Wolfram言語

偏微分方程式

波動方程式の初期値問題を解く

波動方程式を伝播の単位速度で指定する.

In[1]:=
Click for copyable input
weqn = D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}];

方程式の初期条件を与える.

In[2]:=
Click for copyable input
ic = {u[x, 0] == E^(-x^2), Derivative[0, 1][u][x, 0] == 1};

初期値問題を解く.

In[3]:=
Click for copyable input
DSolveValue[{weqn, ic}, u[x, t], {x, t}]
Out[3]=

波動は2つの特性方向に沿って伝播する.

In[4]:=
Click for copyable input
DSolveValue[{weqn, ic}, u[x, t], {x, t}]; Plot3D[%, {x, -7, 7}, {t, 0, 4}, Mesh -> None]
Out[4]=

区分的データで初期値問題を解く.

In[5]:=
Click for copyable input
ic = {u[x, 0] == UnitBox[x] + UnitTriangle[x/3], Derivative[0, 1][u][x, 0] == 0};
In[6]:=
Click for copyable input
DSolveValue[ {weqn, ic}, u[x, t], {x, t}]
Out[6]=

初期データの不連続性は,特性方向に沿って伝播される.

In[7]:=
Click for copyable input
DSolveValue[ {weqn, ic}, u[x, t], {x, t}]; Plot3D[%, {x, -7, 7}, {t, 0, 4}, PlotRange -> All, Mesh -> None, ExclusionsStyle -> Red]
Out[7]=

指数関数の和を初期データとして,初期値問題を解く.

In[8]:=
Click for copyable input
ic = {u[x, 0] == E^(-(x - 6)^2) + E^(-(x + 6)^2), Derivative[0, 1][u][x, 0] == 1/2};
In[9]:=
Click for copyable input
sol = DSolveValue[ {weqn, ic}, u[x, t], {x, t}]
Out[9]=

解を可視化する.

In[10]:=
Click for copyable input
Plot3D[sol, {x, -30, 30}, {t, 0, 20}, PlotRange -> All, Mesh -> None, PlotPoints -> 30]
Out[10]=

関連する例

de en es fr ko pt-br ru zh