Wolfram Language

Redes neuronales

Aprenda a clasificar puntos a partir de distintos agrupamientos

Utilice una red para aprender a distinguir puntos desde tres agrupamientos concéntricos.

Cree un conjunto de datos artificial a partir de tres agrupamientos concéntricos.

In[1]:=
Click for copyable input
sampledata[sd_] := RandomVariate[MultinormalDistribution[{0, 0}, sd*IdentityMatrix[2]], 500]; clusters = Map[sampledata, {3, 1.5, 0.2}]; ListPlot[clusters, PlotStyle -> Map[Directive[#, PointSize[0.015]] &, {RGBColor[ 1, 0.21, 0.35000000000000003`], RGBColor[0.3, 0.78, 0.38], RGBColor[0.46, 0.5700000000000001, 1]}], Axes -> None, AspectRatio -> 1]
Out[1]=

Cree los datos de entrenamiento asociando cada punto con una etiqueta.

In[2]:=
Click for copyable input
trainingData = Join[Thread[clusters[[1]] -> Red], Thread[clusters[[2]] -> Green], Thread[clusters[[3]] -> Blue]]; RandomSample[trainingData, 8]
Out[2]=

Cree una red para calcular la probabilidad de un punto situado en cada agrupamiento.

In[3]:=
Click for copyable input
net = NetChain[{30, Tanh, 20, Tanh, 3, SoftmaxLayer[]}, "Input" -> {2}, "Output" -> NetDecoder[{"Class", {Red, Green, Blue}}]]
Out[3]=

Entrene la red con los datos.

In[4]:=
Click for copyable input
trained = NetTrain[net, trainingData]
In[5]:=
Click for copyable input
\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3ftXFHmeN3jO7v6wP+6/sLP9zEx1d9XZc3bPMzNdVVPu7tOXp7vLqqmd nu7COttPlcCz0wVYXYJaAuUFS6RGwS5BBUtFFAW8oHIRLZW7F9RESSAVSG5N UgYmmJI+hCsz89mIzLhmROQ1wsyEN+e8uqoz4/KNyCy+b763+J8/WfdBxn+X kpKy/n/k/ueDjzf+H59//vEX//f/xP2f32Sv/+f/mp2e9p+zc9L/a/rnf/vJ f8+96OG2/V85/wP374Qf/OAHP/jBD37wgx/84Ac/+MEPfvCDH/zgBz/4wQ9+ 8IMf/OAHP/jBD37wgx/8rICff/3Xf6WnT5/S9PQ0OZ1OevToEQAAAEBU+CzB Zwo+W/AZw+yff/u3fyO3200jIyNxv1YAAABYfviMwWcNPnPE+jM3N0ezs7Oq tpaxsTFyuVzEMIzvPPw2AAAAAJHgMwSfJfhMwWcLMWfwmYPPHvw20f7w+4tt Lvw/Hz9+HPfrBQAAgOWHzxjKzMFnkGh++PYbsd2F/+eTJ0/ifm0AAACwfPFZ Q5k9oulL4tt1xAyE7AIAAACvAp85xHYY/t8j+eHHAIv7os8IAAAAXiU+e4ht KEtLS2HnF34ekzhWN97XAAAAACuPOKaX7w8K94efi83vw48Jjnf5AQAAYOXh MwifRaampujf//3fw8ov4tgZfl5TvMsPAAAAKw+fQfgsMjo6GvbaduIcbKzv AgAAAPEgziPihTsGRtw+3mUHAACAlUvMIy9fvkR+AQAAgKSA/AIAAADJBvkF AAAAkg3yCwAAACQb5BcAAABINsgvAAAAkGyQXwAAACDZIL9EjhnvpaNFX9D6 9etp6+466p9J7OMCAAAsNwmXX5hxunL2LJ2N1IV2mnol94yhc+v/L/r5z38u +XB3RwIf10LMcIjP6gK1tHWRfXwm/mUFAIBlJeHyy5+v0RpFHR6+j+j61Pwr uGdjVLbmp6pz//TzeppJ2ONaKILPKvWLo9TPJECZAQBgWUi4/PJ9B2X9/GeR 55efpb+i/DJH9899qTr37mZz7odVx02Uz+pnqaU0FO8yAwDAspCI+SU9mvYX Lr90vqL84jMzRVNT4zRl9hgVq45r0WcVadb85Jue+JcbAACSXsLlF84MX4fP zHD/5DE0M9qk6qf4WWo5OfjXpW347Rlh/zFqO1tLtfz4i9paOtM2wL02yb12 mIq2baNtmzfTgZYB9TmZcepqOUV7tn1B6zMzfeNnN2/eRgePX6Q7ju815Zvq u061tf4xHvw/b4zMBrxXK7x3wTcGlxm5Qcf37eSOm0mZ/PG3lVDzndFXdlz5 OofpSu0B3z3Ytq2I9uw7yN2f+7737G3nhePz966dxsP5rALyC/+5yPsxNNLX THkfBOSbn+WTjTG+pin7dTqyZydXPu6zKjqqHcPMXQP/WW7jPiPfNa/fTEVF e+jw2e9oJFjmi+rao/gucRw3m+lg0Re+8mUK36U9B+uoV/F5ajFk7zpP+4q2 +b5/Pr79TlBbkM+UGe+nC8e/Ee6Hf7/N3P2ovtAe/H4AACS5RMwvGoH15NpK 47G6mjEZH1HaGnUd+qGiDeBh27f0QYg2g62n7qnO0V32T6r3/6Vt0vC9T7l6 zuj4fzzc80qOy/ve3mDYrvXpvhO0SzX2JsyxRGF8LvMPG9TlVLSTBV7TP2Sm BZRNXY5R7rMKOt6GO/apO38279oj/C7NMUN0dPN7Qb9LO8/e1d7H8Q7aHjD2 KVDq1gZNprx1fEuI9q6PuPsxEfffMQAAVkjK/JIaJL8ot/0geB/G9wOnw+73 OHxTrhdvHfxn1Xt/6powfC9YOXin+r63/Lhz49ci65MLty8urM9lkirS/pPq +N8KGSPkNSnGNI227w27/KoME8u1R/Bdmpsb1oy/NrLl/KDi/oS/38eHb0v7 TYR7P36WRTdmXmG/KgDAK7Ks84umbvzAX+cc8Nc57Xt+q/ldf/zCFbpwfLem zlPOZY44Z3AyN2+mrMC+lJ+rx4NYddzuff9Ft57evG2zfntGDPllPHCbmR71 56HIJEbXxPuAvyapHP20Xecz/WLfUTpY9LnmdWU/VkzXHsF36eHFL7XlO3jC 1ydVkvl+wDnkPrTv71dpzn/gQjv19d2kc/v+qL6u98XrmqG6gLn2a7cepbY7 fXSz7QzlBHwf/qULbTAAsPyshPzys9TtdN0u/g5niBG2vXv2T76xEEVFRdw/ y+iGos6eH6gJOIZcN0eUM7hMdNkhjnuYpLqA/oWo80u4x53tpZyA+/EPn1fR sHi/mH4qy/xPAceOMr+srQqY7z1G54p+Z3hsvfzyxeF2mhLqdobxj2nStjV8 QKf65DaW0bb9muP42p9ivfawv0tjVKFqQ/mAqu+ox01dKlJn5f1d/vLPDpxU 9a/97JN61X7fHfmG9uzbR/v27aFvqtuF+ztD5wI+72MOxXfX0Up7ivZw++zj /rmP+55ox3ABACS75Z9fPqDzjvDaz2emxmnE4SC73U59XadUbTDKsR2R5Iw/ Vj9QneP7W+Xq+tDq404FzOfi6ufL4+r7MT9qPEYlks+Fv9ebi8Q8+Llu+8b7 Wxul/Bh4Te9vbdU9T2Abyoc7rwZsw1DdenV9/hU/9zzWaw/3uxR4Hj6/tHVR W1ubX1cX1QXkOLHdRtP+wmestBzad6SWrnTdp3HdNXO07S/8OT8vKqPaC1eo zzEe998rAABWW+75Jei2nPE7zVS0fq2mDgmkPE4kOWP/zYDxpBOt6lxk9XHD GvscsHZe1PklBL7vSJEfgl2vUjjbBW7jG1cb67WH+12KZR45Y6O8EPt+sCaL vjl7S8p9vPt160Kc4wP69IsK1Rw2AIDlZNnnlyBzlQYu7gi7vok2Z2jq2iDX Yslxdfp4dOvwD6zNL75+F4e6Lo02v2iy25x2LNMnuvklwmsP97sURX55TzGe atbRqunn0vP+1gZF/xxD3x38LIxzfUBn+rT3CwAg2S37/GK0rd7YiLQ8Oni8 ls5eaKErF/60bPKLug8ln3oD+yQC698Y8gs/nnizwraifXS+7b6q7SDsazLY bsuZQc02gX1Mf6y+F/u1R9D+oj5PDjXfuUM3b9401DcSOCZlhuw3L/vW88lM +wf9LKKzxvTMeD9dOVtNRZs/NZxP/yHWDASAZWil5pfZgdOq3/c//bRGNfZU b/xuUuaXwPk/nD8cUNdn3+37WFNPmjN+N7hw88vdo/9vwGdRrp7nNK/tg/lT 13Ts1x7u904zxyqHbjCB92+GHA6HRFpfmZmikZERzjiNj09J2zMzU2TvOqUp vzjud2p8xLff+LhyrWaGpkbsdG7PH9T3K9h6SQAASQr5RdjuH/LoujBPY9x+ XbOeWNLmF86lbas1f5OnflFBLS0XqGT9h7p/55s2fzqIcPPL/GiTpm0h9Ysa snP1/dRIr+4cInGcbkzXHvb3jqGLAfOBfvppOfWOC/1lUzYqCVgDZ0uz0/de 4Bp+n3xzVdFWNUQlAfOazvN9cFMd6rHR/PUq5hg9vPS16pjKMdMAAMvFSs0v en+bB5PM+WU2cA3cUExdv85YuPlFLx8E8+E3irElsVx7BNc3e/+k7vE+WLNG 5xw5Uj/WRPvXOvt9RJmatYiV++mvebcmLVOzPjAvcK4aAMBykCz5xWjOjsaU dttxg227g6yfppdfxOPEmjOMymfVcXn82vtG1/YP67dTzprYx79Y1f7iw6/V EtCGoeennyrWd4n12iP4LvHunw1vPPhXqueKD9PRwPYjA/sV92eiy/iaAu9H JJ8JAECySIr8MtOjGmurP49Ef1v+97dxmwBD7ce/0vx9/rO1pXTHcYO2f6A8 To10nLsn1PM+lPNhgr3nE1Dn//TzemnMiFXHlUzZqPbgTt8zKn3PPty8i6ov 8PNyZ+hEpmI9EZ1xoroCzxn0XmuFvCaNSbp00OiZPx9p5hjHfO0RfZf8Jm6e VuchhbWby+i6Xe8aJ+m7I18ZPtvJt5/ec0Ttl2lXZqr+/fggnb6p7Y5oPBIA QDJJivxiuRn/OMipEXKMLL+1v0ZvXqYLFy5QS0sLXbnSpmmf0M7Bkde3T0gM 93mNOLjPivu87H3U5xgxzC3xunZ+fK2DXwexr4/sdgeNS89HD4bx7WcX9usL cz9+rO+Iw052fh8O/x3GeBcAWO6QX5a/S9v+z4A+hRK6fMfuy2z2m+e1Y5U/ jKwdJZGt5GsHAFjOkF+Wvz93l+v3MRg4HLIfJ3ms5GsHAFjOkF9WhvDGln5E B64MxL2suHYAAAgF+WXlYMb7qeX4Adq8PpPS0tIok/vnmg/WcP/cTocvtBs8 K3B5WMnXDgCwHCG/AAAAQLJBfgEAAIBkg/wCAAAAyQb5BQAAAJIN8gsAAAAk G+QXAAAASDbILwAAAJBskF8AAAAg2SC/AAAAQLKJNr9MTEwAAAAAxAXyCwAA ACSbaPMLvz0AAABAPCC/AAAAQLJBfgEAAIBkg/wCAAAAyQb5BQAAAJIN8gsA AAAkG+QXAAAASDbILwAAAJBskF8AAAAg2SC/AAAAQLJBfgEAAIBkg/wCAAAA yQb5BQAAAJIN8gsAAAAkG+QXAAAASDbILwAAAJBskF8AAAAg2SC/AAAAQLJB fgEAAIBkg/wCAAAAyQb5BQAAAJIN8gsAAAAkG+QXAAAASDbILwAAAJBskF8A AAAg2SC/AAAAQLJBfgEAAIBkg/wCAAAAyQb5BQAAAJIN8gsAAAAkG+QXAAAA SDbILwAAAJBskF8AAAAg2SC/AAAAQLJBfgEAAIBkg/wCAAAAyQb55dVZfPGS Tt6ap4+r/kzv/MsY/e9fjfr8bztGAOLmzp07APCK9Pb2+ty9e5cGBgZoenqa Xrx4Eff6KRkhv7wa3z9lac23f6b/uIehvyv/b/STgy/pzYp/BYi7x48fA8Ar NjMzQ5OTk+RwOMhut9Pz58/jXk8lG+QX6/HtLnx2+ZtSd9zrKoBA8f49DrDS DQ8P+zIM2mEig/xivVO35n3tLvGupwD0xPt3NwA89rXDuFyuuNdXyQT5xXr8 eBe+zyje9RSAnnj/3gaAx76+JH48TLzrq2SC/GK9v9vlpDcPLsW9ngLQE+/f 2wDwmL7//nvf+N5411fJBPnFesgvkMji/XsbAPzjefk5SfGur5IJ8ov10H8E iSzev7cBAP1H0UB+sd5JjN+FBBbv39sA4B+/y68FE+/6Kpkgv1jvv7H/H6Vi /jQkqHj/3gZY6fj50/39/Zg/HSHkl1cjcP06jIeBRBHv390AKxE/Xhfr18UG +eXV4dexq7k5T//PkSl6G88PgAQR7/XUAVYS5fMD+NyC5wdED/kFAAAAkg3y CwAAACQb5BcAAABINsgvAAAAkGyQXwAAACDZIL8AAABAskF+AQAAgGSD/AIA AADJBvkFAAAAkg3yCwAAACQb5BcAAABINsgvAAAAkGyQXwAAACDZIL8AAABA skF+AQAAgGSD/AIAAADJBvkFAAAAkg3yCwAAACQb5BcAAABINsgvAAAAkGyQ XwAAACDZIL8AAABAskF+ATDfwMCAT7zLAQCwXCG/AJgP+QUAwFrILwDmQ34B ALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA iCXGNUkutyfmYyG/AABYC/kFQOC5T7kZGZSedYrcMR7LzPzi6G6k2tpaaux2 6ry/SH2Xz9K5c+eCuzxAiwbHd9lbqWRLFqWuXk2rOalp62hP9RUaX4i+zE8H aigtNZWydrbQQhjbR16G2K97YeIe1ZV8yZXzXd85V3Pl3Vi0n67bZ+L/XQSA kJBfAATP79MOPr/knSFPjMcyJb8sjNDh7DcpJSXF77W9xGi2m6MD76TI2xj6 Wmffx1SX/ZMg+7xBlbejq8t7dv2N/xi/Ox0iv0Rbhliue5F6Dn8adL/Xsupp Pt7fRwAICvkFQJBA+WWyu4pWBdarvz6grVO9dynd9/5HVFZ7ztdOo1VNtY19 mnaI3tJfSMdeu7OO7BMump9naKDtFK2RzruKWifYCMs/Trt+7N8/t3Es6LZR lyGG6568kied84dr91KXY5LmFxaImein41t+K7335s6O+H8nAcAQ8guAICHy yyK1K+r0lHeLqamuwP/vb+nll5v+ev7XR8Lqp5H3uyvlg4LWKe377ANaJ7z/ kz13IrqGpckL9IbQdnLRtWRNGaK9bkW7zV9vaNHtWxo4/gfh/mfQvYUg5QeA uEJ+AWNecjMucnv8f/t6mFHqt/VSb28vDU0+02zvZSaov9f/vq2/n5yTjPGx WS8xLobcXuO/7VmPm1yMm7xByvTS6ybnkM1/Tls/Dbvcoa+L22e4X9inf4gr p7APl18K4p5fHkv1a2ZZh69uZgf+ZJhflmav0Xv8e2/r9S0Z8w5USHX00KL+ Ns66fxb6gE5E1JfibFgv9HcV07RFZYj2uuV2m1XUapStpFz1PnXNI78AJCrk FzDyzHGKMrj6PK+mkzprtvn+XZRWcV/elp2m5vLNqvdF6XmH6AHzQntse7Xv /cyjRnW8h07npvm2Od7/TFOmzXX3aaznuO45c0qaDes0fp9snX2ySq6Q5/lg ArS/zFHDxg101v5Ueu1pn3F+edr7jdCW8J3hOFWj84za7WR3GI9vEXOIUTuF vgWqSxP7X25YVoaor5sdpE1CfrnOGGQTFvkFIBkgv4ARMSvIsqm4vJIqS4vp RI/Q3u99RPsz0qVt8kqPUVNrK9VX7lLsV0Ddrhe6x958wji/nM8X88tc0DKV VJ2m1tYGKi/MkvNVSRexAcccad0t75e+g6pqaqimpop2ZPvLn1tY6Ms2iTD+ RSlYfvH2+dswfntokPg8cPvyWfr222qqrq6mc01t5HA9jfK847RLaAf6Zdn9 8PdjHwjtGym0+/aTGK/duAzRX/cCHVntP+ZbRv1HdWL/0WfUv4j8ApCokF/A iDIrpOcdo0ce7e/yvqrPhW020KWhOdV7rOsefS1km/S8C6pMYEZ+Sc85RINu dZkcTXuk8nQr/76eu+WbG+1va2kJaJ95QpfL1yuuNXnyy0Oprn2f1qzSn0vz dtYRGg/7fIvkclynratfk8eARNAGIeYKflxt9GNHQpchluv2PqyRtvnRh8V0 3e4kl8tFE6P3VON389t0xuQAQMJAfgEjclYooNtunbrIOyjlk4Pd+n9rv5hq kdpJrk6+0Bw7+vyiPp5smg4J7SknbPJ+I007/ftlfWswJuMxHcsVslZO8uSX vv2/UdXZH245TG3dt6mt6RhtWvOa/N7vjhiPE5HGhAT6jG4Z9bEY6N3/c2m8 SqTjiSMpQ6zX7X14RhhjrK+gNfi8KQCIP+QXMCJmhcC2k8D3M9IP0IThcbzU XJgmZJwZzb7R5hfjjOGRzifvJx9rz9U/G17vTOc3SZdfekv/I4nrpBy7pc2Q Aw35Up2c02jQnrAgzPN5/XV6/XV1Pf7u2lIaCrsd5TGVCv09H5+K8HdEhGWI 5bqXXJ20Trl2zOurKDUtjVa/82P5tR+/R1W2WdP/mwIA8yC/gJFQWUHON8Hr e8f5rb7t1iuyinX5hTtf/VbD/FI7pJ03JXo+djHp+o9mbK1U/W01tdqN69or W//Wv/+vj4Q1j2hxYZp6z+2W2yfeLg6r/4mfE7RKyBRnRiNdMyayMkR93dL4 Xc6PMqjRPqnaZ37iFpWm/rW07szFCa8pnyEAmA/5BYyEnV92XQmY46wm5onN CZBfGp3Pja/Zmwjzj7SC5ZdwSPOUQ8xnDsQq+lj22UI/E2pGWhduWwTjbcwt Q6jrdjb8cxhruzym/avDnUMFAPGC/AJGws4vIfpbguaXuocG+5mbX07na+di B3o+cibp+o/C8vSmf62UlI/oVkTzgReludCZIfuDFqk5+wf+Ov9LM9etjaQM oa9bHJ8Tak7V096vyXDNYwBICMgvYCRUVhDr+4z0r2nQa/y37ElhHZcjtnnt sQ3bbp5I+5nS/iKMidl2zigvvaQxYYxv8uSXx3Q41T8Hx3AttpeKulix/8M6 /7oquWeDjVPlMsmmvxDq+xBr8LKD0lq5X3V/H9Z1RV+G6K9bHPcbKr94xXse 6fp4APDKIL+AkdBZYUJa+2XXuVHdY8z1VUvzhdoVa8CI69dlpO+lUd1zn5Xm M8eeX17S1LVvpHVfHujMA3/JPqK9Gck2/2hOWsvkV3uM+jnmhLpePSdo4Pjv hfYF4/p5abZTaL8IvZaL9+FRaT5zuGu+RV8GE677h9toxLBs/Bp8/8G33WuZ kazdBwCvEvILGAknK0jzkjlljXZVW8pUb6201m1aWZd632d3fWv1+9bLLbtC DCu/NzvUIr1nVn4Rx7b451Dvp3sueRwMyzygQ7nyGnzJNP5FWl+f7185dkM9 Z3lxnOo2yc92rrIrrnnytPT6a1lHaCQgczwd7aJ10jygz6g/xBykgcP/GNEY 4VjLEPV1O+Vzpny4l/qZgHHGi9PUUCSvAfPV9fDakgDg1UN+ASPKrOA23M5D l0sz5XVts3MpPz+f8hV5gF9zZdSr3dd+eqt6bd/SUirMzdas7W+UX4zKpJtf OHP9Z1XHzS0sptLiPHnt4PJy//OPgl5veKzKL9p2ijmqW/cDxXzjVbRxSykV bclSrW/y20Pa/p+H4nOKxDVUsrdSSUkRrUt9W/H6G1z9H2oNX7k9xL8ebvjX Fn0Zor9up+acm2jLli20ZeNa1b5vfRnpMxkA4FVCfgEjz0eE+cTbW0K0R7Bk bzqo+1yhkvrOIFnAv1/gPtn5e6nbOUnXhTVxzw0/i6hM4nztczpzpZ8522iv MlsJa/UeveQg9sUj33p86dv117uJhJn5RZpHs9ZoTbg5aq8u0F+P7cdr6Fj3 pOGxJ2+foXXv/Ei7H7/uStYBuucKPQ9anjedQlWOyOcbR1+G6K97xnaR1q3+ oe45ffu2GY+TAoDEgPwC5vGS2+0mj8fje7a0hw1zP5Z/pjRDDMftfjXrbXi4 crq5cvLlDXxOkhnMzC/hW6CJUf55iKPksNnIPuoKu/1g3jVBdruNbNx+NruD XPOL4Z93YYRqy8up/NsGGjd4jrS1ZYj+uheYcXLY7eQYHSU7t+/oRJBnpgNA QkF+ATBffPILAMDKgfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA +ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACs hfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7k FwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/ AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUA wFrILwDmQ34BALAW8guExpLb5SIX40mAskSP9bhpctJFHtb6cyG/AABYC/kF QvLcp9yMDErPOkXueJclBvaTf6QM7jqO9M9Zfq5Y88ui6x6dqz1H584Fwb3f 72IjOu7TgRpKS02lrJ0ttBDG9s7bjbQrey2tXr3aJy17Ix1r6qP5SK9pvp8r by3VclptM3H/LgBA8kN+gZCe36cdfH7JO0OeV3JODw31XKVrHX2m5iVH/VZf fjmeBPnlad/XlJKSElJ+15OIjtuz62/8+/7udIj8Mk6H0/4yyLkzqMu1FOZ5 H9OR1fK+f7nzxiv4DgHAcof8AiG96vzy7K6vvScjYwPd84RbR4aWTPll4PDv fXX9h1v207lz/naLQNXVtXQvovaXcdr1Y3+GyG0cC7LdIjVv+gspb2R+20yj LobmmQlqr/2K3hAzzA+30chiGNdy/Peq7POrPXes/w4BwLKH/AIhver84h30 nS8jo4AeeFdmfunb/xtfXb/v3nPTyrQ0eUHIHm/QxSBtJ6yzRsoau7u+17zv fVgjZZivQrT/sA/FY71B2RvXIr8AgGmQXyAkMb/kyPmFmRwmW28v9dpsNDQ8 Sd6Qx/GSyznk36fXRv1DTmI82rYDj9tNzNh3lC20v1x1zpKbYYhxG40d9tLk UD93TP9x+bIYjc+V88sz3//3ul00xJXfX55hcumUJ1qx5peeol8I+SGy/qFg nA3r/VnitWKaDrLd016h7+rXRwzHuYjlC55Fxmnr6/6c8+bOG/T04VHkFwAw DfILhCTml+0txDAPaH9uui8HqKR/Te1O/baCsZ5aoT9Iq+TcALHits/uCrlF T7amL2nGdpEKDLatuOTQlEPML+f6x6izapvueSoujZpyz2LLL49pv2+8yCq6 OGFWplqgujQ5SwTb9qn9DKWtXk27W437mMT2oZ8EySK9pb8Q2l6+oBHu/3v7 /oT8AgCmQX6BkIT8wtfvYr7IKtxPNTX1VFNVosoNVwMyzEzHAfn97B1UVd9E rU31VJovZ6A9l8b927PTdLmqiipL86T3tpcfo6qqSqqsukyMol1l7Po3ivMW UFVDEzU1nKBCRbbaXndfVRYxvyjLU8Pt19pwVJWDDvbG3uYRW36ZE8a7fkT9 i0v0dPQWnav+lr6trqbq2nPUdvth5PN/2AeULvYJ3Y71+uak8bgFrVO623iF thZeld3/nXiK/AIAJkJ+gZAU+cXXRnFtRPU+yzygvdn+3MD3Mclzhh7ToQz/ 6+uP3pXbWXxYulMjtIFkVROjfG/pkf986TtoUK8vaO6W1J6TVdKi3pc7rr1p j5Snuhm5zUaZX7afuBHQ5/WYzhem+a8h70LM43xiyi/sIK0T6v530941mP+z ig51T4Z9TG9fhbDfR3RvIbYxRc7mPGlMi377kNxvpMwqyC8AYCbkFwhJkV82 n7ivu83SzHdS28ylyRfC617fPOjW1h6a1ssh3HELhPYTVd+QdL4C3flHI007 hdzzrcE4jid0OtefRY7Y5qXXxfzCj0PWm5ctX0MBPYhx3lNM+eXpTXpPmVV+ lEGHzrXT7e42Ol6yQZ7/w6m0zYZ1zN79PxfmTZ8Ia90XI6zztHT+j48N6m4j 9i3x85PGFa8jvwCAmZBfICQpT2RTO2NUr3vpcnGmvz/o2nh4x/XI+eWBQX7R 5ggPnc/3Z5M9V/9sfGzWS16vV9XmI+aXokaD8innPcU1v3TSKiEjvJZ1IqB9 6aVvLbit76SoxpYEP+ZjKhW2//hU9P/tLs120hoxO3E5SK8PS5lvKu3qvkTk FwAwE/ILhCTmiazqoPNWHOe3Cm006nqbZUapo/UcVVWWU3FxIeXn51NudrZq /Eo0+aV26FlE1yHmF8P9gp43MjHll8Vpulx7jKprr2izi2Bp5pKUcfbZgj/X YWn2mrDtG3RmNMrxwN67Up8Wn5mGdNd9Eccdp9CbX3Zo3kd+AQAzIb9ASNL6 L8HHhYj5QJlfxq4dNJxPlB1jfmkcjmxtlJDrvyRKfgnLAh1PFdbgva5do0Vp 5oo4XkXdnxO2xRFpPAu/7u6tef17I83PTvmMhnTe9w7488svy/T7IAEAIoH8 AiGJ9Xr6AZoI8uxDMR+sF/ILP55EzCs5pSfJ5nSRh+/TYVnpuNH0H50W8ou4 jku4lld+kceZ/LIsWHvGIjVn/8CwTSS0aalNhR/722XYfzhHB96Rx+WkpqVS aqrae1IGWkWrU1fTO3+/hhpHvfH/fgNAUkJ+gZAU43cvOV8YbPdEyhXi/OOx 1t3+8bK7WvTXt4sqv3ipWZgntK3uoWGZWQ9DLhejWssuWfKL2M8SPG88lvLC 7ltB+o8Uc5m+6g7eTqM1R8fT5czRGnQtGnV+CVfQsgMABIH8AiFJOSODsnZd 0c0ic33VQlvLBmpn/BlHHA+z/qh+PS7NIwrMCx6DeUmCmU5h7Zf0HQY5Y1qa t603/yjx84s41/l9w/YOeT60vL6K7nbSOizcsQz6ffQtUMPGv5PmSZ90hG4n WZxniGEMzC+QU+jHeuvL74hZmOden6fFeH+3ASBpIb9ASAHrv+RVqNeSm7Gd lcaypO9qk+b8PHOImSabzvXPKI7pJXurclxMYF6Q5z+XBaw148M+oq+FfJKR tZfuuRT1t3earldulvLNoFe7/kui5xdlm0nKD7+grgl1dpi5fVIauxtqPvTA 4X8M+SwArUVql9bOTaF9t/2f3eLiolYE14X1dwHATMgvEJLQ/pKeu4OKpXVz s6m4tJQK87PkHJK+lwaV9T47Qcey5fVws3PzKdc390hc/7ZAWIcusJ2Fpc7S tYp1cnMpN+8YjSoy0/OxFtWzBnILi6m4MF81RrioUf0sgJD5JUS7TyRiHf/i HahR9bP8fdomKikponWrf6h4PYNuGY5H4cnr5P72kP5aLXrE/ivJ68H6gMJf Dw/zjwDATMgvEJKwLkr6dr7v6AldrtqlmU+UV36eJrx6+47SacXzAOTnApyn adZDlwvX+p6dNBj4nGnNftpMwbru0aHCLM2xs/P30tWhGU1ZxP4sw/nT7CPa y7fr6JUnQmaM3/WOXqOtqW/r5oYPvzxO4wvB95fnTadQVRj9P9J5FX1ToWWE nV+8AxVhjDcGAAgP8gtEhcsebreHPG6G3GE8t5n1itu7yaOXcwzPI6xDF2Te k9fj8T+jmuHLkhjzWcycf7TAjJPdbqfRUQfZbA5yzS+Gt+/CCNWWl1P5tw00 rrteCwBA8kJ+ATDfq5g/DQCwkiG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBf AACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwC YD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAA ayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP +QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP+QUAwFrI LwDmQ34BALAW8guA+ZBfAACslVz5hSWXc5gmGU/c7xssT6yHoclJF3nY2I6D /AIAYK1kyi9jl3dSRkYGZwPddi/F/d4lomfDLVRcWEglRzvJmwDlSTb2k3/0 fceO9M/FdByz8ovzdiPtyl5Lq1ev9knL3kjHmvpoPsR+LnsrlWzJolRhv9S0 dbSn+gqNL0R2fpf9uu844vlTU9dRWW07ucI8jqO7kWpra6mx2xl0u4WJW7R/ I3ed78jn2VleR/0uNu7fCQBITMmUXxynvxDySwZdmnwR93sXDa9rkK61XiOb M7b60Uhf1ee++5O+/QrySxQc9Vt99+943PPLOB1O+0tKSUkxkEFdLr0M/5jq sn8SZL83qPL2TBjnf0wNW34Z5DirqMo2a7z/wggdzn5T3v61vcQYbPuwIT/I eVJod+tY3L8XAJB4kim/vPSMUse1a9TR40jauln8+z7z6H0Ljj9Nx7LTfcff 1z4V92tNRomRXxapedNfSPV35rfNNOpiaJ6ZoPbar+gNsW7/4TYaWVTv21v6 C2m/tTvryD7hovl5hgbaTtEaRfZonQjWrqE+/1sbjtCt0RnfcezdJyn9dfk4 13Uy1GR3Fa0KzCG/PqDbZuRsXi9v82ExdTm48zCugPOk0L5b6DMGALWkyi/L gFg/bq4zf2zE0kwbZfvap7KpnUH/WiyfTzzzC+uskdseur7XvO99WCNlmK+6 nsjvee9KGaWgVSe/sg9onfD+T/bcMTz/04EKOTudGtTZZpr2rxGyxSf1tCC9 vkjtivyU8m4xNdUV+P/9LZ388vQmvSds+1rWecVxRI9p/2rhWL87ofM+AKxk yZVfWHJzf5sxHq/qddbjJhfjJlb4/26Xk2y2XurttVH/kJPcBmMxA/djPdM0 1N9PQ8ND1N8/RC6Pwd+orJcY7u9ht9f4b1jx2FI7Eesht4ehzvJP/e0vZW3c dbiJYRj9saJeNzmHbNw19HLX0k/Dk4xUTiNT177x969lVWva6tX3ZJg7d6hx BR7p/L02/30Mb0yrlyaH+v37cecaGp4Maz8vM0H9vn246+U+Ayd3vaHubaSf t+p+TA5L1zY0zO3j9b+eCPnlae/XQpvFEcNxLj1F/pzwK0UO8Uq5I4OGFvX3 c9b9s5QHjI7dt//nIc+/NHtNyB5v0BmpLecxHXhHyD1lHb68wQ78yTC/OBuE sqR8QSNG3wvpmj6j/kVkcgCQJVV+8dynXH5sR9Yp8kive+h0bhpX5xTQPdcw nSzMlMbIyDZQY39gX7243wZ64PXSnZoinf0yqKzRrinHM3u10AdkVD+Jx+br wWe+18R+Iz3q47DU17RPf9usr6nd+czgnF66XLzWt916Rd8U67pH+/PTdI+3 /Win4j7KZmwXqUC3rNx9DDLmwXi/bKq45NDfj52m5vLNuuVLzztED5jAcU7R ft4C7yidLNbbJ5suDc/RSNPO+OcX+xlKW7066LiPvv2/0WlHmaNRu53sDuPx Lc4Gf3/NX29ooUXdbRaoLu0/+LbJaQzWB7lAR4S2kY+PPZLO37BxA521P5Wv pc8ov8wp9tdr45EtLi5wXsHvFwBIKkmVX57fpx2+eu2MKr+cD6if0/P3Un1T KzXUlAn9KX5XVWN+xf02UGlpnlTvVdQ3UWvTCdohjCPx9/Wox6o8c5zyv37C OL+IZRLrwVnbJaqsqpTr9/QdVFVTRZWVlXRJUdc6zm+VzptTfIhar3VQa8NR RS7YQN16fUPsI/o6I11d93oHffdLvrbL1NHRSlXS9XLZqeKu6jhj179R5aWa +nqqr69S3Y+jvdr6UbUfly2qGpqoqeEEFebK+20PuI8vvY9of4b8fl7pMWpq baX6yl2qY3W79D63SD9v//n2Ks9Xfoxqamqoqny7dI8K87Pinl9Ck+t+3X4i Q+O0S2gf+WWZ0fgruQ0l+JiTRWpY9wPfdn/15XeG2xnmF6nviG+/4b/PC+S4 3Urfluykoi1FVFRSTmfb+ohBbgEAA8stv5QF/p3vGaS9Qt2bo6qr1ftlbT9D 06p+Bw91VsntAsr5TtHkF9FIgzj+5aF2P3ZUql8rNONvp+mk0Kaz/oR23+eO s1IuGvT6881Y625//Z5TTRMBfSqzdw5LdfYDYfuXz+5KOSnv6M2AtpkndLl0 vXCOvTSqPN7cLV+7mO8+lrQE9F2xZG/aI7VxKLOXOFeKL8OlIfV94tuNxDyW nnfBhM9bfb7GIXX7zNxIi3QNiZ5fnM150lyii0HH4YoWyeW4TltXvyb1L92b N+qLkcfuvrnzRpBjTtOuHwtjU942nltkmF+8N4WxOhnUbb9O6xRjdQPnOYU3 XwoAVprllF+ySrp095u9cUCox0+RW2c/TX0seUKnhW2UdWEs+UUav6u3r5Rf CuRMocDPve7p6KFB13PNe3Zhbnn69hZpzI2YXzbr5B2+v2mot4d6eh3SvRwT +k7Sc84o7pPCkpyvDnbL40bFPpeMrG9pWvd+PJH6047Y5v2veQelfKI8ltKL qRYp98htKVF+3or2qX3t2jGxvv2kTJe4+YV1npbG7gbtd/HepXTdPPAZ3Qox tnvmSp6UHVp152jzc54V84YM5hbxQre/rKJVQnb50Ydb6Wx3HzkcdrpSrZhn xTnp8AYtMwCsPMspv4hjTQI9Hzkj/B2vv19R46jhOfXqQsvyy8sJqT8lp/Q0 DTPanKLvidQ2U3RpXHp9plPs09lAdT0jIeach76PPLH9aL1Ufnm/PVf/bHx8 1kter1cacyvew4z0AzRhWCYvNRemCRlnJuxy6n3eyvPpZ1X//T+UnZ6w+WVp tlOeAx1k/K3PgjDX6PXX6fWAto1315bS0EKQDMMOSvOUUlI+olO2Sfm9xcfU fvjTsOZG84zyy9Peb1THyDymMx9qvp82iWUPMpYYAFam5ZVfDOqcEPvVDhnX 1+KcZGWbhHX5hcsHQpuJKDt3B5VXnaYO24g0R0ZD6r/JVo/54PtSFOM9+PcL i8upvrWDhl1uTZlPS/0yBVReXkqlpWr8a9KYIJ38Euw+BhLvofoz0RLHA+nl pUg+7/DOJ4+BTrj84r2ryBRfGM4vMrK4ME2953bLbRpvF9N4kO29D8+o2j9S Xl/F5aDXFa+9T99W7/T//yjyCz9/SVojRjUHW42fS/4G2mAAQAfyS4i6ShwD qxhXYmV+4c0OtVNlcZ4qx4hK6u5o2lHENqKMdJ3+G3aaOusrKD87XXOs9Jy9 dFvqi9KOiw1GL080DofbXqTIE7uCrxOsvV8x5pcwz5dQ+WVxhLZKbSgZdMtw 7EporCKX7LMFXxNukZ+7tvF3mj6oDzfup36uDDPNn2vmcAcKPf4lhXYHHSc8 J60Bs/u2fj8jAKxMyC/B2w3EMRh6daHuGNwQZQonv0hYD7mcQ9TRWkdfK+bx bDun7O9iqbP0U93xqoE8bhcN2drV83ukXCa3vxzk5xcJ/T1GWFa+1tNh9DsF kvJEToj2F7PzS9DzhZlpw2BefpmW13BL+Yi6Yl6XcJHq0sS16cL873hxgeYZ xrdW0cKi9jjR5Rd5rb3gOUqea4X8AgBKyC983Wi8lv/UdXEOj3b8i/Hf8vJ4 lJjyiwpLd2q2aftAFHOWjgR7Hk0A1nVbmltd58sdHmmsSdBxLBryGJVthnnO /1xnl0teq08co5KR/rXUrqX1WLqP0rjfKD9v+Xw7jM+nNwc9Subklzk6nh7u mv8v6WGdf0xt7tlgzwuS5xf9skw/dyy6blJ1ebnvOZH6a8RwnnZKa+dW2Y3b 3YzXf1kIM0eNS21PeIYAACghv/jHe9zW+7t2aVQaT6usm8X163zzlnTO90yc y6yXX4R5Qnr5xTvZRqXCs6P11tp9IY5LVWSp52MXpWu451Feg5c6a0qosLCU 2nWfdenV3DdpvC93XY90x7hyGaqhgkpLy1Xr6Mn77aAHHr1sME2HpIwl5hB5 rPKuc/rjp+f6qqVxO+0u7fyjyD7vCd3PUmmkabfh5xap2PPLAjVs/DtpnnQ4 Yz8Gjv9eGOtqPJ+ZHwMs5g6j9gxp/V/++Ua67T2LdGXr3/q3ea3YYM6ZcCzD /MJ9b9o3y/O5DcYTP6z7gzTeJpZ+MwBYfpBf5LXauiflOpl1P6Jj0vsb6J5b 8btTsU5KTtkVYhR1/exQi2oN2sAyzYnZJ2s/PQqo66U2Ak5Fx4jqPdY9SIeE PqS0ki4p34jzgdRrpPDkfMKv//JI9bwAlkauHZSywVUxGyjaH9JzDtGgW71u XJ+0jkuGvE/AfhlZe+mecn63d5quV27WbfuQ5l1n+Nc5VrZlTfXWSmvRpZV1 qcoR3ect3yvfOKKmPsX5WHK0HpS/C3HPL+rnCO0T1j9ZXFzUUn5HJk9L+7yW dYRGAur7p6NdinVWPqN+ozlISyO0SfEMo3su5Xdnga6U/pN0nlDr5wXLL3yu LRXWykv54RfUNeFV3YM+xXOpg69FAwArUVLmF9X6JMrxF8b1WYHOfmI9mFuY L9Vbufn5lJ+fr6rLDvZof0fbT29VbJNNxaWlVJibrRnnGlimFzPfqd7Pzc2l iqtjUpkulyrWts8uoPLKSipXjeXl24q0bRHbdNowng23qM6VX7yfKivLVWN5 1x9Vj5l5NnJRtYZtfnEplRYXql7brvPsyedjLaptcguLqbhQfR+189QDrzfX d+/zFWN9+DVlRr3qfaL7vHlP6Hxhmur+8p+bdD+4fFVemhP3/CLV+dLcH6O1 3fxjYpRtF6p1WfixttlbqaSkiNalvq14/Q2qUqzxr2c2YH7zu2mbqKhoC61R lOW3ZaEzhTK/6LUJLc1cUj2r+t20dZSWlk1rVimu8e1izXO2AQCSMr9sV7Y1 eKlZmPN6bthg/KjufnLdz+831XFEkz34NpmrQ0b1GL+u7EHNPtn5e6nbOUnX y9cblmmsp1adIVR9SR5fH01uYFn43FB+nh4p20QU6942OvXHIHgnb9Ohwhzt tWXv8K0Jo9dP5XXdo0PCOvqB13bJZvz3Nr9m7qFC/f2uDhmtoeq/j9k611tS 36mzjl60n7d8f2/U7NGcK6f4mK+9aeyyv00okrngemLJL96+iiB5JZC272Xy 9hla986PdLd/N+tAQHuKsaeOS9xx9M75Bu1pDO/apOcvrjV+fjQ/3mZX2lu6 5d1QdgXrvgCArqTKL6bSWQeN9ZLHzT8T2qV6vnFQ3D5uYW6G2x3Z+hS+uTys UV3CCmVhgjyjeoJa+ecTNVwPePaBFuv1SOVk3OGNg/R65PO7PeFfm9cjnyv8 /bj7yF2vh9uXcRlcr5n454Hz5+O4Qz6LO3LWPv8oPPOuCbLbbWSzcewOcs0v Rn0cB7f/qMNGt20Oy55JtMCMc+XlzjPq4P45SsxC/O4dACQ+5JfY+woAAiVC fgEAWM6QX5BfwHzILwAA1lrJ+eV0buTrrgGEA/kFAMBaKze/8Guq8eM7whzn AhAB5BcAAGut5PwCYBXkFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBf AACshfwCYD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwC YD7kFwAAayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAA ayG/AJgP+QUAwFrILwDmQ34BALAW8guA+ZBfAACshfwCYD7kFwAAayG/AJgP +QUAwFrILwDmQ34BALAW8guA+ZBfAACshfyixJLLOUyTjCcBymI91uOmyUkX edj4lyUxsMS4Jsnljv3zR34BALAW8ots7PJOysjI4Gyg2+6luJfHavaTf/Rd 75H+ubiXJSF47lMudz/Ss06RO8ZjmZlfHN2NVFtbS43dzqDbTd4+QxvTPqTV q1f7fbiJToXYBwAgWa20/OJ1DdK11mtkc2rrbMfpL4T8kkGXJl/EvaxWc9Rv 9V3rceQXv+f3aQefX/LOkCfGY5mSXxZG6HD2m5SSkuL32l5idLddoCu7/rO8 XYC3vmyhhXjfWwAAk620/CK2OWQeva993zNKHdeuUUePg7wJUFarIb8ESKD8 MtldRasCs8ivD9C8zrY9pb+QtvndzvM0yszTwvw4NZd8LL3+5s6O+N9fAAAT rbT8ItbZm+swNgH5JUBC5JdFalfkkZR3i6mprsD/729p88vSzAV6Q9j2t4fu aMtx/A/Ssc5MsPG/xwAAJlkx+YX1kNvDUGf5p/72l7I2YjxuYhhGMX6VJTfj 4l73Buzv9b3u9vh//7NuF/Xbeqm3t5f6h13EqrZliXEOko17z2az0ZBzNmTZ PMyob/te3z795HTFMn7UQ84hm+9Yvdz5+4echuNzQ+UXL3edQ/02uVyTTMC1 yvixwC7GLb3Peqa5fftpaHiI+vuHyOUJXXe6XU7uPPx94Ms9zH0OofeJ6t55 3TQsXhdXNuek2/86l18K4p5fHtOBd/x5I7Osw9fvww78yTC/9B3+R/97bxv1 Lc3RkdX+4/2yTJtvRMzEEHV3t1FbWzfdttnJNb8Y0/UDAFhtpeQXsd9IT+ZR oZ5RjN9U1l/PHKf8bTb1d8neuk97jKy99MCzRC+Ze7Q3N13zftau0zStlyHY aWou36xbppyyZv19gpixXfTVv9rjbaBGmzZHGeYXzyidLl2vW670nL10jwkc G+Sh07lpvvM88HrpTk2R7r5ljXbdcrOue7Q/P013n+1HO/WzRJT3bqznOGXr 7JNVcoU8zwcToP1ljho2bqCz9qfSa0/7jPLLNJUKWefTs2PG34srecL4mWIa D7z3E5206T39cTO/29mi218FAJAIVkp+mbVdosqqSrl+T99BVTVVVFlZSZf6 hbrdoP9AzC+yAqppaKL6yu1yvZ67g3Zk+7NLTvEhamptosriHDkjld1Ul4kd pf3ZctbZXnmS6uvrqapcccycUzQd5vWNXf9Gkae+phruWPX1VVKZeEd7Z1T7 6OYXdoIOKctVfoy7llaqryqRj5++l0ZV+cBD5/P9+aW0NE/KTBX1TdTadEJV hs11AeOOvP7MIO9zmTo6WqlKOg537yrumnLvRlp3K66B//xrqKZGvke5hYW+ bJMI41+UDPPL05v0ni9rrKKLQfqGlmavCWNp3qeuecW8Ou9dWiPllVX0ZXkd NTWdol3Zv5YyzF99iXEzAJCYVkp+EY00iONfHmrfDyO/8O8p/7afG7qoyjYV Heq/gx1NO6X60tdGI7xur/lCer3d+Uy1z9xQi68diH+/6NJ46Ot6dlfKZXlH bwbUvU/ostiWEpA79PLL7I0DUkbrdqnbWVjXbek8R3ufKN4T84vQlrH9TED7 h4c6q+S2EuXcrjEhU6TnVNNEQJvJ7J3DUq554I3x3s3dkl7PKmkJ6Gvh7lH5 etVnnBT5xXtTyB/v0635IPP9vWLOUW/3sE4YG/N2MY0sqveZaS+Ucs2theW/ lgAAJJ+Vll+k8bsndOqWkPmFq9MZ7e/yG0Ldl77rinZ8CPuIvs5I9+17T8wv 0mvGY0+mrgttBVnVIdtgxoSMlJ5zRn/dkqVR2iuc72D3E829UJbBP7+8ldr7 Z3TPJWYH9f1T5BdN24zoCZ0WtslRtKeI+WXzCZ08+dJLQ7091NPrkD+PKO/d iJgjs741uJ+P6ZjQ98ffx+TKL59R/2KwjPFY6Gd6n64z2vzyqz06c/FeLpCt 7TJdbutDHxIAJCTkF4UQ+cXo73LxmNv02nSkur1Aan+RjhesnlwaEPpVFLlH l5wdjvc/M9xObHdar7juaOYf6d8/uQxFjaOG+4ptO3zfjpizZjrFfq8NVNcz EnLeenT3Ti7fnqt/Njy2WJakyy/c6/pjd0XyGN4q+3Pp9cnm9VIbS9nlAawR AwBJBflFIVR+MajX5Byglx+M84uvv6e0nEpLSwNwr+WL4zsKVP1Oesc/LfXd FFB5eeCxSn2vSeNPwsovXnLa2qmhporKuf0LC/MpPzeXsrMzdI+jzAe1Q8YZ ammmzT++RNlO5BmU2ob8sqmwuJzqWzto2OXWHCO6exde+Z6PXUza/qOuYP1H 7ANa59vuI3Vf0NO7wuuiNyg1bROV1TaTfYKJ+3+rAADBIL8oxJxf9NoxgueX 0MJvfwlHyPYX7yM6pDOHipedmx0yvwRtyxHH6qbvoEHFeBZ+LlFnfQXlZ2vP y893uu2S2wyiu3dy+Rqdz0OWL2nyy1P9cS3a6wqScxbHqbm8gN57XWcO0t9/ RtcnAtcSAABIDMgvCq86v/DjM1iWvF5vEKHWQJHbXw7y84vYYMfyEht0/C5L naVrpf6cE9f6fM8y5MsgjusRn7EQTfvLi6mWkO0bHn7NGVs71VfuknOIIu9E d+/kexSsj+35yJkk6z+6S+lC1thnM173xjtwVMgkHwXNOfPMBNm6G2n/lk8U OeYjuofxuwCQgJBfFF5RfhHryYz0AzQa8zV5qLkw9NiOYPdCKjf7SOrLaRzW b6cINf5l8wm9saB+4rha5fiXYPj5TuLc6johd0R377jyCfdo2zm9MUp+ynHQ SZFfXi5Sw7ofCM8HuGG4f9/+3/j3/6Q+7DEu7MQ1aW71vlsr43nsAJBcVlx+ 0W0/ELyi/PLy5QTtF3JCUaP+/Gi+7q4sLaWyE50hx7RKY2DT99Ij3bk/LN1p qPCNDVHON9aUW1qLxaDPintfnPtjOP+I2/e2zhwtfg6UeM3yOGcvddaUUGFh KbXrPi/Tq9MvFd29m7om3qMd+uOJFNktefLLS5qV5jm/T60unet62in0MaVQ TuuU4r0Fai7JpNTUddQ4qtfGtyCN+d19+4kp1wEAYKaVll/m7NVC/8N+ehRY j72y/KKYz8upuOZQzbv2uO7RXmEsSFpJl+Ga/RLFnOL0nEM06H6hOn9f0x7p XFcVa7poyy2uo8uvGdxCjCILeV0PVONijPOLf/287kk5J7HuR3RMen8D3XOL 90HOJ/z6L49UzwtgaeTaQWlMr7LcUd075Tp53Gd/TzGmhmXU15Y04194SyO0 Serr+YxuKbPjfD9tfV1+b0i1xoucT/j1X/rnlfd+kQYa8qUxvXhuEgAkopWW X17MfKca45mbm0sVV4U158T8ErCOijK/6PV7hMovp4X8om7T8NDl0ky5LNkF VFpeSoX5WapxH8HnHinKOHJRtS5+fnEplRYXql7bHvDMSr1yz0jr1/lzAz/v KD8/Vz5uYU7Q/JJbmC/f2/x8bt981f0+2DOlLvdwi+r9/OL9VFlZrhrLu/7o Xc09jebezfWfVX/2hcXcPZLX+c0rL/c//8hoHZ0IWJVf9OZJs86LimdVv0HZ G7fQlo3ZqtdOOrTjcJ8O1KjG676btom2bNmoGsuL51YDQKJaafmFN9ZTq64f xbpYzC/bL6j+/n4+Isyr3d6i+3f5SMNO1RgNNWHshW4W8VJf00Gd5/FkU0nV ZZoIM7uIvK57dEhZhwuy8/fSJduUZnvH+a26Y24D748/I+ygc70z9EyYY6we RyLnl3PDz2iq44imDHybzNUhg+dETt6mQ4U52n24c/Jrwui3P0V3754523Se UbWBjl5yEPvC344V+PlHw8z84h2o8OeJtScMx6/4nmP0js4coh99Rq2jxnOI vKPXaGvq29r9frzGtybMYpz/WwUAMLIS84vIN0eFTYC2cdZLbjfjexY2w7hD jncJeV3Cc7V5bs2ztMPFksftJg93LLc71PhNnTX0uGvi92cYl+q51MGwXg+5 hXIzIc8Z273jy+b2cOdzh1e2SJmZX8K3SBMOG922Ochht5HNMRF2/lhcmCfG xX1WPGb+FZcbACByKzm/gFnCXP9lBYlPfgEAWDmQXyB2yC+BkF8AAKyF/AKx k+ctBVsfbiVBfgEAsBbyC5iB9Y25sWYsSTJCfgEAsBbyC4D5kF8AAKyF/AJg PuQXAABrIb8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABr Ib8AmA/5BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5 BQDAWsgvAOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDAWsgv AOZDfgEAsBbyC4D5kF8AAKyF/AJgPuQXAABrIb8AmA/5BQDAWsgvAOZDfgEA sFZy5heWXM5hmmQ8cb9/oMa6XTQ8PEkedmV/zsgvAADWSsb8MnZ5J2VkZHA2 0G33UtzvIQjYUdqbke77bDKP3l3Rn7OZ+cXR3Ui1tbXU2O003m5hmtprd9O6 1FRavXo1reb+mb2xlFptk3G/FwAAVkjU/OJ1DdK11mtkc85p3nOc/kKo1zLo 0uSLuN9DEDy/TwXC55K+qy3m4yXz52xKflkYocPZb1JKSorfa3uJ0dlutu8o rRK30fFa1gmaToB7AgBgpkTNL/aTfxT+jr+vfd8zSh3XrlFHj4O8CXAPQTZp 66Zr1zpo0PU89uMl8ecca36Z7K7SZpJfH6D5gO2WZjvpPfH9H2XQqbYBYubn iZnop7qi30r7/tWX39FiAtwXAACzJGp+cdRv9eWXzXUYQwDJJ/r8skjtpb+Q M8u7xdRUV+D/97e0+aXv8D8KbTPFNK5zvId1fxCO9T7dmk+uPjgAgGASLr+w HnJ7GOos/9Tf/lLWRozHTQzDKMaEsuRmXNzr3oD9vb7X3R7W9//5saT9tl7q 7e2l/mEXsaptWWKcg2Tj3rPZbDTknA1ZNg8z6tu+17dPPzldkY4rVZePP55Y vqHJZzGdj+XukYtxC9fIkmv4gW+/Xm4/l5sN2JahoX4b976NbP1DxHiDl9vL 3Uf/9kI5JpmAexlQDhcT0F6ivu6XXjc5h+TjDbvcBufW/5zV1/qS3C4nd5xe 3/X0DznJHcbYYWZy0H9/uH2GFOONWa5sjKb8kYs+vzymA+/4s0tmWQct8GUa +JNBflmgE6v92/7TKYP/JpcGaZ2QhSptxt8fZmKIurvbqK2tm27b7OSaX4zp +gEArJZo+UXsN9KTeVSoDzz3KZcfY5F1ijyKfZ85TvnbbOrvkr11n/YYWXvp gYf7G5S5R3tz0zXvZ+06TdN6dR87Tc3lm3XLlFPWrL+PDrF8eTWd1FmzTXWc tIr7MZzPQ6dz07j3C6h32Eb7s7XXVtL40LdtX8MeneNmU13vjLbMnlE6Xbpe txzpOXvpHqMdkyJ+fsf757SfS919Gus5rn9dJc3asR26n7N8rfdcw3SyMFPn eBuosd8gj3oe0bHCLN170Dg8RyPnN2nKH43o88scNWzcQGftT6XXnvYZ5ZeX tOAa4bIblzcWDI63NEKbfPnlDTozwWreZyc6adN7+uNmfrezRXM+AIBEkWj5 ZdZ2iSqrKqVxoBnpO6iqpooqKyvpklgnPb9PO/h6Le+Mbn6RFVBNQxPVV26X 693cHbRDqN9zig9RU2sTVRbnyBmp7Ka6TOyoKg9srzxJ9fX1VFWuOGbOqbDG R2rLl03F5ZVUWVpMJ3qmYjifh87np6mOnVd6kpqaTkjXyisszpfq94r6Jmqq r/DlA7Es7co8wk7QIWU5yo9x96qV6qtK5POk76XRgCwl9vvp5RfldZdUnabW 1gYqV2SJtJIudbuO7uesvdb0/L1U39RKDTVllK14/WrgmF8uD32dobymk1wZ mqiqNE+6L4X5WXHOL1rB8ksok1fy5P6jhYD+I+9dWiPllVX0ZXkd9505Rbuy f60YN9PxSn8fAQCEK9Hyi2ikQRz/8lD7fhj5hX9P2U4xN3RRVedVdIypjulo 2inlJV8bjfC6veYL6fV2p7qPZ26oRar/iy6Nh7wmdfmO0SOPdjxCdOdT1+kn VG0pT6i5WG6jSM+pplFlf5GiTlfe69kbB6QM2O1S5wDWdVvKl0d7n6jvY4j8 kp5ziAYD5kI7mvZI+aGbUbwXRn4pu+RQ30PPIO0V82mFeg73jUOfSue5OqzO J8p7uxzyy+L8NLVXF0g55LfHtOPgpbExbxfTyKL6vZn2QinXaHIPAEACSNT8 Io3fPaFTB4TMLwXqelBwo9zfF5K+64p2/Ab7SKjHC+iemCuk14zrs6nru/3n zKoO2QajLJ/ueiZRn0+u09frrLuyNNMmtUtccmr7fEaE7Ka81/75663U3q/T r/RSzlmBn0/w/JKtbRPxmZbaek7YFNcdIr9klXTplk3MXnw7lTvgWHqZS9rv zuGkzi8Dh3+v2w/08bE7utuL+eVXe3Tm+L1cIFvbZbrc1oc+JABISMsxvwS+ HnjMbXptOlK9WCC1v0jHy9E/ns/SgFAvKnKPAbl8F3SPF/355Dq9dkg7Dvil d9C/T/oOGvRqy/jccdb4Xkf4+QTLL8bX5aHmwjRtbgiRX47361wrfz0jZzTf AylDpR+gCcPrkvvMkjK/HPfnkddff12dYX78Hu1p1P43O9m8XmpjKbs84Bsr bEZ5AQBehWWZXwzqSblu1av3jPOLfzxJOZWWlgbgXssXx1MUqPqd9IQqX/Tn U9bpOvWuwf0KPK/2XnvJaWunhpoqKufOX1iYT/m5uZSdLfezmJNf9PcLnV8M MobOfqGyY9jHDlO8+4/4ediu0VtUmvaWlGO+ap1Sb/P0rjQ3KUUY45uatonK apvJPsGYUnYAAKuszPyiVzcFzy+hRdD+EkZ+iex8FuQX7yM6pDNHi5edm528 +WVXS5C50V79dqAoxD+/iBaoYd0PjPdfHKfm8gJ673WdOUh//xldnwhcowAA IDEgv4iC5Bd+rAnLktfrDUI7NzVQ2Pkl4vOZnV9Y6ixdK411PXGtj1xuj++c 4rghcW3/pMkv9lqpDG6DMvjmZi+b9hcZ+7BGyCSf0dCi8XbzzATZuhtp/5ZP FDnmI7qH8bsAkICQX0Ta/CKOo+DHTIyacE2hyhf9+UzOL+wj6TmMjcP6zwEw d/yL9fnlxViLlMf0xnb7zN2S5iAlRX5ZeECb+LXu3t5GI0H2X5q8QG8IWSTc NXjZiWvS3Op9t5Lv+d8AsPwlbH4x+Pve5xXlF348536hHi9q1J8fzc8lriwt pbITnSHXbA1dj0d7PpPzizje16hPjHtfmnOdJPmFX9f2ZK44b+mKzmflpcul 8jzzZMkv6ULG2N2lP6eK1yM+j+Bt5fMfF6i5JJNSU9dR46he2+ECHRHW9t19 2/jYAADxkqj5Zc5eLfSl7Neuk/LK8os8t5hXcc2hmnftcd2T1hrRrL2mI5x6 PLrzmd1/JK5xy69J3EKMYh0dr+uBalxM8uQX9fzo9O0n6cHkHLEsS+7JB5o1 eZMiv7xcpObsH0hziA51OwP2naOew58q5lEPKt6T8wm//kv/PKs67kBDvjSm V2/dXgCAeEvU/PJi5jtVfZKbm0sVV4U158T6KWAsg7Ke1BvjECq/nBbyi7rN waP6uzwju4BKy0uldVr9/T07Qs49Cqd80Z8vxLgN7n4VRDh+d0Zav86/bgs/ 7yg/P1d6Lb8wJ6r8YnTdQfOLar8wxqiI16tzPnmtPK2ssit043xRQucXzTMW 2EHapBx7+84a2lJUQkVbstTPr/6kXjN25ulAjWq87rtpm2jLlo2qsbxv7sT6 uwCQmBI1v/DGemopX7GG/XqxrhTrte3qubDPRy4Kf1u36NbTIw3+to06o/nT /NwT3Szipb6mg6q16cV6vaTqMk2EkV3CKV/05/NSc7F/vO25Yf31X/j+HqP8 Iq7/ErguTuD99+epHXSud4aejfmvZds59T6O8/4cck6xDk041623n/7nHOJa g3w/RHPD3VRVWsxlwnwuF+dTYXE5NfaM+N67U/l5wuUX70CFP0+sPaG/Rsvi ODWUZOquXcc/N6CsqY8WjY49eo22pr6t3e/Ha3xrwhjtBwAQb4mcX0S++TZs ArRhs15yuxnfs7AZxh3zM4oT7ny6WPK43eTxuLmyJPk4Tu5+ejzBrsEjjZFJ pPwStsV5mnDYfc9T5zlGXWHnj8WFeWJcLnLxmPn4f1YAACEkQ34BiB1L14V2 m8yKm7rbzPaKz8YOMkcpTHHJLwAAKwjyC6wUM53fSP1geeWnqXfISYzbTS7n A2qq2iW9l1kWeix2KMgvAADWQn6BlYOlvvoiw/G7vJyyZu0Y2SggvwAAWAv5 BVYaL/OIOprqqLK8nKp8z3bi/ll/2Tef2qxzIL8AAFgL+QXAfMgvAADWQn4B MB/yCwCAtZBfAMyH/AIAYC3kFwDzIb8AAFgL+QXAfMgvAADWQn4BMB/yCwCA tZBfAMyH/AIAYC3kFwDzIb8AAFgL+QXAfMgvAADWQn4BMB/yCwCAtZBfAMyH /AIAYC3kFwDzIb8AAFgL+QXAfMgvAADWQn4BMB/yCwCAtZBfAMyH/AIAYC3k FwDzIb8AAFgL+QXAfMgvAADWQn4BMB/yCwCAtZBfAMyH/AIAYC3kFwDzIb8A AFgL+cVKLLldLnIxngQoS/RYj5smJ13kYXFfwoX8AgBgLeQXC3nuU25GBqVn nSJ3vMsSA/vJP1IGdx1H+udwX8JkWn5ZGKeG8lxKXb2aVgs2lNTRyPxSDMdd oL7Lp2hL9lrpmKlpm6istp1cC6H3d95upF2KfdOyN9Kxpj6aD7HfwsQ9qiv5 ktJS3/Xvm5pKG4v203X7TNw/LwBIPsgvFnp+n3bw9XTeGfK8knN6aKjnKl3r 6DM1Fzjqt/ryy3Gz8ssrvy+vnhn5hXVeovdSUihF1/t01uGN+JhLrk5a97rR MXmrqMpm1C42TofT/jLIvhnU5dLLVYvUc/jTIPul0GtZ9SHzDwCAEvKLhV51 Pf3srq9dIyNjA93zxPL3uRryS+RizS9Ls52K7PIRnb3tpPmFBZqwXaR0RYa5 rpsXjIzTVim7vEE7a3togpmnhXmGBtqqaE3Q4y5S86a/kPJG5rfNNOpiaJ6Z oPbar+gNcd8fbqORRfV5J6/kSfv9cO1e6nJM+q6Fmein41t+K7335s6OuH9u AJA8kF8s9Krrae+g73wZGQX0wIv8Ek+x5pcrUlbIoFuBfUXeu7ROzAuZLbQY 5jG9fX+SssuZUVbn+yMf97eHBlXvsc4aKWfs7vpee+yHNVKG+arrieK9OTrw jv/1v96gX9aB43+QrvXegnnfWwBY3pBfLCTW0zlyPc1MDpOtt5d6bTYaGp4k b8jjeMnlHPLv02uj/iEnMR5t3eNxu4kZ+46yhfaXq85ZcjMMMW6jvgAvTQ71 c8f0H5cvi9H4XDm/PPP9f6/bRUNc+f3lGSaXTnnCui9B8ouX+7u+31e2XrL1 95Nzkgl9XK+bnEM2/z62fhrm9mFD7ON2Oblte6Vr0bu30Ygpv3A5Yo2UFZ7o buPtq5DaSjT5xqhMx3/vb+f40ridY+DwP/q2+dWeO6rXn/Z+7T/fr48Y9vP0 FP1Cuy93LelCv1SrUVuRdL3vU1dM43oAYCVBfrGQWE9vbyGGeUD7c9N9OUAl /Wtqdz7X3X+sp1boD9IqOTcg183P7gq5RU+2pi9pxnaRCgy2rbjk0JRDzC/n +seos2qb7nkqLo1Gfl/08gs7Tc3lm3XPkZ53iB4wL3SOyVJf0z7968/i7+8z zT6s6x7tz0/T3Wf70c6Y24ViyS+zPYVCNvmCRgy3k/uCClqnwjqus2F9yH4a w/xiP0Npq1fT7tYxw3379v/Gt+9PlPuyg7RJyC/XGYNswiK/AEDkkF8sJNTT fJ0o5ouswv1UU1NPNVUlqtxwNSDDzHQckN/P3kFV9U3U2lRPpflyBtpzady/ PVfnX66qosrSPLkOLj9GVVWVVFl1mRhFu8rY9W8U5y2gqoYmamo4QYWKbLW9 7r6qLGJ+UZanhtuvteGoKgcd7NVvKzC6L5r84n1E+zPkcuSVHqOm1laqr9yl KnO3S51hHOfl8uUUH6LWax0BZdtA3cq6U+pn879XUX+ZOjpaqUpx/zIr7sb0 2ceSX3pLfyH0t3wXdDuxveMnAVnDiHdAbLNZRY16/UcLD6T+o49PRfrf+Bwd Wa2Xpxak198y6j+qE/uPPqP+ReQXAAgP8ouFFPnF10ZxbUT1Pss8oL3Z/vqa 72OS5ww9pkNCPb7+6N2APhCW7tQIbSBZ1cQo31t65D9f+g4a1OsLmrsltedk lbSo9+WOa2/aI+UpZX2vzC/bT9wI6PN6TOcL04T2kQvhtVsY5Je+qs+lTHFp SD3Whm8v+Vq4J6rzsKO0V3i9oj2wHWKaTub6y7b+xEPp9bHW3cI9r6aJgPs0 e+ewVIZYxhDFkl/EdozANhDtdj8PazvZAjWs+4Fi/G47jU64yOWaoL7LlbRG HNv7WjGNR1hmZ3OedNyLE+psxI+NEcfO/OjDYrpud3LndNHE6D3V+N38tvDa kQAAeMgvFlLkl80n7utuszTzndQ2c2lSbFfw+uZBt7b20LReDuGOWyC0Raj6 hqTzFejOPxpp2inknm9pWrfMT+i0UN8fsc1Lr4v5hc8bevOy5WsooAfhzHvS yy/eQSmfHOzWb8d5MdUit1eJ90rKL/pjlr2uQerp6KFBl9y+JeaXzYpMI+Pu fW8P9fQ6YupDMiO/ZIZoA5nt+VroD7oRwfG5DLPpfwkyl/nrIH1W+ljnaWns 7sfHBnW38T48I89R0lEQpF8KAEAP8ouFpDyRTe3/f3vnAhzVed9txpPJTGY8 08zkq6fTyTf9kiZO3KTp5Wub2P7cuNPEyaSJm8Zp02CnbWzjXmJwUoOdGhxj hDHCGAFG5iZjhI3NxUbYAiRAgLjZ3CzZEiBASEgY2RIIJCQigRH+f/vfs3vO rnZXWknn1dl393lmnkks7eXV6sfuT+95z3tSHfsPfV5uzn/QOR607VR6j9vp 9Zf3UvSXxB7RKesj6z2erXg/9WP3dkt3d3fcnE+0vzxdmmJ8sec9DbO/XKx7 NbIeaKE0pbxvt2yMzPUs2hPd86zJPeY0sWCtnGhLvpYo1g92zXfnWFbvrU9j DfXQ9aO/zN4/8PE493jQfS9LV1qPnbgPyzfvvDu8n1xst/j+I2v6zc2lVs/z ds+7/ueXk67tDe85882YvvLHt8vY+++XO7/5Ve9rX/17WV511vffAyJmr/QX g0b7xPgVKeY7HKPrNx57Of7zrrftpOwsXyfLlxRKfn6eTJkyRSZNmBC3FmQ4 /WXV0cT1rAMZ7S8p7zfg86a+fbL+Mtg51dHX6uGY16o+Mp8SdcKk6VK4fK3s rKqX9u4kj9N5xD3mFJ3PycsvlDXlO+VES7svv/vROH50LLJu5HsLks/t9beh 5D/dvnDvgo3xe+32XJDqdbPdHvP/frN18POyY8/jHvM/crQnyW3c9bshv/KA lNY2x33/QtM+KRj7ZXddzptNQ9+TDxFzU/qLQd3P6YHXhUT7QWx/ady2KOX5 RBNG2F9KTww+R5FsfCn3f/Gzv8zcMuB8SLLXSj17tFKW5E9O+prNWX0w8TF7 z8iuNYtlyoTEc8LGTZwr+1uG9hr114/+8r0Fg61/Sa/nOD/vEbdr3Ls0dd+J HpPSLjHguUA99TF74SXZoyai15kG2tulVZ6/M7qH3VCOhSFiLkt/MWj0c12P iQxw7cPoZ3J0TkHXk7jn0xS8IlUNLdKpx3R6e93HHc7xo7WR/hLdxyVdR7W/ TBxk/iVFf3Ht7Qzvl7OzfLXMijmn6sl1qc/v7gzvZ1MZf56TroEOaP3u4Rf+ ddC9VnQdy0tjx6Q//9LxdmQ/3x/KvgH3iPP2m0t9/OqM2zd0b+DdKY+NfiQH ImuMBxujt7/MQq4jgIhpSX8xaMz63bKGZPuWqOfcXhE9/9g9P2bmpuRzEcPq L97akSdXJ1u36tjb2SYtLW1xe9mNRn+5VP9apDfMGqA3tLrnE8WuL06td65W unv99rbsd39nq4fY82IdSX/R9bDROZCUe6Z0v+1eX2B5OtdBcvvLPYP2l2g3 Sd5fzstL47xrJZU3DbzfnzeXNHB/cfcGvm1u2mtvEDG3pb8Y1O0ZD8j4FMdF zlevcNeSVkb2ZnPXeLyY/PPPPY+of1/oTHFeUkR33eq46Sl6xhn3vO1k5x+Z 7C+x63Bnppgr8V6rCVIZ2QOmu3mHFOTlyZwXdyXda/dypBeNmxi91nW37Fo5 R/LyCqSyOVmn7HaPs43kegkju37AGZn51YGvCXRgzj+61xs6lc5jdr3nXjfp 8dLU5/p0H35xgGsMdEnJoze7338ljd4U3fM3fF2klLfrktX3fzF8u5uGcD0E RMxt6S8G7bf/y+TF8XvJfVD1uruWZdzMHe7n78U673N6Xc0HMY/ZLbXlseti +vcF7/znBf32mgnbe9w9R/mB8XPlndg1Ht1nZPuSx5IeOxmd/hLby0LjL62N 63unD6xyX6v7F+x2v+7O24RcvLPf/jrtR2Rp5BjS/XN2R15fr5/o/i/H464X 0Cv17rqjCVLRkmrObHBHev2j5o0Pu2ttHyyOX99yuMT7XuI+c+dldWSPl5vG r485L6lHNk7w9n6ZvflwQk9oOfyady7Rbfn91pz3SGVkXz31uf1OLnt6ehKN /R24c0khfzpXatr6daKeM1LytLcHzFPbE6+thIiYTPqLQSPzL+MmTZd8d9/c CZJfUCB5U8bHrLWYK0diP/d7m6Q4Zl3phElTZFL43KPo/rePR/ah6z/P0iu7 Cu7zHnfCJJk0uVhOxnSmS42b4q41MCkvX/LzpsStX326NH7+Y9D+Msi8T8rX ZWL//WQ6ZXPBg3Hj13OupsRed2F8kZzsHug+j0vhkiVSGLeW93HZH3PdgYsn NsX9vFPyn5clSwrj1vLqvoEj+d2PtL/onMTGqTe7n+tfGfuQPPHEE/LQ2Nvc r8X3k4gdu+T2Md7xnbg1uHoukLvmVs9Zvjv8mOq4O/8o5rzq2xP2oOtwr/0Y PQc69V4ueowqdq1uQ0zfUn864dfO8z56X9x522md84SIGJH+YtDIvijjpumx o3OyefnMuM/N8JxM4XppSnaOb/dJWVuQeD7NtNDtz/SGPrPz7ku+ViThfomd QveyXZo3PuGxJ0yZKxVHP0gYS/R4Vsrzp3uPO+cjD7h2JcnrkvS8LN0HeFHS 6znNWbMr6f552mEOlixOeq0ofb2OtyfOo3Q37w+9BhMTz1eaMD28J8xg130c zJH3F7VH9hZNTNoR7l2wM8WeL63yQmRdr+4Lk7AWtueMbJzzYMq95H76m5fk aJJzibzrRaZj4rlGes2th+I6UnyPKt6Rek0WImIy6S+jbKh7tLd3Smd7m7Sn ca3j3u7o7dulM1nPSfk8kX3oBjjvqbuz07lGdZuOJdP23egO/dyhnzk0xrZ+ 64lT2+tchzvyM6Vzn/DrG7l96mt1D11/+otjz4VTUrV/v9SdrAv9b5U09T8G Mxx7uqQp9Hi1tXVysq5KqmpPSlvXyMc6mF1tp6Sutjb0s5yU2qoqOdmUxnXF ERGTSH9B9F8/+wsiIiZKf0H0X/oLIqJZ6S+I/kt/QUQ0K/0F0X/pL4iIZqW/ IPov/QUR0az0F0T/pb8gIpqV/oLov/QXRESz0l8Q/Zf+gohoVvoLov/SXxAR zUp/QfRf+gsiolnpL4j+S39BRDQr/QXRf+kviIhmpb8g+i/9BRHRrPQXRP+l vyAimpX+gui/9BdERLPSXxD9l/6CiGhW+gui/9JfEBHNSn9B9F/6CyKiWekv iP5Lf0FENCv9BdF/6S+IiGalvyD6L/0FEdGs9BdE/6W/ICKalf6C6L/0F0RE s9JfEP2X/oKIaFb6C47cXmlraZaW9s60b9/e0iItbene3j7pL4iIZqW/4Ijt fFcmPfCAjBv/qrSbuL2F+tZfuk5JSeEkGXvnnXJnxEfmrJb6C1eH9DgdJ/fJ ulXrZN26NNywVy7E3b9Hqje/Pvj9Nh+WngHGULenVFatWiWlexoC//0gov3S X3DEXnpXpmsfmfyadJq4vYX60V96G8rk78eMkTFJ/aG8Xted9mPtnfkHKR4n mbfL7rh+dF4WfjOd+82StmTP31UvL0y41bvdTXOT3w4RcQjSX3DE0l8SHGl/ uXp2V0x3uUde398gF7q6pKnqTRkX02G2t6Q3D9NRt1tWrFgVnv9I6rp1UnB3 9HEfkHe6Yh63+1DkOe+RBavWpXiMFbKqtDph/qV5z3K5vX/P+f7CfvM7iIhD l/6CI5b+kuBI+8uWX3/e7RL7+h8rCvWJh6Jd4MFNAx6zSd8ueWnsl8KP+b0F 7/Z7vrfl7nDvWCZdaT9ej1QWfNfrLD/Ilw2rH3f+//+jvyDiyKW/mLBb2tta pL2zN/zfnW0npabqgBw4cECONl9MuH13W5PUHHC+X1VTIw3Nbakfu7db2lra pL27N+VtejvbpaWtXboHGNNH3e3ScLTKec6qGjnR0j74zxW6z4mayH1qjobG GblPqI887nN/GdJrEjO+uJ8pdJ/eQe7T3tIQuq0+T5XUHD0hbZ2pX9ehOKL+ Euond0c+92fvPpf89ale7M7BJPSbYdhxYJY717OvK/7xrp7d5swF3TaU4z6t 7jGnBxfsDPee3sPz6C+I6Jv0F/+9WPeqPBD6fJ68cpfsWvlk+P9HvX9xzN+2 vWdkY+Fjcd+POm7yUnmv7XLiY9euCH//wRdTfTZ2ytpJ94dv81LNxYQxPbb6 XWnc+1LS55w4Z2PKzye9z4Qk9xk/Z4t0Xjri3/zLMF4TPZ+pesNzSe/zwPhZ UtmQ2Bl7W96R56fcn/Q+017cNeJ5oZH0l7N78yJd4n+kPuXtTsnUP3b6wePl p0eY2VYpiHSNn/Sfe/lIu8388Pe+/MjWIcz1nJeSRx+R12s7vMeppr8gon/S X/w32hU8J0h+4RJZUpAvL++NfNZ0H5fnHxjn3mZyQbFsKC+XNUtmxtzvcdnT cjnpYz/2cur+sn5KtL+cH3BMc5avlfLyEinMG+/1qzm7E+Ys6stne/cbN12W r1wpK1cul+kTnPFPyssLd5sR95dhviZ166d6HSx/qZRv2ynlJS+G54Scrz8i e9pi13M4fSv6vcVrNsvOneWyvGCy+zgPLj40ogyMpL8ciBx30b4w0O32Pu3c 7pZnD45orGf3pp57UaNzPT9ZekS0l+zf/LoUFa2QFStWyLoNO6SupSOt56G/ IKKf0l/8N7YrjJtcLMc7Ez8Tqpf/t/v5WXb0fNz3dG5gVuRzfNzkN+I+4/3o L+MmLpUj7fFjqtvwbPLP+vP7wuc6O3Mtm/rNz5yTzYUPx/ysI+svw3pNek/K 3MjXF1f2n4c4I69E5qIefvmY+/XGSB8bN3GFNPXGj+3swRfcMbzXPfzjMiPp L9XP/2P4c/7vBukl1c9/J63bDeyZAede1GOr/8s9VnX37cnPPbpt/DI5Nchz 0V8Q0U/pL/7rdYXHZX97ks/A0N//0c/iRXuSr2+4fHqTO09S0Xw54bGH31/i H8/zjCyNzKe8XOXdr37DjMhxmCI5k/T5WqV4UqRXTBxBfxnua+L2l8eT9o3u liOyd+deOdJyyf1atL88FtNpPLvl6IG9svdA3YiOIfnRXx58deB/Z9F5k1tn vDXscZ6tzHPnXt5JMvcSO56oP33iBdmxZ7/s2FAsv777Ju97/7xswPUx9BdE 9FP6i/9Gu0L/uZP+339g3EJpSvk43bIx7/7I5/kHCfcdbn9J3TE63efz7uc9 1rMV76f8eT/YNX/E/WX4r0mTe8xpYsFaOdF2adDnj45X51hW763vt87ZH/3o L7P3J+9xUbsPR9bw3vfyEM4LivWMzPxqZO5lafK5F/VAwV9FOsrXpHhf4pgO l0xxO8zE0tRrcegviOin9Bf/HawreP1m4M/76LqOh2O6irn+Enq+NVNT9pdV RxPXwEa91PjmiI8fjeQ1iVufE3LCpOlSuHyt7Kyql/buJI/TecQ95hSdz8nL L5Q15TvTOw8rDUfj+FH0uE7C+c5p+kHlY4POvYRvV1UuK4pWSHnt2ZS32TL1 G5G9XZal7Cb0F0T0U/qL/6bdX2ZuGfBv/2ifeCwD+ktpwwDzGt0jP/9oJK+J evZopSzJnxzXY6LOWX0w8TF7z8iuNYtlyoRxCbcfN3Gu7G8ZfB5nIP3oL99b MNj6l/R6TnK985cGmntJV3cu6Kb8FMcZ6S+I6K/0F/9Nu78McrxlwP6yOtna DdXf/rJ2SuK52P29VP+ab8ePhvOaxNnbKS0NR2Vn+WqZNcnrJk+uO5nyMTvb W+RoVWX8eU7jpsuRgNbvHn7hXwedy3D2mxsz7PmX5i2T05p7SduOtyP7Bd+T cj8a+gsi+in9xX8H+yyOft4/MG7WAJ+Rre65M8uqLiQ+dsp5inPu/XyZf4ms N3lyXaq+9JE0Rtb4jqS/jOQ1SW2vHIzsv5Pu3FBvy3733OrVA3S2wRxJf+lt WOteh2h7W4rXovtt9/oCy4dwHSTHocy9tMoLY51zj8oHuFaBu//dAN2E/oKI fkp/8d/Bu4K35nRminmB89Ur3LUZlTH7nUT3r3tg3Fw5mfS5X3fnEEbeXz6S 09vmu/MR7yU5D/yj3uPuWpIRnX80zNeku3mHFOTlyZwXdyXda/eyOzcUvdZ1 t+xaOUfy8gqkMul5WN1J56+G6siuH+Ctq711xs6ktzkwJ3JO0B89Oeh5y/1t 3vhw8uscJfW8LLtzTOQ4VarznM5HOo6eg5R6LTH9BRH9lP7iv+l0Bfe85JAL Smvj5lJOH1jl7nV7/4Ld8fe9eMjdl23igi3SFrN/ydmjm2L2bPOnv8Tt9Tb+ eXknZl1Ib9t7sjTmGM1I938ZzmviztuEXLyzPu55etuPuOPz9uXz+onu/3I8 7noBvVK/bZF3jnZLsn6TniO9/pHXMcbIg8Xx61sOl3jf+3nCOdbnZfVDXwh/ 76bx6xO7xNV6+fWY6NzLkbTG0rD6P2PG8lb8Y/acktW/vsX9/vLa1OuG6C+I 6Kf0F/+N7QrtKW/XKZsLHvTWW0yYJFOmTJEpMX1A91w5meT8mdq13n6z4b19 Cwokb9KEhHWoqfpLqjEl7S8hz9e8Hve4k/LypSBmrezkwkLn+kcD/rwxRq+X lHD74bwm/e/zuBQuWSKFcWt5H5f9MdcduHhiU9zPMyX/eVmypDBuLe/DLwa3 /65jl2ycerPbC74y9iF54okn5KGxt7lfS9pPOnbFXO/5dtndby1KQ8lQ5l6i ep0o+riPPlEgTz8xXr4Wsy/MT5YOvI44tr+kfx0lRMTk0l/891J95HziaZsG mY/oldoNi5JeV2jOml0DdAHnfv3vM2HKXNnT0CzbI3virjtxcUhjip6bvC7J udIXG3bI3En9z9V5RF4sq5Pey8fDe8+Nm5Z8v5sE3fOVkt1+OK9JpxwsWezu ExzrtML1crw9cR6lu3m/LM2bmHD7ByZMD+8JM9h1Hwdz5P1F7ZG9RROT7nd7 b+SaiIn3afWO5dz3cr95Du9Y0M+L05t7ib1v5YrH4/qK61fvluI9zYM+xsj3 q0FE9KS/ZILd0t7eLp2dneFrS3f2pnm/Xr2mdJu0hWxvH+oazuHZGRpne2ic Ot6Rfsb7/5r0hsfXFnlN0rlPb3en+xq2tXf6Nn5/+otjz4VTUrV/v9SdrAv9 b5U0tflzjezh2SVNJ2ultu6k1FVVSe3JliFc0xER0T/pL4j+62d/QUTEROkv iP5Lf0FENCv9BdF/6S+IiGalvyD6L/0FEdGs9BdE/6W/ICKalf6C6L/0F0RE s9JfEP2X/oKIaFb6C6L/0l8QEc1Kf0H0X/oLIqJZ6S+I/kt/QUQ0K/0F0X/p L4iIZqW/IPov/QUR0az0F0T/pb8gIpqV/oLov/QXRESz0l8Q/Zf+gohoVvoL ov/SXxARzUp/QfRf+gsiolnpL4iIiGib9BdERES0TfoLIiIi2ib9BREREW2T /oKIiIi2SX9BRERE26S/ICIiom3SXxAREdE2M7W/TJ06FRERES01Cv0FERER bTHX+wuA35ArMAn5AhPYlCv6C/0FzECuwCTkC0xgU67oL/SXrKevR9pbW6U1 ZEdP38hvF6KrvT18u/aOnpS3IVe20iddHR3SHvodt3d0yUBJuNLVEc5Ba2u7 XBnwIf3PIPmykL4r0tHRHs5WV8+AiUk7W35n0KZc0V/oL/bSJ4eKp8oTs8sl VYvoqN8hs/sdK125p3HYt5Oe01IyL/52M4orpD3J2wG5so0rUlv6gszof3x9 RpHsa+xKetv44/AL5VBr4ieI7xmMQL4soq9VyormJa7dmF0s1QmZSTdb/mdQ sSlX9Bf6i2309bRKXfUhKVsZeT+YV5a0v/S17nN/vwtXlkpFabH732uq24d8 u9C7gJTOdr7+xLxiKasolYUzIu8HRXsS/vYhV7bRI2WR3+/shcVSUlri/X6n zpO6mApzumJh5OuzZU1ZhZQUzXZvVx8TRv8z6EG+LKKn3u0PC4vXSknJSq9P PFEkp2P+/kk3W35nMIpNuaK/0F9so6dubfzfHCn6S12p028Wlp10v9ZRWxK5 T4V7n3Rvd6WlMvL3eIm4/+qvNEpR5D2ktt+f6OTKNrpkx5oSqWu/Eve1ioUz wr/L0vroL7hVVk59IvS1GbKnJXrbPtlX7NyueF+re2+/MxgL+bKIUH9Zs7JS PoyNVo/33lHdEf1iutnyP4NRbMoV/YX+Yh09LVJ9qFpqa/dL8YxUx4+6In9L 9+8VHbJmhjPP6vyNku7tvL93+v/NUh95f+j/dXKVHdSXzI58JrSE//tKyx7n fWPhzrg5t77o1925OP8zGAv5sp0+qQwfi54h+1qdCZh0s+V/Bj1syhX9hf5i L1ekYl6K/hL6e2eeHueZXSodcd/ok+qVM7x/z+neLkRj2cLI3+Hxz9Zzssw5 5lBaH/d1cpUd1JXMi/u9R3/f88r6rR+40ijPT3XyGI6MgQzGQr4spa9PrvR0 SP2eEmetVcx8brrZ8j2DMdiUK/pLzM//2/Minc0mXmYwQk/q/nKlPvzvONmx Ja+HdKV/u9B3Kxc6x5b7/3vvaYy8l9Bfso6exkp3jULjlejXkv++o58VbpZ8 z2A85MtGvDVW0Vy1xKx9STdbvmcwBptyRX+J/PxHXxd55gaRZbeJfHzN1MsN vjKy/lJ5+kr6t3PnYeclzLdG30sW9vtbyKb3AUikr/Udd41laZ3312vqz466 IX92DC2D8ZAvG+mTk/sqpLR0jRRFesyMokqJNoh0s+V7BmOwKVf0l8jPv2lC 6MUY4/jWHFMvN/jKAP2l/98hMdSXzfP+3aZ7uxC14XUQ86Su3w2vNFYw/5Jl XGzc43aXNYda477nfnbErIcM0/+zwkAGYyFftnPFXW8bnQNJN1u+ZzAGm3JF f4n8/B/9VmTeF5z+Mv1TIu3HTb3k4BsD9Bd3fX5x3Pxs9D7ePEq6t9O/V+LX QbjPtG9l+OtFO07Hfd2m9wHwaD0UOTdj6gypqOtI+H70s2N2SU2/b9RF1hpE 1h4YyGAs5Mt+vPeU+P4yWLb8z6CHTbmiv8T8/M27Qy/IdU6HeeEWjiNlPH2R /lKRZN/JPjm0MvK3TezGHe2HnL+rZ5RE1rOlezuRrrpSZ7535aGY5+mSssh+ dnta4zexs+l9AJQeqS6N7KnxVLEkqS4OkTWSsWtilNOVRf3WVPqfwVjIlz10 na6T+tb+JbRdSiPvHe4alHSz5XsGPWzKFf2l3/lH5b/yjiPtne33yw0+0Nde J2WlpVJRFtk/bsZCKS0rk9LSsri9O66crnT/jl5TsUcO7Slz5lKneufCDuV2 +rfMmsjX560sk32H9klJkfPeYPs+CqDndJR66ypnF8ualSuluLg4YpG8sHaf +zuOnjM/dXaRVO47JJXunmCxe3mYyKAH+bKH+hLnfUL3RSytqAi9d8XsjThj jcT+6ZNutvzOYBSbckV/6ddfPgq9Q83/otNf8j4pcvao3y85jJDo3Gky+x/b aa/bmrAf/MrK+oTHTPd20tUoa2bH325GUZm0cv0A64l9n0+WLW9OXumRQyXP 97vNQtl3OvFAj+8ZjEC+7EF/twtnJ+ZqdlGpJEYm3Wz5n0HFplzRX6Ym/r5O 7/WOI838TGgwG/x8yWG06euJXN9s8GvnpXU76ZOOdud2re1JNuaIYNP7AAyP K13taV87z98Mki8budLTFXrviF6/ceDfb7rZ8juDNuWK/pKkvyiVT3rHkbTL bHlE5NpVv152yAFseh8A+yBfYAKbckV/SdFflMNrRGb8jtdjlt0q0ptqUR9A PDa9D4B9kC8wgU25or8M0F+U8/Uii/4spsP8tcjV3pG+7JAD2PQ+APZBvsAE NuWK/jJIf1GuXhZZfZfXYVb9iHOrYVBseh8A+yBfYAKbckV/SaO/KNphlv+N 12FK/324LznkCDa9D4B9kC8wgU25or+k2V+UyxdFFn3N6zA77Pk9w+hj0/sA 2Af5AhPYlCv6yxD6i9L9ocjcz3kdpqpoqC855Ag2vQ+AfZAvMIFNuaK/DLG/ KO0nRPJ/1+kvT35C5MTGod0fcgKb3gfAPsgXmMCmXNFfhtFflPf3Odd51A7z 1PUiLQeG/hiQ1dj0PgD2Qb7ABDbliv4yzP6iHHvTmX/RDjPrBpELjYPfB3IG m94HwD7IF5jAplzRX0bQX5SDi7y1MIv+lL1hwMWm9wGwD/IFJrApV/SXEfYX Zcskr8O8cf/IHguyBpveB8A+yBeYwKZc0V986C/X+px9eaMdpnr5yB4PsgKb 3gfAPsgXmMCmXNFffOgvStcHIs/c4PQXXdfbWjPyxwSrsel9AOyDfIEJbMoV /cWn/qI0bvfW886/UeTKJX8eF6zEpvcBsA/yBSawKVf0Fx/7i7LrKe840sZf +Pe4YB02vQ+AfZAvMIFNuaK/+NxfPv5Y5MVvRjrMdc6cDOQkNr0PgH2QLzCB Tbmiv/jcX5QLDc6edtphCj4ncqXb38cHK7DpfQDsg3yBCWzKFf3FQH9RDhTG XKv6P/x/fMh4bHofAPsgX2ACm3JFfzHUX8LHkf7W6zANW/1/DshobHofAPsg X2ACm3JFfzHUX5SOUyIzIseR9JrVH/WYeR7ISGx6HwD7IF9gAptyRX8x2F+U 2ONI26aYex7IOGx6HwD7IF9gAptyRX8x3F8+viay+C+c/pL3SZH24+aeCzIK m94HwD7IF5jAplzRXwz3F6XlgHMutXaYFd82+1yQMdj0PgD2Qb7ABDbliv4y Cv1F2fCf3nGkw6vNPx8Ejk3vA2Af5AtMYFOu6C+j1F96O0RmRa6PNPv3RS53 mX9OCBSb3gfAPsgXmMCmXNFfRqm/KNXF3hzM1kdH5zkhMGx6HwD7IF9gApty RX8Zxf6ivHCLt5ZXz6+GrMWm9wGwD/IFJrApV/SXUe4v7+/z1vKu/cnoPS+M Oja9D4B9kC8wgU25or+Mcn9RXrvbO450+q3RfW4YNWx6HwD7IF9gAptyRX8J oL90NjvHj7S/FH1jdJ8bRg2b3gfAPsgXmMCmXNFfAugvSsVj3hxMzauj//xg HJveB8A+yBeYwKZc0V8C6i96/vQzkfOpC/5A5Orl0R8DGMWm9wGwD/IFJrAp V/SXgPqLcmiJNwfzdkEwYwBj2PQ+APZBvsAENuWK/hJgf7nWJ/LcjU5/yf9d 9rTLMmx6HwD7IF9gAptyRX8JsL8oR17z5mC2/ya4cYDv2PQ+APZBvsAENuWK /hJwf1EW/6XTX566XuTS2WDHAr4ReK4gqyFfYAKbckV/yYD+0lDhzcFsmhDs WMA3As8VZDXkC0xgU67oLxnQX5Tibzn9ZZpeV6Ap6NGAD2REriBrIV9gApty RX/JkP7ScsC7rkDJvwU9GvCBjMgVZC3kC0xgU67oLxnSX5TVdzn95clPiLQf D3o0MEIyJleQlZAvMIFNuaK/ZFB/aTvszcG8fk/Qo4ERkjG5gqyEfIEJbMoV /SWD+ovy2tjIWt5Qjzl7NOjRwAjIqFxB1kG+wAQ25Yr+kmH95dwx5/iRdpg1 /xT0aGAEZFSuIOsgX2ACm3JFf8mw/qKs+5k3B9NaE/RoYJhkXK4gqyBfYAKb ckV/ycD+cr7em4NZ9aOgRwPDJONyBVkF+QIT2JQr+ksG9hdl/b3eHMyH1UGP BoZBRuYKsgbyBSawKVf0lwztLxcaRaYxB2MzGZkryBrIF5jAplzRXzK0vyhv 3BezDua9oEcDQyRjcwVZAfkCE9iUK/pLBveXCw3eOpjVPw56NDBEMjZXkBWQ LzCBTbmiv2Rwf1H0WgLRORjd3w6sIaNzBdZDvsAENuWK/pLh/SX2XKS1Pwl6 NDAEMjpXYD3kC0xgU67oLxneX5TY/WDYk9caMj5XYDXkC0xgU67oLxb0F92T N3pdpNfuDno0kCYZnyuwGvIFJrApV/QXC/qLor3FvTb1iaBHA2lgRa7AWsgX mMCmXNFfLOkvZ494czDrfx70aCANrMgVWAv5AhPYlCv6iyX9RVl9l9NfdF+7 jqagRwODYE2uwErIF5jAplzRXyzqLx9URdbxhiz9j6BHA4NgTa7ASsgXmMCm XNFfLOovysrvO/0l75MiXS1BjwYGwKpcgXWQLzCBTbmiv1jWX97f583BlP0y 6NHAAFiVK7AO8gUmsClX9BfL+otS/C2nv0z/lMiltqBHAymwLldgFeQLTGBT rugvFvaXU5XeHMzWR4MeDaTAulyBVZAvMIFNuaK/WNhflGW3Of1lxvUiPReC Hg0kwcpcgTWQLzCBTbmiv1jaX+rLvTmYHRaOPwewMldgDeQLTGBTrugvlvYX ZfFfOP1l5mdELncFPRroh7W5AisgX2ACm3JFf7G4v9SVeHMwe/KDHg30w9pc gRWQLzCBTbmiv1jcXz7+WKTwq05/eeaG0C+vJ+gRQQzW5gqsgHyBCWzKFf3F 4v6i1LzqzcHsmx/0aCAGq3MFGQ/5AhPYlCv6i+X95VqfyPwvOv3l2c+K9F0J ekQQwepcQcZDvsAENuWK/mJ5f1Gql3lzMIcWBz0aiGB9riCjIV9gAptyRX/J gv7SF3pNC/7A6S9zPydy7WrQIwKx630A7IN8gQlsyhX9JQv6i3JwkTcHU708 6NGA2PU+APZBvsAENuWK/pIl/eXqZZHZv+/0l+duFPn4WtAjynmyIleQsZAv MIFNuaK/ZEl/Ud6e683B1K4KejQ5T9bkCjIS8gUmsClX9Jcs6i+6/8usG5z+ UvjHzv4wEBhZkyvISMgXmMCmXNFfsqi/KLoPb3QORvfnhcDIqlxBxkG+wAQ2 5Yr+kmX95Uq3cz0k7S+L/jzo0eQ0WZUryDjIF5jAplzRX7KsvyiV07w5mGNv Bj2anCXrcgUZBfkCE9iUK/pLFvaXyxdFnv6001/0GtUQCFmXK8goyBeYwKZc 0V+ysL8oO6Z6czDHNwQ9mpwkK3MFGQP5AhPYlCv6S5b2l96OmDmYrwc9mpwk K3MFGQP5AhPYlCv6S5b2F2X7b7w5mPqyoEeTc2RtriAjIF9gAptyRX/J4v7S c0Fkxu84/aXoG0GPJufI2lxBRkC+wAQ25Yr+ksX9Rdk2JWYOpjzo0eQUWZ0r CBzyBSawKVf0lyzvL7FzMKyDGVWyOlcQOOQLTGBTrugvWd5flNh1MOwHM2pk fa4gUMgXmMCmXNFfcqC/9HZ65yIt+jOuizRKZH2uIFDIF5jAplzRX3Kgvyg7 p3tzMEdeC3o0OUFO5AoCg3yBCWzKFf0lR/rL5S6R/N+NXJv6qyIfXwt6RFlP TuQKAoN8gQlsyhX9JUf6i7JnljcHU/Nq0KPJenImVxAI5AtMYFOu6C851F8+ +q3IMzc4/eW5G0Wu9QU9oqwmZ3IFgUC+wAQ25Yr+kkP9RXl7rjcHc2hJ0KPJ anIqVzDqkC8wgU25or/kWH+5elmk4A+c/vLsZ0O/8J6gR5S15FSuYNQhX2AC m3JFf8mx/qJUF3tzMLtnBj2arCXncgWjCvkCE9iUK/pLDvYXPfdIz0HS/jLz 084eveA7OZcrGFXIF5jAplzRX3KwvyjHS705mK2PBj2arCQncwWjBvkCE9iU K/pLjvYXZdltTn+Z/imRi2eCHk3WkbO5glGBfIEJbMoV/SWH+0vzHm8OZv29 QY8m68jZXMGoQL7ABDbliv6Sw/1FefXvIx3mOpEPq4MeTVaR07kC45AvMIFN uaK/5Hh/aT8hMu0TTod58fagR5NV5HSuwDjkC0xgU67oLzneX5SyX3rHkepK gh5N1pDzuQKjkC8wgU25or/QX8LnT+d/xukv874g0ncl6BFlBTmfKzAK+QIT 2JQr+gv9Jcy++d4czFvPBj2arIBcgUnIF5jAplzRX+gvYa5dFXnuy05/efrT Ir89F/SIrIdcgUnIF5jAplzRX+gvLic2xpxP/fOgR2M95ApMQr7ABDbliv5C f4njlR9451Pr/jAwbMgVmIR8gQlsyhX9hf4SR8cpZz9e7TCFf+IcV4JhQa7A JOQLTGBTrugv9JcEdk6PWcs7J+jRWAu5ApOQLzCBTbmiv9BfEtDzp+ff6PSX GdeLdLUEPSIrIVdgEvIFJrApV/QX+ktSGrZ6czBr/jHo0VgJuQKTkC8wgU25 or/QX1Ky9idehzn6etCjsQ5yBSYhX2ACm3JFf6G/pKS71duX95kbnH16IW3I FZiEfIEJbMoV/YX+MiDvrfTmYF6/J+jRWAW5ApOQLzCBTbmiv9BfBuWVO70O c7w06NFYA7kCk5AvMIFNuaK/0F8GpesD55oC2l9m/75Ib0fQI7ICcgUmIV9g AptyRX+hv6RF9XJvDkbX9cKgkCswCfkCE9iUK/oL/SVt3GsLhKxeFvRoMh5y BSYhX2ACm3JFf6G/pI1ek3r27zn95anrRdqPBz2ijIZcgUnIF5jAplzRX+gv Q6Khwrm2o3aYRX/m7NULSSFXYBLyBSawKVf0F/rLkNn6a+84Uvmvgh5NxkKu wCTkC0xgU67oL/SXIaPXpF78da/DHF4T9IgyEnIFJiFfYAKbckV/ob8MiwsN IjM/7a2Faa0JekQZB7kCk5AvMIFNuaK/0F+GTX25txZm7ue5vkA/yBWYhHyB CWzKFf2F/jIids/0jiOtuEPkWl/QI8oYyBWYhHyBCWzKFf2F/jJi1vyT12HK fhn0aDIGcgUmIV9gAptyRX+hv4yYj34rUvgnXofZ+0zQI8oIyBWYhHyBCWzK Ff2F/uILnadFnv1spMNc51y3OschV2AS8gUmsClX9Bf6i2+01XrXeZz2CZGG rUGPKFDIFZiEfIEJbMoV/YX+4itNO0XyPul0mBnXi7z/dtAjCgxyBSYhX2AC m3JFf6G/+M6R17zzqmf8Ts52GHIFJiFfYAKbckV/ob8YQa9PHdthTr8V9IhG HXIFJiFfYAKbckV/ob8Yo3p5TIe5PtRh9gY9olGFXIFJyBeYwKZc0V/oL0ap LvY6zPRPiRx7M+gRjRrkCkxCvsAENuWK/kJ/MU71CpEnP+F0GP3fg4uCHtGo QK7AJOQLTGBTrugv9JdR4cRG5zqP0T3uKh4LekTGIVdgEvIFJrApV/QX+suo 0XJAZNYNXodZfZfI5a6gR2UMcgUmIV9gAptyRX+hv4wqFxpE5t/odZjnvixy 9mjQozICuQKTkC8wgU25or/QX0ad3g6RlX/ndRg9rnR4TdCj8h1yBSYhX2AC m3JFf6G/BMLHH4tUPumdm6Su/3lWHU8iV2AS8gUmsClX9Bf6S6Cc2CQy8zNe hyn4nEjTrqBH5QvkCkxCvsAENuWK/kJ/CZyuFpEVd3gdRudkyn5p/VwMuQKT kC8wgU25or/QXzICPZ60f4Gzx120xzz7WZEja4Me2bAhV2AS8gUmsClX9Bf6 S0Zx7pjIsr+OmYsJ+dJ3Rc4eCXpkQ4ZcgUnIF5jAplzRX+gvGYleO2nW//I6 jO7b+8b9zrEmSyBXYBLyBSawKVf0F/pLxtJzQaT0371rD0SvobT11yKXzgY9 ukEhV2AS8gUmsClX9Bf6S8aj+9u9cmf8MSXtMbrGN4PnY8gVmIR8gQlsyhX9 hf5iDXpe9bLb4ntM3idFSv5N5IOqoEeXALkCk5AvMIFNuaK/0F+s41SlSPG3 4nuMqt3m8GqRvitBjzAMuQKTkC8wgU25or/QX6zl/X0ia/4xfn2Mmv8ZkbKH RFrfC3R45ApMQr7ABDbliv5Cf7GeztPOmt78zyTOySz6msjup0UuNI76sMgV mIR8gQlsyhX9hf6SNVy9LFLzqsiKb8dfVylq0V85XWaUrndNrsAk5AtMYFOu 6C/0l6yko0lk53SRwq8k9hh1/hdFyh8WObk51Ht6jQyBXIFJyBeYwKZc0V/o L1lPW63ItskiC25K3mX0XOyXviOyJ1/kzH6Ra32+PC25ApOQLzCBTbmiv9Bf cor2EyJ7n3HOVeq/7jfqjOtFXv6eM3/TuF3kyqVhPRW5ApOQLzCBTbmiv9Bf cpbLF0WOvu7s8Tv388m7TPTaBboOWK9fcGixs9dMGudokyswCfkCE9iUK/oL /QUi6HlM1StE1t/rrI9J1WfUaZFOU/KvIm/NEWnYKtL9YdzDkSswCfkCE9iU K/oL/QVS8NtzIsfecM7NfvFvRZ7+9MCdJrr3jB6bevMBKZ/6HZETm0TOn/Rt TQ1AFN63wAQ25Yr+Qn+BNPn4Y5Fzx0TeWymyZZJznnbsNbIHm6957kaRlX8n smm8yNtzQyEvddYWX+kO+icDC+F9C0xgU67oL/QXGCF63EiPH71dIPLGfSIv 3CIyM8leegPO2/yuyJI/F1n1I2fv4LeeFTm8RuT0W85xrWtXg/4pIcPgfQtM YFOu6C/0FzDDrKkTnWtOVhWJbH3U6SaFfyLy1PVD6zZhrxN55vdEFoU6zsrv h49PyfbfiBwoFKkrcXqO7jH80W+D/rFhlOB9C0xgU67oL/QXMMOAubrUJvL+ 285+wbonsPYR3YNG96gZVr+JUe8/93POfsOv/MBZj6z9Sc8br17uHLfS59Zz yXsuiHx8bfReFPAN3rfABDbliv5CfwEzjChX2itaa5z1v4eWOHMtev627kuz 6E9FnrlBkl4jYVhe56w71nOutPPoc7x2t8jGB0PP+7hzLKt6mTPPc2qHyIfV Ih2n6D4Bw/sWmMCmXNFf6C9gBuO50nOauj4Q+eAdp+dUvyiye6ZI+a9EXr9H ZMUdTtd59rMieZ/0qesk6T66358+h16rQdf+vPRdkbU/ceaUNv+3SOWTztog PY6ma3rqy0Sa9zjXB9djXnqel6FrOGQzvG+BCWzKFf2F/gJmyLhcXe4K9YUG kTMHnb7z7kvOeVA6x7LxF6HO8c9O51n8lyLzvhBZg+zXHE8a6j6Beo66diE9 jqbjWP43znofHZvOP+na5orHRHbNENk3z+lEegzu2JsiDRXOcTHtRXrOunY7 3aMwS9c+Z1y+ICuwKVf0F/oLmCErcqXnjPd2OseL9LiRHj/S40g616NzKjum OvM9usZm9V0ixd8K9Y6vO+eKz/69ka/l8ctpkW6kY9JuVvjHzjhfvN05XqZj X/czZ85IO5Lu+aPzRrpmaP+C0M/7gnPevO7XrPNHpypDXWmf05XajzvniF06 65wLP0p9KSvyBRmHTbmiv9BfwAzkKoIe5+rtcD7jzx5x5khObnG6gK4n3v+c s4ZZ51U2TXC60Jp/cnrFsr92zrmaf6MzL6MdJNV1qzJJHaN2N11XpOMOd6av OufIL7vV6Xm6F5D2Jl1rpD/zhv90umDF/zi9UF8T7Yh6jlm0Px15zVl/HXr9 lk39N6dDaa88e9SZW7t4xjkep3NtaVzjAqA/Nr1v0V/oL2AGcmUQ/WzW9cMX 33f2FNQ1QHquen15pBetEDm4yLm2g16HUzuBzqvo/IquDdJz2XWdjvYjPU6l a3f0Glg6P6MdaZqp9UJBzD190lmjpHsMzf5959w0nR/Tc/kX/4XTp/Q4nb4e r9wZ6lQ/dl6j9T93rg2mnXLzRKdfaq/SY3d7Z4vsm++8xjoX9+7LztqmuvXO sUk9lqe/D+1Xer0w3adR56l0Hq+rxZmr0nm9j3qy9vierdj0vkV/ob+AGciV 5ei5VXrtcZ3P0Lkj/fz98F3nM1mPo+nntHYlnRfR+RE9zqSf69qXtk1x1i7r uiLd01D7gM616JyLzr3oNSa0O+icjM7NzPnfzl7OM34nu7pT2l7nrDHXOStd d6Xn1+lrop1SXw/9XkHov4u+4bx2+hqG+9YPnNdV10fp8T99rUv/w9njuvxh Z98AXd9VOc2Zzwr3rnnOnFbVUmf+T39/4e5VEvrg2SBycrNz3fnm3ZH+9Y5z LuC5OpHz9aEO1uR1MO3Qeszw6uWsORfPpvct+gv9BcxArmDY6LojPSdL5yi6 W0P9qdnZr0fnMVoOhc/fWj71X5wOpZ+7tatCn8XFzmey9ig9513nSXY84cw9 6We5dimdf1r3L875YToHpcfoon1Kz51f9GciC77idSrtETM/7fSKaRYctwvc 65y+pa+XzuOF57x+z+ti4XmvrzjnBWp/feFm57XX66vp2nntt6/+vTMHpp0s Og+mv7cN/+XMhUV72bbJzu9X+7Ked6jdTNfj6+//0GKnU2smwv1stdO1dZ27 ZkaP32pH0zky3ftS1/TrPFmopz039RdO1vTcQO3tug4+2tX0uKTOmen8Zwb0 NfoL/QXMQK7AJIHkS3uVfnbpnMNvzzufbTofEe5Wh53PwDP7nbmLxm3OWme9 BuqRtSI1rzjzHbqfkX7G6tqePfnO56/ub6RrpnXOSudOdA5F1wStHet89utx L107pHs86rGu2L6lc1jaC/S4mK41CneuzzjHzML7BoziOXQ553VOr53+Kef1 nhnpbLpXuP4uCj7ndGG3t33NWc+ma+d1rwX9PervU68lp/Npeq5huL/d5XRs XRumfTva4TQXui+VHgsOZYX+Qn8BM5ArMAn5GgI6V6DHeLR36TyC7n+ta511 PY52L11XrscGWw448xFNO501POH+9aYzd6FzXLrOR9f7aAfTY1A636HzHnps So9R6bEqne/S9UL6GRud89LPXz2+pXMqOrein9E616JzLtE+pnMxOiejczP6 WR/uZJ/3+pseX9R+EO1lNqxjNyz9hf4CZiBXYBLyBWF0/bMea9Rupuf56Xot nRfTYz96DCjcz4465/rrWh6dHzu91+loOkem631ObHTmyUI9bc3UH0fWdBU7 x6D0WJR2NV03pMcldc5s11PO/gI6b6brurc84hzX0uNbepxL133rWqSSf3WO gbm97YfOmiU9bqlzLnrcTNfQ61yMzqfpHJvO0YTn1L7s7Amu82rRDqdza3pO 39POMU36C/0FzECuwCTkC0xgU67oL/QXMAO5ApOQLzCBTbmiv9BfwAzkCkxC vsAENuWK/kJ/ATOQKzAJ+QIT2JQr+gv9BcxArsAk5AtMYFOu6C/0FzADuQKT kC8wgU25or9MRUREREulvyAiIqJt5mp/AQAAAPuhvwAAAIBt0F8AAADANugv AAAAYBu51l8QERERU0l/QURERNukvyAiIqJt0l8QERHRNukviIiIaJv0F0RE RLRN+gsiIiLaJv0FERERbZP+goiIiLZJf0FERETbpL8gIiKibdJfEBER0Tbp L4iIiGib9BdERES0TfoLIiIi2ib9BREREW2T/oKIiIi2SX9BRERE26S/ICLa 47lz52Tjxo1SVFQkCxcuRMw4NZuaUc2qyX8L9BdERDs8e/YsvQWtUbOqmTX1 74H+gohoh/o3rX4ubN26VXp6etJ6zwYYbTSbmlHNqmbW1L8H+gsioh1G517o LpDpaEY1q0uXLjX274H+gohoh9F5+Y6ODmlra5PW1lbEjFOzqRmN5tXUvwf6 CyKiHUY/Dz788EPEjJf+goiIKv0FbZL+goiIKv0FbZL+goiIKv0FbZL+goiI Kv0FbZL+goiIKv0FbZL+goiIKv0FbZL+goiIavTz4IMPPkDMeOkviIio0l/Q JukviIio0l/QJukviIio0l/QJukviIio0l8c694qlYIpD8pd3/2ufFe96y65 f9J0eXnzQTmdAeNDR/oLIiKq9JcaeX7cX8mYMWNS+41HpaL+w4T7NlZXyPKl y6X0rWMZ8HPkhvQXRERUo58HLS0tOWizvDLuc25P+cb9ebJu216pqamRA3vL pHDyWK/D3PiI7G+Ov//mvD8Pf+8PH9uYAT9Lbkh/QURENZf7y+m3Frr95BfL 3k56m8a3XpA/it7m5Xfjvrd95g/CX//W01sC/1lyRfoLIiKqudxf6jc/FTk+ NF1ODHC7Vx4YEz/P0nxCjp6okVfG/5/w17/wYLHUnDganrc50Zz8MRpqDkj5 unWyLmRpebnsPVCT8vmaQ49VVXNUmt3/fke2he6zbec2KS/fJlUnmgN/7YKS /oKIiGpO95ft6fWXcJ+oqpKjDU5viB43SuYfPtZvLqb5HSkc/63kt7/jESmr Od3v+U5I/i36/VulrKFBSqb9NOl9f/Fcbs750F8QEVHN5f7SuP0Zrw8s3pH2 /WpLF8nEyRPlu26f+LFMnjZZJk6cKIvLa73bNlTKhJjOcce4KbJgyRKZOTFm Xc2Y78rqqtgOc0IKvuP0l3Hjvh25za3y8MxCWbLgSbnrJu/xvvV07q27ob8g IqIa/Tw4c+ZMDvquTLklZl7j5nHy3Opy2f/e8bTuv7Mguv5le9Lvb5jyf93+ sajiaNz3mt55Q34Wfd5vz5Xj7veORfqL45f+YZYcaop93GOycsrfut9fuL85 A17H0ZP+goiIam73l5ANu2XKd5Ic27npVrlvcr6sLtsrDSnuuy26fnfq5sTv N25x+8l/r6pNev/mA89Hnu+PZJnbQ2L7ywOyuynZcx+W/Mhtvv7w+uBfw1GU /oKIiGrO95ewTbK/YpXMnHyf3HJTki4z5seyrPJEwv0G6i8ntkXW1oyZIPtS Pm+DFP4o2nGqI1/z+svY53alHHPNml9G1u7kyZHAX7/Rk/6CiIgq/SXR4+/t l7J1y2TSj74Y12PmVzbG3S6t/vLtWTHHhhLdFjkG9VfuY3j9ZUZFYmeK2lK1 wjmv++uz6C8+Sn9BRLTD6OfB+++/j0l8b9M8uTXaYX5YKCdjvlfxdLS/lCfc 73jFdOc+Y5fG3ae/iY9xTOZE+ssTm46kHlvDZrkrMje05eSZwF+n0ZL+goiI Kv1lcN95+T+cLvL1fDkc8/W0+kvoPscGeOyB+stTW0+kvF/T/sjamW8P/PjZ Jv0FERHV3O0vx2RBZO3JUxtT9wT1yLqHknaRgfpLQ+WsyHGnnw0wP1It0yLn P/36jaPuuKL95VtTN6Qc0/4X/81d/3J4gLFnm/QXRERUc7e/nJIX749c++gf Cgacwyh98s7k8y8z/yZlf3n//bdlfOS4009n70z6uEdKf+Oef7TiUFPk615/ 0b1hXns3Sfc5s9N97B/O2JYBr+XoSX9BREQ1d/uLzqs84q7NvXFsvmx5tyH+ Nier5eUn/9m9zb0v7I2/f1mkf3xpgmw/ltgzKhf8xL3vf80vj1sHs3/dU+51 lcb8YmXM/WL7iz72z+TVfcfd7586vF0mu9+/Vd44nDtrX1T6CyIiqtHPg9On T+ekZTO/H3eO0ZfvuEd+8fDD8ou7fxh/DvXYBVLX776nDi2Ju83NN98svyra G3ObOll83+dj9pS5Re644w65I3bPvBsnya7603H3mXNH5HrY/3CH99h6vzvu iHu+X726P/DXb7SlvyAioprr/UXd98bzcs/NX0p+jaIvf0dmrNgqjSnuu+fV p+Q7MXvG/OUT5f1u0yhl83/lzbXEeO/TL0ltwmN6/eWZ7cdk34pHE8f0pZ9J 0ZbDgb9uQUh/QURElf7iWVd7UHZv3yJbtjjuPlibsrf0t76+XuobGwe4Tb3U 1tZKXV2dVB+slrrGVLfz+stvNh53vtZYHxpbrVRXH5SD1emPKRulvyAiokp/ yTRj+sum3JxjGUj6CyIiqvSXTJP+MpD0F0REVKOfB83NzZgRHpGnb470lw3H MmA8mSX9BRERVfpL5tlwtEaqqmqkIQPGkmnSXxARUaW/oE3SXxARUaW/oE3S XxARUaW/oE3SXxARUaW/oE3SXxARUY1+HjQ1NSFmvPQXRERU6S9ok/QXRERU 6S9ok/QXRERU6S9ok/QXRERU6S9ok/QXRERU6S9ok/QXRERU6S9ok/QXRERU i4qKwp8H+h586tQpxIxVM6pZXbp0qbF/D/QXREQ73LhxY/gzYf369XQYzFg1 m5pRzapm1tS/B/oLIqIdnjt3zp2DQcx0NauaWVP/HugviIj2ePbs2fDftEuW LAn88wkxmZpNzahm1eS/BfoLIiIi2ib9BREREW2T/oKIiIi2SX9BRERE26S/ ICIiom3SXxAREdE26S+IiIhom/QXREREtE36CyIiItom/QURERFtk/6CiIiI tkl/QURERNukvyAiIqJtDre/XL58OfCxIyIiYu6pHWSo/aWhoSF8+0uXLgU+ fkRERMw9tYNoFzl58mT4v9PhzJkz4fu0t7cHPn5ERETMPbWDaBc5ffq0XL16 Na3+0tHREb5Pc3Nz4ONHRETE3FM7SHQupa+vL63+orerr68P3+/ixYuB/wyI iIiYO2r30A6iXaS3t1c+/vjjtPqLEp230bUwet+gfxZERETMfrVzRNfhnj17 Nu1jR1GuXbsmTU1N4fvr/9JhEBER0aTaNaLd49SpU+FzkIYy9xJFH0vX/Ubn YTiWhIiIiCbUjhGdd9Hu0dPTE55LGS76mNEuFF3Tq8eW9Lwm9odBRETE4agd QruEdoroWt3ovIt2l3TX7A6E9p9z5865a3oRERER/VQ7hq530V4zknmXZOga Gu1Jei529LgSIiIi4nDULqGdQruFrn3RnjGc9S7poo+t8zr6PEHPPyEiIqK9 apfQTmGytwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA QG7z/wFt4Sws "], {{0, 752}, {560, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[ "Byte", ColorSpace -> "RGB", Interleaving -> True, Magnification -> 0.5], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Magnification[0.5], ImageSizeRaw->{560, 752}, PlotRange->{{0, 560}, {0, 752}}]\)

Rediga las probabilidades de puntos a lo largo del eje x.

In[6]:=
Click for copyable input
Show[Table[ Plot[trained[{x, 0}, {"Probability", col}], {x, -5, 5}, PlotStyle -> col], {col, {Blue, Green, Red}}], PlotRange -> All]
Out[6]=

Represente gráficamente las probabilidades de cada clase como los canales rojo, verde y azul de una imagen.

In[7]:=
Click for copyable input
row = Range[-4, 4, 0.05]; coords = Tuples[row, 2]; preds = Partition[trained[coords, None], Length[row]]; Image[Reverse@Transpose@preds]
Out[7]=

Represente gráficamente la densidad de probabilidad como una función de posición para cada clase por separado.

In[8]:=
Click for copyable input
GraphicsRow@ Table[ContourPlot[ trained[{x, y}, {"Probability", col}], {x, -5, 5}, {y, -5, 5}, ColorFunction -> (Blend[{White, Darker[col]}, #] &), PlotRange -> All, ContourStyle -> None], {col, {Red, Green, Blue}}]
Out[8]=

Represente gráficamente la entropía de la distribución posterior como una función de posición para visualizar donde la red es más incierta.

In[9]:=
Click for copyable input
row = Range[-5, 5, 0.05]; coords = Tuples[row, 2]; entropy = Partition[trained[coords, "Entropy"], Length[row]]; Image[Reverse@Transpose@entropy]
Out[9]=

Ejemplos relacionados

de en fr ja ko pt-br ru zh