Klassifizierung von Objekten
Trainieren Sie unter der Verwendung CIFAR-10-Datenbank beschrifteter Bilder ein Convolutional Neural Network zur Vorhersage der Klasse jedes Objekts.
Erstellen Sie Trainingsdaten.
obj = ResourceObject["CIFAR-10"];
trainingData = ResourceData[obj, "TrainingData"];
RandomSample[trainingData, 5]
Extrahieren Sie die einzelnen Klassen.
classes = Union@Values[trainingData]
Erzeugen Sie ein Convolutional Neural Network, das die Klasse eines gegebenen Bildes vorhersagt.
lenet = NetChain[
{ConvolutionLayer[20, 5], Ramp, PoolingLayer[2, 2],
ConvolutionLayer[50, 5], Ramp, PoolingLayer[2, 2], FlattenLayer[],
500, Ramp, 10, SoftmaxLayer[]},
"Output" -> NetDecoder[{"Class", classes}],
"Input" -> NetEncoder[{"Image", {32, 32}}]
]
Trainieren Sie das Netz mit den Trainingsdaten.
trained = NetTrain[lenet, trainingData, MaxTrainingRounds -> 4]
Erstellen Sie Vorhersagen für die wahrscheinlichsten Klassen einer Gruppe von Bildern.
trained[{\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJylkglQU1kWhruma1qrHRQhiLIIKCKyiQKKSlS2gIiEAMoi+2ID4sYiChbt
LqiIYqugKKDYYiubrIEIhMgWQkKWlxVM2EkAQUhIINtcwJpyqnqmempO/e/k
5VXd7/z3v9cg/IzXib/98MMPCStB8wpLto+PD7vorQr+HD2dEPPL6ajIQ6cT
o36JircN/xF81P/2LL53f3hDrCym1JVAjRWc1rr+rsaRHtwYtX2cQfjaRxH1
0+eH2bLRPtlY3wK/b2GcKxXwZAKelM9dGO0T8znicY6EzxYO0ma5lJle8iSz
exzCj0NdfCB61xitE/BJVW9p6FJ64wfAHyA0jZJxfFoH4H9hk2a5NPEAQzrE
ko/1ycY/Syd5oMsES++CXsnEosRjLNEgJOqnCT9Tp9mkKRYRaHJJANJd8Tvg
Q/Vly3zgf5jUAvzzgQ0GYYrTA0bM9zMkg8xF/xPchYk+6eSiFgB5nCPks4TD
kHCAKuLRRFzabB8FjJjm9Ez3koGAQ+C/p/od1FC+zOd2Yga7m0fIrWBrAnrX
BLMbpDT3mSbk0oSDDNEoa07AlEwwJZMsIKGA+XUYmhmkAb6QRwX+gWZ6e0BQ
M5+pYCEYAcxTat8zMBX0pj/hgy1Mc8iAL+IBk/TZYYZwDBKNQ3PjdNBn+PTp
IdrXAeosjzLL/cYHW5gFHeyFSwNTSDXvyIvhV9KbKpf5Q0Qsn9I6AY4Awgug
rik2eaGfPsvpGV0c2v6FQxJyqfMjDPEXtmiSLZngzI2xxSPs2SHmFI8GyIA5
xaNM91NnBugiLkRCl5IbyqGmKga2GvB5+I+AL6C2TUEdE3T8OJP49TPEp3RQ
MRVtZUUNr3IbCp5/Kv6dWFXKJTRPcyl8JoHV3jhEIUzzGHOjbNkwSzrKEk+w
RXzWzDBTNMAg15dRP36gN1ezcLW9bejl+ymgtU/QO/mMrjFWD6sL115b0kto
EbB76K2YyhfPinN/+/3B7aLzSUWXUmM9PfzhB1KDo16l3/lYlI8vK+5Bl9Db
agQsomSYNTfCAuYBn4Gt4bSil8MZJX8SQB0COn6I0knBYTBlf0B43GgvJOAx
x3rB0qqMtJT7F5MKw2Pi9znbqOvu0dh0UMcMaWl/3AkV4+X/a2xs3s2rdY+y
hpurpSN0CqaC1ljJwALz9cA84AP/XyD8NIOEeV1Q+vQJq6ONB1HARYDwHa3o
2jdPck4HBEYedHyIOn4Ipr/tJ5j1av3tK3VM/2FoDDOzM95z+cS5gouXX4QG
UbOuiTvrgHnAZ7bU9raiQfjg8vNp7V+ZRHZD3YPExMKb6YQaAP2jMPu3m8kX
z4ZHBrt7um+xOLPL4TrymPkKFXMVTbNVWmardIxX6liobjpmBX8UEvlHWFR3
ctLU/Wvsq2ep6AoIU0kH/tvr+zsx/WBKYzWvurz2xo17ISF3gkKS3D3CXQ9H
unuGuyFDXI5429ghtY3yAmOSD3sizCx3amy0VtNx0TONsoE/DQ1rTjnPSk0a
TDo9khTXG+TViXKk1lQw0JVsbB21srg1L7s561Zr+jVS+k367XTanVuEq5fq
zsYWRv3yOCg0yz840R4RtMXk6n6XNxEng4xNYw44JTi5ZaGOVkXHdp9P+Jya
yI2JgFBuJMfdXfZWBDcEK9iXWFfOwHxoz3tUEhP9ISIMHRv1KTG2J+UsMy2p
99algd9uTTzLVrzIF+bmDN+73ZWSgA4P46SkfQqLyndwIiaeYyaeYp8Mo/gf
xiHs6nftarSwwJqZEuG2nSjPN84unJMnSA1lFQ+uP3B1emXv2IDyavX2xPsh
SSFe9BMBQ+fj+DcvDd+9MpR+cSQjWXA7afxW/OyV5LnzSQMBASRHR+IBW6yZ
AXrLOvQWVbSJbpOVDWm/fR/Ksz887O4eZxcV2BtXx5YXjzI8EJnbthbZ2ryz
tUFbWmJ3WLY72EFHkYMBfpyj3t2+SFqc/8DZkMGwoxwPRCfcGmu2tdlAD6On
g9HXxZkY4Xdtpzja0lEurOO+vSGBnOgIbMjxZCdUNAJ1125fQWjwXVOTx/q6
eZu0ivS0S3UN3hsZF+zY/srGutrEAm+zi+PpxnRzwlntfL9x88t1uu82alXp
bcBuMyTstSa7ODJRSLbfUdZxP3qoPyXcnxIWSDl54iXSrSDtavOr9zk+vg/h
9llr1uWugxXBVpeuVs1X08y0MH/o45HtYF9pu4/pimixNH6vqZmhDvP/WcV9
jdpjk609Lg60I65UXyQ5AEUP9mWGB9LDghgRgcyIAFZEMOtkTMFhl6qc+8yG
pqrL1zL32j1S0y6EaZWsVa9UUStar5tjb/fp6gV8dGSbvUOVnt5bDdV8A/1j
sA27VXVMVTRDNm5u8zxC90YR/bwpQT6MED9m0DFGgA/T14OFcmJ4IaiRQcXB
gXwykfEJh6+rTt60OX21+nMNzZcwWKn6+hqdzTU7rZuOuDbs31NruLnBcFOb
7c5cC/MkV2TuxdvhDkiPdbpoF3uurzd0zLvHw6HTeW+rgy3uoG2rE7zjkAPR
5wguIuxJUCi+urq5soJMaE8xNkldsfK55trMDWo3VNfkq2uU6mpXm29tg+/G
W23H7zZvhG/PtLV5cC6BjSMU3roXarSt3gVOR7pi4fvaD1h3udh1HkFg3d0+
uLrl2dk/sXO4BkcE7rTLvnzldW5Ofy8z29/niqZmgbr6fc0N8StW3VNb+1Jf
87n2WrSpIc7UkGxv1XxoT7aX56OrvxIxjQ9S0xL3H6xwgXciD2EcnRvd3d4h
XDN27I7VNfGF6Xlr6h833Bm8y9kH7nrh1BlMdbVUIn57Ky3Pw+OBruET2JZc
daOX2ltKjU0K9bTLTQxxO8w69+8sO2jVcDdzhAPNDHDLnz5LRHg8Qzg+PWif
YGAcDNM+tEbLdYORl8X+OA/fh8mpdYXve5rxDBL1M5sjEc0pFcrCyyk50dGp
cMc4XaMYNa2EdTrXdA0eGhm9tTRH77Bs2mOdY7G1JCOzC4vhEdp60OgAK8cA
LX3U+o0eeubRcMT1qJOv7z1sqa7lMWjCLwKpRCqXyRWKBaVSqQC/csWjxIQL
vn6hdgcRBoa716jvXaXq8LOqh4pG8FqdOM3NiXrbgtfrn/P0y7yQWvu8oOD6
bXcT21PO7o8vpKFfl7DxxOnRMalIpJRKlIp5hUIqlwMkaAsKxSIc+H+blXn3
VNxZ9yMBVntd9U3sYBttVDS3/7zeeIXW1p82GP19veGPGuZrNpzy9E8Lj4tD
+tU9fyVg9cqFQqVSrlyqRSZ4FArlnxUDW9dRXlyfn/P2TkZ2fOKlwODTSM8o
V/dIN6/TPkGXwk9ejo1PiTlzIyn14bWM1tqPilmxUiZXyqRS2YJMLlP+B+y/
appHHud0j7MJYxBhmITv62hhtGCgT82srq4hBn1qaFA0OSmc+iqcmpkXSZQy
BRBIGASxAAL+7+ilkk4PiKd4kq8D89PD8plx5dyUUjylnJ9VysRK+VKq8nnF
Uqzf+lIuMrAQnOBf4CslX2TzkzL5tEIGjkmsWBArpBK5fF4mX5ArpIpF0r9h
5EtS/EX44gKxXCaSyefAoS8f1XKk8u9Q39f/QF4ucGXFQtm8SCZbkH9Xsu/0
/9Q/Aart9CQ=
"], {{0, 32}, {32, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\), \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJyNVnlUU2cW78z8MdPO/GGt59RacStgoGxhk1VJ2JKwE0A22QwJARJCWEKA
rGYhCUnIRthRFnGhjtqKom2ncqptrZ6q7VRrxVotQhGRVZK3ZV6IaJ1Oz5l7
vrfkvZvfu/d+9/t+v+1FFanUP7/22mtVf0NPqYUcHJtdyCWvQ3+kM6voNGYx
hcisLqYVs4OK/oI+3Pb8sN/bbDYIgmAYhhwGQhAAgSA6VgDrMmC1WK0WAARA
ED3Qm2cAuLL62u4JOhwhAB32v/3GYBj1gGx/ZIgNdYCBhYXZCcCyACMQgNhA
xIbA9oG+XfOCYBts9109v3zxX2AIsnpCIAQBIRgNCwatS/OTX4+dONwh+f76
pyD49BmwaLEuw5YVBABsqz5rSTiGvQAwYkEQ6yoMGooD9hWzlwcAEMiyvPDw
s9EOcRWJmubRWJF09dLhq199cPXz4999efr+rcuTP98CLYs2NCcYRFFskA22
2mAAhOFFGFlCEOCPEoFBEAGeLc6Mnz+pbBbg64pd9ie8VZzipOXHaPgEvYCk
5kQqOPENjJTTRzsWZn6yLD94dP/bmUf3wKUF2LIIQk9A6Cmaxe/wV9OBITSk
pemfD7fxKgvcTQd8TSJvWYVrS52XscHb1Oijrd4pY2xtYnszcjzSojFKXv5w
X61amNPUkHvp3MEfbly4du3swuIvCLKC2CfpZVUQtHgraI5zloXvx07ragoD
qambTIKAdrGvhLmZV7JOVPqmjLkJBZcw3xOx3IVsLLccm5fwbmm6WyMtvITs
KWeTDKJMLjP+X6ODMLRssT5Dp3Ct/mgZAWQF+unOxyMnGTrZbikHqxeF6XjB
zTVeItomKWOjoWGngLpZUurcVPl+XTGmvtTDLCcqqvHFJGcKcUdG2DucfT4q
Nr48y5tTmvzjd1eslkW0k9eyQLt0eXb6+2NDTJMxSC5x6evCD/cltTaFi8td
FAxnXS3mkCzYxPXTc3x0HF8dJ0TLwen5CRpOQj5ua0WKe22WT32eV0OBFyvL
Yy/eWcAqvH3jCgJb1/DR6+PPLxq72pOHBsndnaThIXKPOUKvwBrFnoZ6TBPL
Scd17RR7q2tcG/dv4WY75+Pezo7aws71K47dUUl252R58wp8ypK2lia7FpPc
4wN28Cqpj399+GIWlubvosEP9GQZVOnDA8xeM1kt9WnTerapMAaxS3P9di3f
ubvZu1sdoG0IYKVsS/V/s6owWMTeIykLrM312Bf5rrQsvDbXL9H/bZLHhngf
p93Y9z4Y7kcXtQP/0f3rxwcYH/RXsPaHqUVxndo4vdRPJ3HVN2H62vH9bbEK
vmdfO+70MNmsiqUQnWjxLkd66a36RDU/SMkNL0raruelNdJIezCbfdb/NcFn
S2KUT3V96dT0pAN/9td77Xoahx5bX+6vlwa0iLDdquAeZWBbc8iFEcbF841m
XWqHKX5oKL3NENdI9W+k7jKb0kfOl547md9rTKHsdaFl+qdFentu3OC1/vXc
SO/8LFw+Pf3e/XH7mrKBKwj48cdn88ghwkoPDd+7Uxk6ZIoZNEY2Cz1M+tjP
PpOdPy88c6p0oDfZ2BRVmevWWBJaV4FrkiV8eLRUWR+djt+UQ8JEYN+J9N2Y
FonJIPrGRvpVcRhTU5Or3WNZsQFPZh53qmnSajeDJOBoO+l4Z1ybYpde7mc2
xl0cU164IPvkXH2vOUUl3FOQtEXAxKvEOZXlOC4rhEJ2oad5leUEE8O2dTbT
GIW4yDBMUjy+p6dzeXl5delaQOTJ5L3L3bJkg9C3z4g/0hF7tJPQ0RzSZcCN
nKYdOVzG4xIPtlNEDbvrawLpeW48Nk6nKdJoCorz3POTnalpPvsz/BmUaI2Y
lh4flEgIk4oFd+7cgeHn6+vRxBdnj1Xran149K0asb+Ui1HyPVoVYX0dxMFD
iWpFRDnNs1lC4FQFKWTEenZgBd1PKCK3tpdTCnzZtAh+RVJxzu46dvb+3MS9
qQSl/MCN6zcAAFrbg4BLY+ZufZSR75kX//cGlqdK5CviuAmrsW06gka5S68K
0CtCukzxrboMuZgk5+NkgiiVMqutk13NTpY2FDAK4tMTQjMzCPSS/d1d7XfH
71qtALpZP4/eMnfmFM+kw+rlAdI6PKccq5aE8qq9ucxAQS2urSVBI/RuUwVr
m3B1leFcRphJRpTUhUj48Xl5YcFBLrsD3cJ83NISiEIh/9OxsenZJxaUzmAA
drAAujUsTp88wdG2eCiaAge7SlukiXJ+CJeFldfHkQnvc8qi9EKcUbKHuu+9
nFRXIQuv5UWwCrZX03fFRu184/U/OW/ZmBQb0240P5yYWkY5FYKs9l3eCqNE
s7pLr1imRs4JDa3hLbpdxhZCV2titznWqCLIuYkR2B1Rgc5SLqG+0o9Jc2dQ
/RWiBK0ssqHSq5LimxTp6rxlHQ4XUM1hfHP9i4cPbn9z7fLSwjwEokyG8ibk
wLeCj09/JJbIggcHSO2mmA4zqctM6GlNryuL9nd2cn57HaskUiogtKjI7TqK
WZuvkUc3VnlIOKGUNExM0Oa8TOI/T/SfPXPw+ICiv0f1zdefAxarnaYdHIn2
Pzx/brRFqYxtNUS1GxMHenMPdWb1d1Ep2eHbNqx3Wr8uNgIjEWQe6W9UiSlN
Ddnm5jR5o3+nNvpAFTYdtyF5j5eQVSbn5rc2FyrltIPdmke/PIDslPKCfq1X
vjpmNuV3mdNUB2K6jfkHO2hyUQ4R7xni67cnKCQmwp9ZmtZYV0gvTOHQMxtZ
MQp++GBHglbgnxe7juTzbug2p6IErE5KFgsyteq6r69cAtH2gZEXHxj/8Uut
iqKWJbNLAqk5vhW0qESib1jQ+9TCIrPB3GE2tpnUrUZlX5f5/KljpuYqQS3B
0Jyok+Kr8nfuDdse7PRWHgnLr46r52QoZNU3r19D64MqoBccvDw/2dPGE9bF
MQtD/V3/kRSNZdDz6CWU4eHh2dmn8/Pzc3NP5+ZnFxfmAav13t1vDVpuRRmh
lhVVVxqeH+ceuO2NTGJQUW5sXlYUh00f+fDMs2UL9Jv4Ueodv3W5SZgvqklN
iNiJD8KcONZ3+/a/n87NQgjkKCQ6WWhDW9HegJBbt27qWqTM8sxyKpFFiYrb
7UzEB6WRk1Uy/sipkyeGT01MTK3JqucEBgLLIx8dPdgpVEoKCnKCDRrWzasj
K89+RdUgaBdPCLpeUMoGV1UUAACTkxNjY5+0mtRcDiM3K7mwYJ/ZbP7p3rjV
YnkyM7u0tPxcljjCX52MmZnHH314qN1cIxbsNaipcl7e0KDm4cQPsF1E2b3Q
MOw5w3aphl5RRTozM3Pp0uW+vr7R0dHp6WmHjkXW7KWsQiFAu8p7cP/W2TO9
TTKqmJ/dUE0uKozsH9IuLj1+jvwbc8hh9MZqtc7NzaFbMWhPDnbo5BdfeUVi
oR+CgOmp8YFDyuyMYAaNJBYXagw1N7+97FCn/1PyOer8O7RX7IWototw69LN
6xfLS9LTE8OrqrJULbVnR08sLs6jcaJlfynj/z9Dwf8DjJrXkg==
"], {{0, 32}, {
32, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\), \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJw1k3tUE2fexyEXZNuqba3Yi6h46WohISQhIZCQAHI1gIjc1GrxWrcWXVvX
2rracpN7uORCyGQyk8xkJpkk5B5ynYQShCCKitbubnfb49lz9j2n57znvH+8
f+9gd8/5zPc8M398fs/veX6Tc/bqsYu0tLS0LzKpONZ5s+z69c5bzW9SLy1d
X1y+1HXhfG3XlxcuXbhedJZOfdzzn2djDTljKjwwYnLfg5x94GyP3k7R/Yoe
0NEN2rtBogckegGiDyD6QWLAYB+E7MNG5yjiUZh9E3hgyjqntoe0s1HATRq8
SWNgGYs8tJKPZxeee5f/Mo54h2Bnv8HRpyd6dJb/AFg30L8CtPTpLX06vB/A
7+ktgwbrIEQMw45Rk1Nh9kziPqXFr7bNTdtDOmdU70nA/kVzOIXHVh3zjz33
fxhDfIMbfnu/3tqrw3t1WM9/2dDqLf16rB/ABgBsUI8NgdiwAR+BLGNG27hp
dgJ1KTGPyuKdts1p7UHdbBh0k0b/91h4yRpbsS+suZefK1DvEGQfoDYJmHt1
SK8O3UitqW8GuQeYN9CjAwA6qEOHAHQENI8azGMGTAFZxo22KcShwlxq3DNN
+LW2wIw9CLoisI80h5LW6LIj8dCbfDyJecaMxIgBG9Cj/QDlfIXONEABIK/S
NAggQzpkFDQrIGwcxikUMOUnJhG7CnNqLJ5pq3/GFgAcAcgVMvtjttC8h1yM
fr/64MGzV37biAEfotrXmynP0CvngM44qDNSeW/DbxwBTWMQMm5Ef2PCiE0a
rVMmQoXaNZhrxuLR29xGp4fw+qPxxOpS8seHSy/XH/3604sxzDdsdAwaiHug
9Z4eGwTMg3qUaqFfaxzQmgZ1yCBgGgHgCRDSwLAWhmeMRh1iglDEjKOYFbMQ
OG61Wgm702kPh3xLifD6UuKXtfu//vDg//72+P9/ea6zODWIRQkhEyA8ZYA1
sFEDQWq9QQNCWhCeASEAMphMIIGBYTcWc5nnfZbknG0pZE+FbCth+0rYlgrN
Pgi710jPi4XAz6nwP1fJ/1lb+PXp8v++2CiRCHoibsJvM7ktoJ+AQg44YAF8
uC5kM8TscJQwJJzwfY8x5YXWAsbnQdP6nPHZnHE9bH4atTwnifWodT1mexF3
/m3e/Y8F78tF38uluZfL0Zcr8/98lPzXeupH0vM8ZF+fszwJoGs++IkXeuo1
PPLoH7mBx26QWj/1Q0/80EMPeN8+nXLqVlzA8uzMkgtc9iErAXMqYF72Iyt+
9FHQsh6xP487n5KuJ3Hf+nzoxSL504Pks5DjsQ9f8yCrLmhlVv/AoXvo1K84
9SmHbsWhW3XqH7gMy04w6TAk7CDpAOOzUMwOxmxg3GFMuJCEC427TAk3suDB
7vvwVNCeirhWSd+jRPBpMvbD8vcpL744Cy/YQNKijZjVYVQVQVVRVBNB1VFU
TWLauBWIW3UUJDETcwBRmz5sBSJWIEboSTtEOhA/NoPrFKQTm3eji35LKji7
GnWvUS0shH9YTiTdWMIGkRYgjGnnEI0XVnoME3PQRNA4GTIpqRJxbDqOaeKY
MoYrIxZ1GNeEsOkIro1ZdFSJhNOE6xX3/vzHeY9l0Yc9CFqeRGefJzx/WQz8
tBz5eXV+3omShCGK64LodMCo9sEqn2EqCE1EjFNRkzKGKElkkkQnSEQRRRVh
80QEU1JtxvDpuFUbt+uTHkQ72XPrxqX7c5aU3/woiD+LEj/GZ/++6Pt5ee7l
amxh1kSdAInPxMzaKKKJmNRhozIMT4Th8TA0HoEnYuhUDB0nzeMkPh7DxuP4
VBxXxXF1gpiedwBJN9x99+rVa5987zEuOsEVN7zmR5+FrX9NOP++4PklFUq5
jElCN4+p49RWjZMxSmicmNOPBPUjUXjcqenX99/wGUaCiMKuuRtFR0mzgmon
jk2FkDE/PEoS2kuX20+fawriqkd+ZC1gfhqyPIsQL0jHXxc8/1gKLjvApEW7
YNYk4KmYYTxiUIShMYeqGxn+Guj709eXOpori+9cOXf7yplbV9pNyjsxm5q0
KuOEGhy51X2t0zY9fKypUloumOr90msYdRvGXYbxIKqK4ZpFJ0RdxIJdH8c1
JKqJwpNhgyIIjM4Bo37d0Kx2EFP199z6TMA5WHAgRyrKLyrOlR+RDPXfQIEB
VHevtly4f9e7Ym7uvpzst99+M2/fTkHuHkFeTrU4f3rgKy88Rg0kddcxOzU5
yqBpwgsPeQ1DfnDMox0lNCOzeoULUiDqvu4vLyq+6/r0Ukf2gT2b39l6kL2/
srb4eGvVB9nb6Zm0Awf37N67s1hU2Hmy5frn57+6dmHoztWYA1yNWNei9vV5
bwyfCZqmqIH0QiOEfnBG2XP7dtelz88O9N4kZoac2iHXzLAPGvj62tnNb25N
o9HSMumMLYy3sjbveHfbpi2Zuw9kt7fJYe2o32qIus2k15ycwxcDWCpoWY3Y
1+KeCKrxm5QOcFI19O2NG5fbLrSVn6wXtcobP26+e+tzcLzHMNlHaPox1UCt
TMRhH8zNO/C7Nzbt3btr+ztvb9m2tUCYrxi9G7DOBBB1AFUF8OmwDUi44KQP
XQoSK1GXA1ZoprpvfnO1qfPk4fZjsvajkvajxW3Npa2N9aeaTl4+efoPp25/
dQWe6lX2XQfH/jz87RdtR6vv3L5RWiHhy4rO//H8V3euTYzcdUBTIXwmYgOo
w4k7oXmPKRmwLoWdXTcvN59vLT/RUHKiqbiDMjeUtNRLjtdLWuSyjoaKU42l
rTWVrXWfdp1RK74xq78zTH430HvjYtc5+cct9Z3tTedPNp/rOPPZmZvfXNOp
hnB40oEq4y54yYss+4mVsKe0tU7S0SBqr+c313CPVglb6opajhS3yEta5eLW
ellHo7TtSHHbEVlb7fHTjWcvnTh94YT842ZZO1W6qfqTtppzp+QXTzf+4czx
K5+cv3bx6q3Pb969NqnsMxunbKjabddvP7Rzt+Cj3UV5O7kH32Pt/72Yl1dW
xK2TFdTJ2NUSXq00V1qYWynmHpGKGktLj5eJj5eL26qLqb+isaLsRENlZ2vV
+ZO1n55p+OyT5iudrVc6O66ea/n01OWvu/7UffPb4e483q6DnOwDrA/2/v69
nTnbdua8s+/Q+4cK9n7E278vL/tAXvZ7u97atmtb1r6sd/dnZR/c9f6HO/fn
f7jnYHaVXCys4BbVCOs+bqg5UX+4tbrmZF1ZU5mwSpgv41SfqC0/XnHsYktD
44d1dfuqqnIqKnJk0l0SyQdSaXapeJdUspvKEtH7JaIPCgU7Obz3uNwd+ezt
bG5WAW8HtyDrWBNfVn6gqGSPvFlQJWdX1eYeOcqRN7KlZXvEZTkVdbkVcnZF
Q4GoNF1QnM4XpvFEDG4RnSei80VMoXCTUPAKYaZQ9FpR0dZCwZZCwRsC4eu8
ks188RvCki1FxVtLxNtKS3dIyrNkh7dXV2ZVVW+vq8uqP7JDfuTdhobsjhMf
njp9qKycKZYwRCK6oCiDL2Bw+TReIZ3Hp3O56QUUBek8Do3LphWw0tl5aSxW
ei6blstOz89nFOQzuQUZAn4mX5ghKM4QipgCEV1UQqdspVJmWUVmdV1GdUNm
aTGzuJAp5DL5BUweh8HNp1NwKAMrjYKdl87Kpf9Gbh7tECv9Nz5ipeexaWwO
LZ9L5/LofB5dKKSLRIySErpEwpDKGLIyenklraJuk1TIFPMzijhMIZspYDMK
WYyNZKfzWWlU8lg0DouRn8fIZzHycmkf5dHz2IxcFp3FpnEKaDw+g1/IKCpk
iAsZ0iJmWQmzXMw4LGVWlTEry+jVlZuqa35XJ8usLNlULswo52WWczOl+Uwp
hynhMCT5dGlBhpTDkObTS9k0CYsmZtFFucwSVoaYvamUk1HGZRwWZFSJNtUU
Z8olrzXIXm8se/3o4deaa95oqdvcKt/S3vBWx9G3/g145Pw2
"], {{0, 32}, {32,
0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\), \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJyllnlMVEcYwE37T/8xaZr0SIxWghgjlBKbttQWKdUieBAB8eCSJd4cBtAi
SMDaUkWstVHEArZQaMGjtlJARVkFFBSoRcFlUTTh3MXl2N333pxvod9DsEtq
ccHJ7OTtezO/75vvmrEL3+G3+aVp06bFvQKDnyreIzZWleD/KvwJiI7btiV6
00bv6J2btmyKdQ1/GV7OHv0pz5RSSZIQNBgkIkl0rBMBC2ZkNiMkICogpkyS
lLnSZJrFYqH/NjbWOSEwSEyWGIcnRgijU2qyLJPxDWMMcinFg/1dWk1Dq6bR
PNjHCYYPZPJtPB/YCEZZ5j3dHYfTkgN8PHyXeeRlHePITMmL8jEWKZO6u9tr
aqtTUhLed5493+41u7emuy2YX1VewhnFk9+CFZ8igjmT2tq0ufl5fr7Lnee8
4ThruqPd6/Pt3owOX6vvaaeKCIoJtV3MUz6sEsAb2EywqB8wpR9I9fzYyd1l
hovj7K1bVEGr3EuKC2QLR4gjIiObJVjx2QhfIFhCfKjqSmnIyoV+n84LCfYv
U1eEBq5MSYpgFL4yRDiiU9FffMIHP8hDXS11x2J8ftuvenD78vXaytU+7qtX
LGysU1u44gRQZgp8iXKORXhAlOsby8u/cL211+1WXsKeiAB/97lL3pu5OzJI
367hDEQA36Y9WPMRYRyMA7pRqq8tup/kqImbcWy9fehnc4I97Ncscli92Ck/
64Bo7seYT4EPnREoEpxSYqwrHDy4oG+fQ3aoQ7i3U7zKa/sq10BPp4gw77u3
a2U+bGOoWvEJYkgZicyY2Nd8rj9niXTcpTLJOXalfVzo8sStvoeSVPER/rkn
0kfcJEoEIaV0wIbRc/mgvsQFCeZjC2fm/u7Kx2WhUpFrX96HZ3c7b1w2d/O6
Twqzkr//entEiFdLw2VGBwUiilxZDl77v+y2yi+MmIjA9MSixKGoETTp+HqI
+YL3/dNex3e7BHrNjAh0jQ52C/Z2St+j6u3SQJwKlI7wJWIDHyJoxGtQMUXG
dLj/mtSaIdXvNNZuay5Vpe5wW7f47aDP54YunRe24p0rxbkYDYhKyYIFNthH
QT/JS4opwkyQUK+x86bYeprczxEeZDZdPXI0eUOw57v+i+zXLrbPTNvZp3uI
sIQnTAZrPoeZSlhgRCHXIAuY0aB72Hit416J7lGxsaOirf7C4T2x6zw/WPbR
rJgwr+YGNVbyZaLSPY4PeTXKZ5DLsAuCBG3TX2Wlv1y49KO6LEf9R2FBRmZC
5OaApe/5uDkc3BujbbkjiFCy0Ij5n5ER4+yDR2couQAHDEGiqR8NGjraWmuq
r54/nZdx6JuC7BPFpwqKcjOO7I+PjQhO/XLXrRvl5kG9IgFDEI0BnsW3bk/U
Meg6ux5omMnMBPxIey8747v6G1eR0WDu79F1ttRUluxNjIqLCisq+KGvT0eh
8v3H0RPwKWOm/t5z+Se1f9cjk7FKfTn/p+zmxoYhKFSSkeEB0aRvbqw9cuir
0GDfo8dT2zs1YNeR1cwWPgiQiZiXefjXkxnV6ksXS4vLSop7ujpkBpaDQm2C
zoh5oE939szPQaHeKfti9L3tjDElwp/PB/uz4SGmLjm1K3JDxcXf6+tqa2pq
KH0qH6IMrixQKOCOIdXcvJSWnqzV3uWcUxv0H/E2H7bQ8vMFIQFLzhRmVV5T
P35sUN6Peo8+7UqOUWQ0DQiCGRSglNrAB1fh4SFa/mfReh/31KSoe013KNTv
0SijY+FGR19CwNHRom2Fn4APWSAyC22+27BDFfBt4naDrouyCTKVPjPJJtQf
DltuMOhSEyPjVD51NdWcy5O9okxkfywjYhGROTcrLTFqzY2qign1nywfGpeI
TDhraqy+eC5H1w33H2btuxfjKxEIxw0EnygOiANdGIk2nrm28qkJTkyBcgTB
IQlKESOTviL+A/g9nZk=
"], {{0, 32}, {32, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\), \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJxFVQk0Ve0aNs8yz/N4ijJn/GWIkCIziRCODOFQIeGXWWSex4OQIQ2/oZAk
lELKnByd+Zx95mNIde/d/v/eddd69rvevdfaz/O+z/fstVVCYt3D2VhYWBJ4
wOIefNsGBgtO9hAGb7xuJFyH3ggLdbqRGAYNg5mGsIMPlf97HfX03/+mHP6i
/vxN+fmb/OM36eBfeOZvDP0Xiv4LzfgNAkn7iaAdHoF6+JW8v0phVrS2qmiq
Oft5z3xDfcIx5tGUBQx1Hkubx9PnsNR3aNIsEphGECe/A59wFJCZuHcA7P8A
9g+Iez/wzEMM9QeKfICkHKDAhnrU7FD2EWQQe1ukvWVg/9WLoZqMeBcH6+HZ
j5/xtHkUsIgmLWLJC1jyRwzwAQ3MIQnvdgjTSGAJR6L9+hdITjo4BCtx7xDH
+AHyo8n7KNIuiryLJu9hqPsYGqi1h6LsIUi7Wzjm6sz0zqtnNdnps0sry3jq
Egb4giUt4ymf8eQlLAnkXEQT51HEOSxplfj/+fG7+3jmPp5xgKUdYqmHWMou
hsxAEWgogI6mgFoMFImOAGhrGMLK2kpHY1Xy7dgNDHYZR1nGklZw5FUCZZlA
+YInH1UcCRRawFM2SVTa4S/S7gGwu49lHqDIlK0dxJdNxNLazqeV1Y/LK9+2
ASSZ+R1gooh0JI4ManUPjfgFBZ3QOq6gIvf45dg6gb6CA9aJpA2AsgHQ14n/
gLZ6pEX5RqZRD34CzH0iYw9g7iLwxKzCYmhwoP952wt25sZmxqFQ2PQacoe4
h8AztrH070RmSlYumAo2NlawpuTkbxDpy1jiGoG4QSRvAoz/4UhiBU/dJtMo
+4cgOYG+S2fQ3nxY0DWzttZWynA9ddVExu6UvKIwr9NFt4XlrW3C7jqWuYoE
LgeHsLCycHNxsbCzZhSWbOJpq2jCOo6wSSB9JdC3iIxtEvMbifn170W+kxkg
P0iOpzFpDPrg6GtTc+vAs0Y1QaY3LRUCDRQDTORlOFnjY2I3keDrexMzC7p6
uuDkHGzsnDx8de09WzjaOoqwgcF/xQJbOOo2gbED7O4AzC0CbZNARx/x/yTQ
97AUJpG2O/PxkzYEYqYscdVIzllZzJCfI0BP8pKupqa0WH1j29IG2u9KkIyU
uI7WcU52Dml55dG3H7cwlDUkfgON30QTNzEUUA5BYCDARXCUTRwNDdApP36B
mcHRDkjUvQ9rmzr6BieEeBzVxXWFuV2PS951VC8OsXM7rfKHvkFUNAxyXPW8
vaW9tQU7O7url+/Gd+wGkrCOJm2AwJDWsSAn9StoO3iyGOAbDswegwp+VjQa
gUbBk5g7RFKQzyVTeSELVXGICJ/bSYmGEJP+FM+aaB+ItKiRgU5cuH9qYpSP
p6uHp7v9+QtLWzvrGGADA6yhQYsABJH2DU8F6xYW2D7ip4L8DOYvgMQgEMko
wh4CjU665uGko2BrrO3hcNZWQzzdGVIWbH/DyVpFRtTewdbXxbm0IIfJpExO
TsgrKmbeL61ohpdUVgyOjb559z75bprn5YCW7r5tHGkbQ9zCHvEjsDgUgYIF
mDjq/gYScfmivZWWEiwqpDAv10xT0c9A3k5NSp2PR46b9ayJQQw0bGX5M41G
efLksaKivICQqJSYKERG+IKViaeLk7ycFBsHm5aewYs3M9/xlC0sBUVi3CtO
LKkvaO1pG387+m51wcPHz+GMRUtT9fDL8ZPqqurHuCS5OPRE+VzkBIKM1YM8
naprK6Nirj/saMvNypQUEVYV5HGESJrL8esqSFqZ6YsIC7Kwcabey8GQ6P/M
/1d/3kN4WlV5/P28yOrq9MzshISkiKcjvfDOdllpKX5WFjleTm+ITKa1Yr63
kY6i9DEhAfuLNk/6egnI77k3w82FuUL0FNy0BCD8Ag5mOsZGuiysvMHQiO8A
GcwSksBAfh7YnOtYnWlYniifHsga789+2pk50JmdngLlFzzGxcKmI8ILs9C4
+Yf8TSftP9RkBDi5jmuppyVCn3eWdeRAI3QkA1UFIi3ETnFzWEOUHc6YsbDy
eAZe/oLaXkKitnDE1bdtS2OVK2MlG69LN6cq1qeqlierNqYqi9ICuXj4uFi4
DcT57JVEtIS4TkoJpUYGmZsbCguwR9iq3PfWTnPUTDur6iHFEWkiZiMucOoY
n7K4MOiPur5mXNatuJyUgrry7Q8dX15XL7x88HH0wdxo8dzL4tnhwsXRktKM
a8KCfJysnGKcbNIC3OI83CqS0pWlReZWphL8XCmO6gUOytbHOH10ZR1khfx1
xB2VxFV4OGRFBdi4OEXkBfTP6pg4G3uHeiEX29dnGz+9qV56U7n0qnj+Rf7c
4L13Q/eLU8PUxfi4WY9+iwJ83BBxIVMNVdiNaGUFteOyEEslQRM5XhEWbg0J
QU0h4T8URME1ZQV5Thue4ODm0DWFRN0ODIx0jU8K35pp2JyqXRkvXRwrWBzN
WxrJW3yR834wpyrBJcBAVl1UwMRIT1NdSYybXVVK5NQJDRVZeQt9QzkRfk0l
CTCcnOxsgjw8qmKiElxsUiKCjucsuXjZrc+ZDwyUvRyqnproWwSdGcxbHM6b
G8p4//zO+4HUqf5UeGFAQYB+rodWbpTLcGduY0mSioK0hopcfNila142qfFX
7sIul+dHXvayYmPhkZeV8nc/Azovws9vYWbMw8vueN786cCDV8NVC+/+Whgr
mhvK+TB4b+ZZymRv3Otu2LNmWJCrbuAZuY4Mj4m+zJfdNyd7M4yNtQ30NZ80
Jg40xA603h7sTBnsvFVWeFVcSFpGWiI1yc3BUpeXg42Pl1dG6ljm3ZDHffnP
+wumxrvG+lNe9adM9N560hLxpDV86GE8LMJBT1si6bpdbw30ETxhAH59uPuW
leVJfV2lrtqI5+0xvU2R3XXh/c3Xe9punLM15OZk9/EyuRnrDFETA4/Lyd64
p/Vub/e954/zp151dtZF9DRe76m9VpByNjvFOi/tgrGehJfb6aayq+0Vfu21
QZ3V/vC6MFsr7dMGCi210J5m6KOmsK76sO76iEctkVl/+kiKC53Skk+74xQe
bi0tJ3ze3vjpw4ze7oxnj3PfvIJHhJkGBxkmRlneiTHLTnX0dFX3u6TVWBrS
XnsVXn25rfZyV/2V7oZrFx2M7G3VG8v9Goq8awovNpZ4tJZd6aoJaa4LNzSC
aKpIpic7Fd33d3M3NzPSaqiIb22E9XWlT040hEKNTW3Ej+vxmpyWsLNS0zkl
4u9rcjPGPiXeNu2W3Z8p9rmpDnWFPl7OJld9dRtLL9QUuJfnOpXm2JVk29cV
uVYU+Zubavi6m1QWeRUVXEpMcLUy1y4rDGusieqG3x58XjQ3fr+hOsrZVUdR
QUBBhl9DVUBNhUNBkU1GnkNFg0f9BL+aJp+ZqfQJiLzbpZO59+xKc91rH7g/
yLHNTbfISTsTEWxsZiiTknC2LM8p70+b1GRnKwtIdoZfXXlYW90N0CLEbMXc
SG4yzPWKt0VWkndVXkDGLUdoqKWDo5aJqdQFF21ff3MfvzNqCtKujicjg3Vj
Qg1vxxmlJ5nnpNlXlfheOnci2Ot0Y7l3XZFLRZ5DfpabpZlqxDXr0jy/ysKA
no478yP3pp+ldjbEddbHjnbffNt/a6g9+ll7wkBLYvOD4I6qsIc1kbDrDpes
9WqyQzrKg+uLAwsznRMjjaFXdCKCjM11ZHOTvDvrr8IrfBuK3WpKQ87Z6AT4
WLXWRLZVQh93Zox3xY13xw+3RU8PJL17mjzZCxtsgT5vgo7AY8cewgabox7X
QIuT3WqyfIfbY8d64l8+ShjtuQXGuC7fMy7YPDnKqb44uLbYu6HEvSLfuao4
wMfd7LSBUlNV6EBr1Iv+gqG26yMd0S8exow9ip3oi3/VG/eyK7qvLuhpE3QQ
HvWkMfxFR+x0350X8Oin9UEjbWFPW6F9jWF9TWGtpX7wyqsddaHNFVfg1QEd
dYHN5X7NVdfSk92goTYNtUEd9SGD/fmIz8/W5nq+zHYtz3auzXWv/o1PU22r
7x+tf+j9MtO5Od//benJ5mLfp+mW5fdti2/b5iZapkZq3gxXvx4ufz1S9nqk
cmKoanq06f1E2+xE+/xM3/vpnrdv4NOT8C8L4/8BwYKA+g==
"], {{0, 32}, {32,
0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\)}]
Geben Sie die Wahrscheinlichkeiten für die wahrscheinlichsten Zuordnung eines bestimmten Bildes an.
trained[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJyVlllzE1cWgGHmJTVPgdQUAa8YhrHBBowkLNmyrNWyZe371i2p1d1qdatb
+756lRdZMrbBgA1eMMasBoYtLAFMErJMVVIzU5WqecwvmUvIzNO8pOv0rXu7
ur+z9LnnnsNIUI//Yc+ePdFPwKD3JEWRiCdt+BQsTEzU72MwdJCJYT4swkX+
CB42/3Z/mO/du3fP778+fPRR/rf8/6/t3b9/f1dXF5fL7ericDjsjzeLw2ax
WGw2m8vj9vTyBcI+IHx+D4/HZbNZ7R0n2o4fO37iryfaW4GA+bHWo61tfwGT
1uMfxvaOtlOdJ9kc1v7PPmtubqYoKhaLxBOhaCyUSCRSmUwylw1FwpFoNJ3L
jpTHZ2rV2bna5NTE6GgpFKYh2KbTK/TGISA649CAUiIZECi1/RqjAoyDKonG
OIT6PbFU9PCRlvr6erPZYnfYUAyiAr5YNJYvlgpjI/F0KpaIx1LJVCGXHxku
jo2UhvPpTJzwo07IrNHJ1FqpQimUDfL5Ek6vhDOoEWnNg2pjv1wlVOqlHp8z
nAg2tjTX1dcZjHqL1eRBHD7CEwzSmVw+nc9FE7FQmAnHIrFUIpXL5kvFfCEb
iQYJArPa9Eq1cFDZK5FzBVJ2t+h0j/j0gJqvs8j0ln61QaIzy924lY74mw43
1TXUma1GB2RDvLAXhTDcGwyFw7EoRZMY7iH8Pj9FBRga+BJPRGiG9BGo0aSW
K/gi2Vm+uLNb3MkTneIJO2QKjsYo0Bj71Hqh1iS1wGoEdzY21dc31NmdVtjt
RDE34nV6PDAVoCOJmJ8igEYUQ3DChxM4UMcEyQBNAKUGo0om7+4VsXh9nT1i
TreY3SM6I5GfHVR3K7W9Kp1IY5BqTAMmq7a+4RDgA+PdCEQQKO5zYxjCBEPx
VBIA3R6nG4FRHPFiHsznJSncT6IeBNLqBgFfoRIbrJq+/l6BtFvY3yORd8sG
uQOqHsDXGuVGu8bqNAL4Rz7idQVDVCzOxOLhVDoNoh2OhoBHrg8qIMhlBxMU
cwEHQfBVatngUF8giK9uruZHCyiJBUKk0aIeUPYOKHuUWpHBMgQhDjcKNzSC
+NRDLgfuR7P59Hh5ZKI8PjlTmaxWM/kMReEejwPwnbDNCVlcbividUCQ2WbX
BRj0/sM7P//753/+/K9vvvv6ze6rq2uXCco1oASJKrI6NF4C8fmxxqYGoMKN
uuhIYGxqvDo/V5mbm7+0vLC6OloeCzEE7rURBEIHyWiYwDEnw/jyueSFC3PP
nz/+6acff/j7t9++f/v9+7fv3r549/bl+sZVyG3WGCQ2p9ZHonSQAvkD+C4v
zESZ8emJ2sK52vzC8sa1levXx8uj+XSkPJIaLiaXzle3N5erM+PnF2v37tz8
5uvd7394//r16wcPd7ZvXNm5s35z68rW5tVXX76ozU87XQaHy+insFAkCPgg
Pi4EJoP+0kh+ujK9eOH8pasrEzPlYjG9UC3f3lzeuHzuyc71Jztbt29sPP3b
/W+/2n3+7PH2za21tfWlixfOzU2sXK4sX5xdvjT/6NHOvQe3A4zPi8MEiTGh
wK/8OhgkD+2LxUPFUm6mMl2eHE+lo8Ds87Xy+sXa2uLUvfXzW1cW7t3aePPy
8ZOHd6uVyUI+l0pmgsEg5ffGo+TYcGphrgz8fvb86Xh5DCe8gP8xPvX1dQ6X
3evzgNxLJMOJRDQUplDMiaOOQio4Vy7MjcSXJjOXa2NPHm7du7VaSIdIwoP7
8H75ICiAvT08p9WcSQYvL1Vu3d788vXrtfVroQgDVFC0/zf73TYPYsdwiImS
JI2jGCzt5wt72R6nKRX0xSjXaIZcquSWz4+WIniCQIrpmMmgbWisO/Dn/Z2n
OpxWYz5Bba0vvnr16M2bNzv3H+WLBbANvagL5E9jYwPh9/pJDw74EcJPIZBN
b1T2d3ee6GOddNm1NGYbSxAzBTqG26KQZbFUWpiYxGyOzva2tqPNAzIRApsm
8uFrV+ZePn+wu/vm+YtXtbkaTiAwbK+vP9Tc3BQO0+FwgKLQeJyOhH12vQLS
K2X8rrPHj5i00mwAWR1OTYawmNuWI32TuWy1PEkTpEmvlYv4uiEZ6bVVRuLX
VxdefnH/h+++evfV2/WNNbBbEcQFinNLS0s6nU6lErEoQxMe2gd5HBoENtot
OlHXyZDLeG0sv5GIXqHIVZy8HAhOYr4FMrSEhycoxmHUWI1DNGqdKoZBfO7d
Xn/7+vHu7ssvnj0tlfIEgTc2NgF+qTQ8OjY2NlpMhUjKY8VhHWRVWXWqgEX7
eGbiCk1lpNIndOyVP7zigNJy6YzesGR3lTEUtRk1g0LEopgZDq8sTV9bPf/o
weaL5w/e7b6Zna0EAlRT0+HDLS2xRCzAkKjL5jarHVqpXSM0DQkjsHP3woV/
LF7cppgdin4fjD+FkRm1MqiSZ7zOCOoMeCHEadENiglIN5EPVCbi1cropYuz
2zdXXr54Mn+uSgeDTc0f+JgfFUr4XHa7gNuhELOsWmGadr1cW/pl5+4vG1s/
zi8+SMQWTbphqZjo63bKgME6HHUGaZwJ4JjLGiKgVNgzkiPHR1K12tily5Vn
T+6urV5KpNPNLS1NzY0kQ5jsepVK7rDrCcxB+aCVauHdRuXLpenVaDCpUxn4
bAn7uIDdKuC19/eyNLJuvVbosCkxxAZOS8JjjQTcmRg2WghWJlMLteGnD7dv
39osjo4cPnIE1B8v4abCBEkTuUJ6eno8lQwFEf0UY4y7hrQSjqznpITfKZd0
qxTiIZVIr+/XqYX9kjNDgzyTXua0qlCXiSaggM8RD8HpCDI1HN/ZvrJz98Zo
eeLD+d5wyGTXORELqHjZbGJiYjgeDRiGBIhRqlfwNJpeg6ZPJeMpxFxNv1Ax
ILTYtG6XyWoY0Kv6dKpeh3WAwMw+1IwhxiDloHB7OkasLlfu3N4sjoyA33vw
0AGFWmq0qjxeeyRKFfKJXCYU8LtBYfF4LGatGNaKIHUfZJLBdo3TocdRiCG8
MZrA3WazTmwzS2BIATtViMfgw2we2EQHXLVqcWNjJZXNgN37+ecHxLKzaq3E
bFURJJxMB7JZUIICyVS0WMoSXithlTOO/hCmiVDOKOVO0GiS8RVS0VwyhCEW
h01hNfVbjErIaXW7rYQPjoSJanX87r2bxVIe7K/PDx4QSTvlCq5WL0VxRyIV
yuaSoNHKZJOz1elkgvbD6qBLHsVVCcqWZuB82BslnKUkPTWeCQQQFLVCdo1e
N2SxmFwuB00T6XRs/tzsg4d3C8XcoUMHD/7Kl8rZKo0Yw2GgdLZaGR4tpTLJ
mdnpsYlhErOS8GDIq4oSpjQDZYPuJAWVEv6ZcjYcIXEcxrwOECmn0wG7YIoi
s9lMuTxxY/taLpcG9Lq6QzI5T9bfo9UpaMY/NVVeXVudv7BYGCmBnrA6V4uE
SNJr8bsNNGqJBdwxCslHyeEUMzmaTSYjfj9GBwiv1w25YA8CTlKmWCpNTk1e
31qfnplsaGj49NN9x/56+Nixo8ePt7LYnT09PJFEJBCLurp5/D6BoFfIYbHO
nDrR2d7KOtnGOd3OOdXBZZ3md7HUg/JeHvcsh8Xjdp3tOtt+sgN0xZwuDl/A
7xMK+uUSgYC/b9++/zbZv69L/9Mnn/T1Ajzgcxrq61tbW48cPQKk80wnkI6O
9lOnTra1tQH+fwAN6ImN
"], {{0, 32}, {32, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{32, 32},
PlotRange->{{0, 32}, {0, 32}}]\), {"TopProbabilities", 3}]
Wählen Sie aus zufälligen Bildern jene aus, für die das Netz die höchste und niedrigste Entropie vorhersagt. Inputs mit hoher Entropie können wie solche interpretiert werden, bei denen das Netz sich am unsichersten bei der Zuordnung in die korrekte Klasse ist.
images = RandomSample[Keys[trainingData], 5000];
entropies = trained[images, "Entropy"];
Labeled[images[[Ordering[entropies, -10]]], "high entropy"]
Labeled[images[[Ordering[entropies, 10]]], "low entropy"]