# 分光放射輝度の近似とプランクの放射法則の比較

ウィーンの分布則とレイリー・ジーンズの法則およびプランクの放射法則を比較する．

 In[1]:= Xwiendistributionlaw[t_, \[Nu]_] := UnitConvert[ Quantity[2, "PlanckConstant"/"SpeedOfLight"^2/"Steradians"]*\[Nu]^3* E^(-Quantity[1, "PlanckConstant"/"BoltzmannConstant"]*\[Nu]/ t), "Watts"/"Meters"^2/"Hertz"/"Steradians"]
 In[2]:= Xwien = Table[{10^x, QuantityMagnitude@ wiendistributionlaw[Quantity[7000, "Kelvins"], Quantity[10^x, "Hertz"]]}, {x, 13, 15, 0.1}]; rayleighjean = Table[{10^x, QuantityMagnitude@ UnitConvert[ Quantity[2, "BoltzmannConstant"/"SpeedOfLight"^2/"Steradians"]* Quantity[10^x, "Hertz"]^2*Quantity[7000, "Kelvins"], "Watts"/("Hertz"*"Meters"^2*"Steradians")]}, {x, 13, 15, 0.1}]; planck = Table[{10^x, QuantityMagnitude@ PlanckRadiationLaw[Quantity[7000, "Kelvins"], Quantity[10^x, "Hertz"]]}, {x, 13, 15, 0.1}];
 In[3]:= XListLogLogPlot[{wien, rayleighjean, planck}, Joined -> True, Frame -> True, Axes -> False, PlotLegends -> Placed[{"Wien Distribution Law", "Rayleigh-Jeans's Law", "Planck's Radiation Law"}, Below]]
 Out[3]=

## Mathematica

Questions? Comments? Contact a Wolfram expert »