+4c3h9c1cBT+/r6Olo4BPIE8eH0
ipUfd+qe2aE7NyshYdOCi5YJPy2Uiwabikk6Lzss2kFmWJ5VA/mh3qoyx0yF
6qg8AM+t8lUzy1dNCC9f1mLJBT8WaxWz5YS9fHrthkRtaKlcUWFoLi1Dai6r
E0sn2clod1qSTlqrjkL7bkR8iuiIT8+ePfMyxJ9++unvv/+el3dw0gYNGsQP
NOaJPEvwhGPHjuX2bUHQ8BKvuuEQ+rLGwcFnmrYROnRP42uDDBs51eKSdL7I
wxDiC8tgfJ5OlUcMdZCfSqLmUIqq3SpXGSyzXJUEe7lc8WOxWCtarJ8Gm1OC
zVes5e/UrHvnldZ0eredLES8IvGGbo4j6knrTv+t39jN010V+eBwQHriwshm
ZWW9/fbb4eHhS5cudeHlOWkQkvE3Q9HRCqnFxMTkdp3tvXv3Onfu7MiX4ZuX
8fXdVbOO0K7rA1yAirNaWOFp0lLmh1txSgyxYYVlkJ0XlXUeEvC8pAiVefFh
/JSvmhd+oi3Wf4Vafww2g50ItlwOi0ytVDOt3it3wJeRX0QH+RRFMBVCuMgW
5ahFO6F1pxiTWVd8IiMjgYRcHfnMzMwNGzaUK1fOLZ/uueOoqS4m5qjhGfHQ
Jk6cmJNrJPJt3rx5zhCiCz/iLfbU5u2Flh3kmAeTdF1+IOwRy4NSbRmnsZiB
w6r+EgiOyE/VF0R+KnHOi7othOdWVOXMKOAnd/4L+KlksX4eajkWYjkYYvku
xPJ9cNixINMFg+1mVNW02g3uwHchctRRXMnPzjvT8POodacjDZq6e3kW0buS
xuuvv56rA75z504kx+1pXjwT2+TJk7NdIc9/F2gREREQMuXqfzlw4EBAQIAj
UHHWvnzJUl+/1FBo0eEezqQTfmiezhV5RM+lKhKyCg9OZqHPqv4i5eclWuGp
SYo8lajmEHIoNrCNigZybkVUuhVeKTO8UqIt1/oD/HxB+fmJ2o+AUIj1h2Dz
0SBzSqj1ur3i7aovpjVodqdZG9GRoUcGaeVZat5WaNtliFXnVAU8YrpXsdBt
4OZwUhKbv7//U426wXmZTCZV8JxDisaNGwcimfP/67fffoPfgqPU3osG1R6e
HnMjyz9+pc0TnFtnhcG6jXG5u1gkfFHK0Ik1kGbS6zF+xGgHDDpEeWjOhZoD
23KS7ERGEwuvdCsiOjMi2gX/peLnUIjlcKgVDED6AfYEhf0SbP7NFHGzXNU7
NevdgV8Epvn8IskmLR82bXfu5WZ+Pt664tOoUaOcHF4IjyHGxqEB5HCm9eOP
P84FDblv169fHzVq1IwZMyZNmtSlS5eKFSti0uRklLGhO6tWrdrBgwdz9T9O
mTLFmS+jQtQoMOhkvcZCs3ZpdNEpiZDxRAk+WsYpCT5Vp1JDYh7qucQ8HTSH
j3kAHtQfUB7GT1Tl1HLRmeHRidbIfOHnSKj1KLUjFKQfqRydC7Ves1W8XblW
Wp1GdyCuA0Uiy97IIm2hZcdpEeW0xyTnp+ckJSXhpbz5m6qPHDkyV0OTL+3s
2bNr1659+eWXnVDEYiES/ZYp8+233+bqv3jvvffwy+r6Mk9aqS7p45NcoYrQ
uOVDyo8i4WIBMxopD8pTEqLgID8Q7ZAgp5qYqqPyEGCiZXIiKqXaKlw3R6Ya
bYtNNn+JDdf4AWPwgP0sGYJ0JMRyMth80Wi/EVX5dpUXbtd5+U7jlg9atL/2
SpsQcm6Oeg0DHKJixYr98ccfTg7mjRs32rdvr/pJQt9utz98+DDXw59/DbLv
AQMGeEku2ItLxDw8PCpXrjx48GAgAXh79OhRbt/80qVLTZs2dSZEHiSo7hZs
OP9iA6Fhszss5nlRsWiQKA/B5iVNnl5LzNNRcNBzoeDQaDk1Mvq2vcJNc9Ql
Y/g5g/VYqPVMiGWu0RaUf/wck+A5Qe0kNfjrkRDr8eCwMyHmS6bwG5GVhRca
rIqqBF9W+1uCg9OuXTsnh/E///mP0WhU/RJxdfSnn36a20F5Gu2XX37BFT7Q
SpYsCV8nOTn51KlT+fLmzvMyrFQHFfXbV7EqIPSAT9XZ3ASfoaPDqiwpDzIj
p1rECDbhlW5ayl8xRVww2k+F2mCUf6LZE/CzwGQNzBs/hxzzAwb/HdoJuv94
qPUsUBRqq+jr5+apFh90Xnv27HF09Hbt2oVBjpa6GjVqpKen58sY5UuD7Gn3
7t3Xrl3L93f++uuvIyMj3RysQPPC7N69SN8Q043a9QWIglB5MENnk6GQnlfm
5yMwTpYDntTy1W5HRt+0VrhsigRszoTa0Kcc4WKVlNBnx89pg+0MtWvG8A3+
wSDouuJTqlSptLQ03eP2/vvvO/rpgf4ULVo0MDCwbt26ixYtcqHw+9dqDx48
wAK4IyFyx1v0+hX7AISoXpP7LzQQAx6cFQV++MIy1pYrEXhSy1WF8OaGrcLV
sCiIOs7Rn/zPyu0xabjPPSt+fpHgOWuwXjPZmxQroRUfL6eXZElJSQFCnGTK
/AwCBKsA0qZNm+A4P/3BLLC2f//+kJCQ7ITIfUio6WbNOkKt+rchyapamyhP
FamwTMuDqaA2tKRzw1L+sin8PAwTCTyIyzhpwCBE9CAn8omf/wu1/OyAn2PK
+EelP5eN4R8HmSBn16YoCMDbb7+te6ych46qxpIdiJRmz579NJzIn6Rdv34d
fnFOjgyZMiviVr54iU/LVRZq1btXrbY4qx5dM7ViTYiKb9pJJvW70X7BYAO1
gWFiP3no/yI91PJzJA/+6/8MRMq0/LAUTOW8fjGIn+emKbxfybKOxMfPz89R
5jVx4sSIiAiMk3MIElMk8IkzZsy4f//+0x/PgmkQFqIQOSwzuheBgGFciCm1
YvWs8tVv2Stet5S/ao66bLRfNNhAcCCfOiP5iDMSOb9w/JykzuuE5F+O0opf
XuIfXf3h+TnO6Q9+kl+NtiOhllJe3m5e+mevOM+8oEEWs3bt2tatW+PF4nJV
+w0ICNi8efPTGsKCbjdu3IiPj89GiNyLlPct9nGgMd0YcdVo/5WOyHljOHRS
DPZz1M4a7AweXn9OSMOaX/zoxj88Pz8r4x+w68bwWWWC3DwcOGs3N2Ajh4fr
6tWr27dvB94YSI5iAB6hP0mC//QafEFc/uG4WO3u5ukxvFRZIOduWOQFA4l2
GD8AD4rPaU6FHPGTF//1ueP68zFOfzAEgu0vNHI+b7RVKAppu97KFnr1eBcu
zHL58uXk5GSIlr1oFuYIHqDrk08+yadR+lO3jIyMOXPm+Pj4OPpNFaGVRotP
0d2BRkAIXBjAw/Oj8mKMH95/4ShD/DzfZHWhfpgtP3wKhtE7RM7bAwy6aTsO
MTCQl+OWmJio+6PDWHr37t15efO/XDt79mxMTAwKkf7KfHBnnh79S5ZNMVpv
GiO0/JxWxj9sNBk/x54yP6oo+orR3qZ4ad3IGfmBRMnlw3XlyhW7XX3umJd0
7uqCBQvyNhp/1fb555/Xrl3bEUXuohD5bgoIgbzmkjEbflT+C+uHeeeHIOSY
H/zfz4favgoy+xDx1PktYFZ16NAhlw9U/fr1dcUHdvbt2zdvg/CXb5CdRUdH
u3F3f1YLkYdHj+KlYQRvmiJYIqZN3nFAj3GBrsv88Pm7Lj+q+uE1Y/i4Uv5O
IufIyMgnT564dnxAuHR/X7CzSpUqLsxUPpdt6dKljnwZClGAt09C2RAYqd+N
YvLFEOKd11Ep+cpffpgLU/EDdjbUeibUZvMtqpu240C7vNz08OHDunUP2Onr
65tfs5bPR1Pdw0VXiFoUL/lNqOWqKVzFjzZ5P0pG9mnxwyN0xRC+wT/EUeSM
Y/3++++7dkwg6tYeE6wc5rwa8DdpkN7Cb8rJIjcPKkR+Xl7zygb9ZiSxkJPg
5yiRBVf4ibZYPwu1HFXGP3wIrVrCAZFzi+KlnETOJUqUuH79ugsHZNOmTY48
V4cOHfLjkD9vTXXakbZ5UoRmlgm6Ygw//TT5OZYzflIM1n8Hmb1o2cERPzlc
rapqjx8/1r2clxtdgfb0zvz6Sze886+TWivA06F4yesmuyr4yUd+SP1Z8l+H
KDxsCfQR5fwX+LJLBvurpQIciQ8O98KFC104FMnJyY5yrhUrVuTHwX4+Gy7I
1x8LT0+zT1EYvovKmS++8sMj5LL+fBpqgTdBcrQpGPtfToEZrJE++jVnLylz
/+mnn3J7EB4+fKh7Bp8bva+Ky6nc36Gp7iTOWhHKz74g0w3quZzwI+tPiOX1
3K9fRX6OovKwWXiOH4bQBUP45oAQN09nkTP4IBdS7B07djgKm9977718OtLP
Z7tz507p0qV1fnoe7q+WDkg12U9rZt5PaJzXEepuzuaBnyP0zC/dEtBRaa3a
ZaO9YwmHkTPy06NHDxcOgm7BEPbUqlXL+QtV57Tm9hTX56AdOHDA29tbVUsE
eBoWK3HJaPvVYM0JP4fzxo8q/9INoeFjfBcSVtzLW2eVPDfikEPl9gicPHlS
GwSi+ODJX3fv3j127NiHH364Zs2a1157LS4urk2bNi+++GKFChX8/f0DuQYP
wQ8CdfXq1WvZsmW/fv2mTp0K4dOuXbu++uqrEydOwK81V2f8/cnbuXPntDe5
A7fl7+3zQ6j5N6N62uIkV4fhPdfR/ODnMOe/ECFefy4b7LNLBzkRnyJFisCv
4JdffsntQZgzZ45WfOCt/Pz82rVrFx0dDfkXf76Vyw2XVZtMJgCsbdu28fHx
QNeqVav27t37zTffpKSkAF0Fe8ZQrlpGRkblypVVh87di0ykbvE3XDOFs2U/
pwuIH76KeM5gr1m0mHPnVbFiRReOQ/Xq6guMM4TY0IM6OVrOkZMGagYvx+lX
Jw2IBfmqXbs26Bto1+TJk4Guffv2ffvtt+fPn//jjz/+VKeE4EpX9Sh4uI8u
5X/LFMEvG+P5Ycvmf1bCA/ZLiNkFfrTzp1p+zhqs7waa3PTWOfP8DB06NLcH
4cyZM24OpgKfTfOkzYM253SBp7Db7UBXq1atYmNjwZMCXfv37//xxx/BjwBd
z/L+m/Pnz3fT1FoBnrrFil8y2s9zC1aJceLzM7fyJ1/4Qf3B+PmwMgVj/EDm
Fe9gnbP84d3cIMzI7XFwVPb5kzRPqWVLF4ReEREREJW1aNGif//+06dPT0pK
gpjt4MGD8Bu5fv16PnrGjz76yE0zS+jmhWGP5QqdqvhFWnaoCn604nMkn/g5
KNUPVfwcJx2LwdfXUdnHCy+07uUFP8PcHoo+ffr8mfnJYXNOF+RHAQEBkZGR
EHcBXYMGDZoxY8a6deuArv/+97+nT5++du1azmtcZ8+e1cbMtNrjsT3A8Icp
nC1b1dUfxg+/cgMH3WV+PpX4+YnjhyF03hCe5B/qpOzjRfmpVq1abuGBhktZ
dN+T9yzZ/vxz0jDCx7fNV3yyac6Df19fX6ArPDy8atWqrVu3hhgAEgpIY//5
z39+//33oF23bt1ih+vRo0famBknuSbSag+/YOw0xw+LnFX8oPjgcOeFn6OU
n4N6VaDzRluL4sWzdV5jx47NLTwQM+DKXhjWbDOsUqVKGQwGyNlr1KhRv359
SKAgDoEYMt5B69GjBzwBRgR8CgyN0WhkF2bRbfTuiM+UKy/NhRa1DRJGoMti
sdSsWbNbt2516tRx04uZmxcvedVkT6HVnjN6C+bxhB2t+BzOJ36OUXJ4hFB8
ToTa/i/EXIzIYzYH4Z133sktP59//jk7UPA+wcHBqsx69+7d//73v48ePXrl
ypXU1NT79++7Vr3JysqC1968eRPE/4svvti8efOsWbNGjRoF+NWtWxdGB4YJ
s7Nnj5CTpqu6qufA7zrS1/eUwfobt05MN/Jhk5jHlJHPoXzl50dOfCAcSjHY
p5cOzFZ8QEYuX76c22E9cuTIvHnz9uzZAylM/kaYuWqPHz9OS0uDOAQkVDtA
ysHyoOYJ5u5V8KjBxyju5f1FcNh1Y7jqVAsnZ1v8rCc+lB/LPFM++C82kQpb
+E9rkLKPs/wajnn16tULZOjzt33zzTduDooJgIqvt3e9EqUiixYr4+Pt5+1N
rljoQa6MQc0dT8V6lmgVoaXCbQGGW6aIswarNmxWrXZWxczIzyEuXHFt/SE/
/4USxN72ZKjtnQAjHBDn1Rk45sOGDSuQEc/fBhoIUZauBNEY1eMDc4RQqfrv
kZUO2ct9boncabStCTFPCwyNKxPQsmTpaL8SYb5+pb19vPFGqOQsY+QKjaBF
7geWP/CQsGdemeA7BB67lh8Gz0ml8hxT8vNT/vHzk8TPTxQh2KaE2rMt+2Dw
s2PHjgIZ8XxvEGk7cmEgMi1LlhEqVL9Xvmp6VOVHkZWzIqsK5apkRVXOjKzy
ODI6I7LKrYiKv9jKfxcW/kGodUuQ6Q3/0BGl/TuXKPNiseKRvsVCvX3pBKIH
4UqBlgeiVcTLwZpy1Seh0jetdOBNUzjEzPypXlp+jnPwnODSriNPjR8sJJKy
QLDF6lvUSdnHSzrV9MKFCwUy3Pne+vfv74gf8BfgmL63lXsYVeVmOLngrWiR
0anhlUSzVbhnr5Buj35sq5hlrfDEUuGJtcJja3mwNEs5csWAEOvnQeb9wWFr
/EOmlA6MK1m2afGSVf2K2X38/L19fDDE8pAAc2C+Xl4zywTh6Tlns+PnBEVI
lXkd1gQ/yM+8PNd/fpT4OR1qW+vgwlCK3wJd4lUgY/00WlJSkpMQGlzSqLLB
QlRlvOAtXjaZ2U1bBWLWKGJmtaWao9JMkQ/CIh6GRT4Oi3oYVu6huRz0H4VF
wv7fjPbjBut3wdbPgswfB4VtCzAm+Yck+4cmUWOdBP+Q7QGGH4Kt14ny2PES
TKrrJHCey8ZOOT/uOG1ndirE7ML1D7X8YCEafiztHa+T5/np169fgYz102hf
ffWVm5MrOHl6BvoUvRQefS+SXogyQsTmlr0iGMHGVv6mtTwBxsJRZIpQ2Q1T
xHVq14zhV43hsP3DSPanmiJumwCnqDumSGa3qaVK9gc5pUu8vAZL1R1EPvKp
Xs75wSz+pKv8HAg1H5Y8F/JzNMT6dYiltJePo5O8sGHws3HjxgIZ66fR7t69
i1fW1f++NGpNCDEJ5avcpMwQbJjmIDAWbhsWKW4lcv6g2Kj4AbtiDL9M7ZIx
HLQI7aLUuSDZeWM4uzbLGYP9F8f8nFSWfbT8HFLyA+ay/vxL4ochdCbUvqBM
oFt20+JYczt79myBjPVTanj1e4d66+lew6/4vfDoVJEcKjgIj0XpsxAb2Er8
/CFhg3YVTAkPGgKD24scP3htn3OGHIkPf41TVealjZwx4867/2L8nDTY6vll
M2fhRZ1XeHj4c7a+fciQIU748aAh7seh1ke2iqKrQrWxKMlRas4fEjzXqOZc
l8hBeK5IysPsoqQ/F6Qtu7APBjxYXmYFQ9Uiw5Nc2KO72ueQEh683cDJPM+f
osH/+GGgyZOeSZ0tPzExMQUyyk+v4Z2UnUxkwM+qW8nSgrWCNkhWkcPzI/ss
jezw5EBsA4YdROhXSg67KhTGzBgwOyoYHleu8+FrPirxYbXig1R/XOPnX+SS
4DI/KaH20aX8sxUfDH6WL19eIKP89NrBgwedhNBeNJEv6uV9whR+31JOxkYv
VEZsbkjwXKOhMq85jB+GDYt8mJ2X+GGXpDsrgaRYpGGQxYdVe45TeNg6riN6
4vOTxI8L8bPZYq3Mrf+hmRf5X8oXzabsw/jJy3Va/pwtPT3dSQgtSpCH+7Qy
wYK1oiw4XJz8hybUEQMeTbTDNIfFPExzINrBsAevJ5YiFplZwcfq6MKYzG2x
RYZHsot8fnRVf8xUf74xWI+GWP4bYiZvEmrdFmDIds7CC29oHhLyXF6TuVGj
RtlNpHpafYv+ERYB+bWoNhQe3lWhn2LkXNMLlRk8v9OYhyVcCA+Lefi50TNU
iPiwR+m8ZHiO64XNWufFisauxc+VLNavAGm6yPD7EOvZUHvvEmWydV7IT7Nm
zQpkfJ92GzlypHN+MJHfERD6JCxKFedcV8Y51ziEVDHP71yq/juXql/kEvZz
HDxS2i5GztqwRzVboZot1XVebMbqJ5f8F4t/TtEzvOA//TY4LMjXJ1vnhfzM
mjWrIIb3qbdt27ZluxYIfmKNipV4GBZ5S89bXeMyLN4ua/hhtFzUBMy/csyc
Ufa1ysOqhcdzBk8+8oP5F/yn8AWXlQ2GX1aOZvHc3D7//PMCGd+n3fCURudn
hbhTL/afYEtGWLmcwKNxW+F8hs5rjjJatup6Lk3OLpeatad36SrPYem2O2ze
IY/8wPucN9qa52DOAuEpXry4a9f5+fO3hw8fBgUFOXdhKEHxJf2zzFHMSakK
O5c12PBu66JSdrKFJ1vl0T29AvnRKg8vPgddzb94fuA/+iTI5OPl7eyujRw/
tWvXLpDBfTatefPm2fIDiXxpb58Uox2i6OtKzXEOz+9SwKzl5zy5m5tdZbr8
6CqPo9NzdAuGzHPlCz9nQu0TSzu7to+KHxfOFvwLtfHjx2fLjxeNoheUCXlk
imRO6qoDcn6TKjwXuDxLQQ533wFaJNSRIG3MfJLeyUt3bTx/bo7WDirFJ4/8
HKX6UzEHZR/GjwtnC/6F2u7du3OynB6eUcnX74YJsIm47IAclqRfkjRHZaxC
eFYZHp/WeK4zDhKu43phM0vYefE5xEU+PDx55AfS9h0BhiI5KPt4SWvGnrNp
U1VLSUnJNoT2wkTe02NvoOm+KUoVHvOuik/Vedk5z81NnFXGxqf1ZIfnh/dZ
xxzAc0ijPyp+fswnfi6E2nrmrOyD4lOuXLnn+2I7EEKHhYXlyIV5urctXvJ+
WASLeX5XosIzo5iYkO6VI91uQCwv655JoVKeE1yR8Bh3pVzdE3MYObzbUomP
y/zg/eO+DzIHeOeo7IP8dOnSpUCG9Vm2Vq1a5YQfXLT8faj1lilCiwrGPKpV
PUDOeTpDwd9oSRUtn1ZOT5zWxMw/c9Ojx7g7mTqCh8XMWuXJIz8/GOxLHN+J
SZefNWvWFMiYPsv22muv5YQfLypB40oHpJuifleGxBdEhMLZ9AT6LCSHKY/E
jOKmJzw2SI40Q2pjeZaq2uycn0PKU0QP5h8/3xltDf3072GqbXhS5Pfff18g
Y/os2z/+8Y8cnpEKTwrx8T1vtF0zRmj91AVNbZC/xRtbknGGi5+1a8O0953k
yTmmPJ9du7ZZxY+uucZPbYttU6DJyzNn9OAdyYOCHN1V+XlqFy9ezOF1q3A6
bLV/yF26El5lWn7OScvA2DIMVaqOAc/pUHLpA+2qQszZtdk6g0fLDzsz4kfH
FLnGTz1reLdSZZyfYarip0kT9Xs+l+3Ro0cRERE5d2Ev+BW/aYq4pNQc8FY8
Odo7A2qlRqs52oRL5bMczXAdUq7QcBT5uMyP1WKtZrEF+hYtkuMzbp/jaVNt
a9euXQ75ccd1rUGmVFMkv9ydZVhsAQ9bA8YvgOej5TOaIuEpZZGZiY8qZlaX
eqRS86EciI9r/ERYbTazxcfHJ4fXncA1Y3+Te0dCe+ONN3LIjxeVoN4lypD7
kEonSoDpTmbxJ22dViqPCpuTyllR3et+6wfMuLZQyrmeHj92s8U3x/y40duj
uHCpjb9oO3DgQC748fIs7u39U6jld1lwxJmIs5o1YNoijyPZOe4AnmyzdX6G
PSf2bPhx7Tpjf9GW7T2S1MfHw3166aBUYwS3VtmqNS08pzRxMj2BS5yeUIU9
P3MFn8NKfg5JFyFk/GhlR6tIP7q6/tAFfoYPH14gQ1kgLSsrC++gnVN+PD3D
i/pdNNguKm/CflZZITyrKRIyfviV8Nw9i9U5+8/K09iRH3bXG3nyQpl/8aeI
6vKT2/XPueIHg5/ne9pU27p27ZpzfvAyL5sDjDckCaJmVVULtXfWPq0sFfJn
cvE1w+Oa5Oswh8oR3YhakqYfldGRNsF34fpjueIHi2lnzpwpkHEsqLZs2bKc
8+MlrWu9YRKX8bC0nedHe8UM/irfKuPh4aMgVcGQkXNYuh+lKin7kfNrupbD
+zcNGzwEmHGNn4iIiAIZxAJsX3zxRa6uiwiJvLun5xch5ivGCL7m40h/Tmum
t7T510npGizHNfwwio4pC9H8dVpwFv6IU3iQnwUafpo3VZ8i8erESYwfaja/
okVzyM/f8PbZly5dgpQztxI0tJR/Gi3+sPxdqz9aL6Z3Pg7RHz6cdjT59bNe
gMR7tKPKPVo7F2qZrOTHagrr3rWb6oAsWriQ5yfSZi9ZokS2/GDwk5ycXCCD
WLBNe8nlbPjx8gz09j1psP7O1X9UppvRa88HxD47pZ0/yYKPiI7rwZNb+zXU
0ivMFsLzYzSNHjVKdTT27d1nCzPz/AT4+2c7y4OX2jh27FiBjGDBNud3ytZH
yMN9UZmgO9SFMWZ0JeisZubrF82cO0vEVAueVUQdV/JzLDdGX2upY7aFcfxY
jKaVmpuHQgAMXPEhtNloyn6hppubwWB4zi61kcOWkJCQa348Pav5FbtstF+g
8Q9SlMKZahaeIaR7PYSTEjZI1EmptKi7fv64Y4/mxMB57TdYTRarXRH/mCH8
0x6QKhUrcfEPQaiYn182p8v9PdaM6bb//Oc/ub20OF3X6rk/0PQHJ0H8iYHa
VRy651kwF/aLssaIeT27TpSjyY4cGiD3e6h5rPLizxDkRNnsuqdoTRg3jg+B
gJ+QwCB3py7subzURg7b1atXHV3X19kR83TvWqJkGp0OQ1qwo10574QiR1Nj
J5T8kD8Z1KcQ5txAfL4zWCuYyfUQ+OAnplt33QPy3bffWjgXhgj5OZYgl2+s
/Ny0WrVq5ZYfepkXr4Ohlus0EcNLIvw5+bkSah5vsgVyPGDws3fPXt2jAWFM
/Tp1+CdHQhRkMDq6Nw0GP48fP37Go/bnafHx8bnlx0u6CfK9sEggJH/5UVle
+Pkt1PyegSiPVZm5V6tcJTU11dEBeWffPngOjxA4u0D/AN3rJv2dgx9s69at
c4UfL0+LT9ELZAm9YkUQH/+wWFqFELtIlOrMHW12Dx38qwvwQM5+2GCpa7YZ
VOJjMK5audLJAQExeble/XDlqyCX9y9TRosQHLrExMRnNlh/wvbtt9/m5HQw
VcN1rRsCQu5Ii8ryix++z9Z+5Iqcnyk8J0LNLcPsQUoMQFhqVq128+ZN58fk
m2++UUdBFhspB5Upi/dZw4OAwc/x48efzUj9Odvt27ezvSiZvgR5ujcoVuJm
WMRvGn7YvIYTfhyVhrTnGJ42yJMdObFLpOZsaRVmVYU9yM+e3btzcljmzp6j
8mKoQqFBwd7e3piRwUGLiop6vs8WzEnTvXdbto3eWdLz06Cwm6Zw5/yoTuc5
qwmK+KWturVrLCc6CZPQzodar9JqT22zLUgDD0jK0EGDc1joAy/WtmUr5XSY
iJAtzFymVCkvOm0B0ePTHp0/fxsxYoQL/KAEDShZNi0snJw26Jgfdgr8Obqu
VcvPKaf8nBEr1QqZYg6OnuJhvWSwXjVYvjXaRoXZTRarQQ+ehvXrOwmbtQ3c
3Mv1G2gRgoweKII39PHydh5K/U3avn373OhNVN1z0zzcyT3CSnl6ng4xpxsj
bhvtqQYb2i3J2J7bRluq0XbDYP/DYP3DYOPtusGKdtVgu8o95O2awXo51HaN
23OD7LQAM1cMlpMG616jbViYPcpCfJZN67aMptrVa6SkpOT2yFy5fKVls+Za
R4YURVislcqVb9akyZiRI1csW/bW9u17du36u9m+PXvemL+gRLFipUqWLFOq
dG6taMkSQ0JMW8MiksLCE012tGRTOFiS9JDsCQsHS+D2MFtDbVV2ttKoeAhv
tdBkmxRm62a21SBJliWQnrSlHWiAp36duqdOnnTtx/XgwYMB/fqpwmle1kID
gwJKlylTomRJv2J/TwssXRYEOcoe7pqFWK2lLJbSrlqZPBgwE2Kxhinntvh5
CkuoqUvHjnm/mhzIC6iQ1pepFelvaU6OyV/XyHCHmV+bPCW/bj77v//9r1Wz
5iA4zikqtL+6ATlgEPp+9tln+UIOa5C7ffCPf7Ro1gz/i0KQnieD0UTNqV+n
zs6dO5/q5d9PnTqVsGZN21atIZdHlgrtL23AT+OGLy9buvTgwYNPD5vCVtgK
W2ErbIWtsBW2wlbYClthK2yFrbAVtsJW2Arb37D9P2++Iw4=
"], {{0, 192}, {192,
0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{192, 192},
PlotRange->{{0, 192}, {0, 192}}]\);
Haga una partición de la imagen en segmentos de color con una distancia de color de 1/8 o más.
colorDistance = 1/8;
{colors, masks} =
Transpose@DominantColors[
MeanShiftFilter[img, 1, colorDistance, MaxIterations -> 12],
Automatic,
{"Color", "CoverageImage"},
ColorCoverage -> 0,
MinColorDistance -> colorDistance
]
Elimine los segmentos que son muy pequeños para ser adelgazados.
cleanMasks = Map[Opening[#, 1] &, masks]
validColors = Map[(ImageMeasurements[#, "Total"] > 0) &, cleanMasks]
Extienda los segmentos de color en posibles huecos usando el algoritmo de engorde y corte.
components =
GrowCutComponents[img, Pick[cleanMasks, validColors],
MaxIterations -> 5];
Convierta todos los segmentos de color en máscaras binarias.
completeMasks =
Reverse@Map[Image,
Differences@
Table[UnitStep[components - k], {k, Max[components] + 1, 1, -1}]]
Convierta las máscaras binarias en objetos de BoundaryMeshRegion y extraiga sus polígonos como FilledCurve. Agrupe todos los objetos de FilledCurve y sus colores correspondientes en una expresión de Graphics.
MaskToFilledCurve[mask_Image?BinaryImageQ] :=
With[
{bm = ImageMesh[mask, Method -> "LinearSeparable"]},
GraphicsComplex[
MeshCoordinates[bm],
With[
{lines = MeshCells[bm, 1]},
FilledCurve[Split[lines, (#1[[1, -1]] === #2[[1, 1]]) &]]
]
]
]
icon =
Graphics[
MapThread[
{#1, MaskToFilledCurve[Binarize[#2]]} &,
{Pick[colors, validColors], completeMasks}
]
]
El gráfico de ícono resultante es escalable y consume menos memoria.
ByteCount[img]
ByteCount[icon]