Find the Value of a European Call Option
Find the value of a European vanilla call option if the underlying asset price and the strike price are both $100, the risk-free rate is 6%, the volatility of the underlying asset is 20%, and the maturity period is 1 year, using the Black–Scholes model.
In[1]:=
TraditionalForm[BlackScholesModel = {-(r c[t, s]) + r s \!\(
\*SubscriptBox[\(\[PartialD]\), \({s}\)]\(c[t, s]\)\) +
1/2 s^2 \[Sigma]^2 \!\(
\*SubscriptBox[\(\[PartialD]\), \({s, 2}\)]\(c[t, s]\)\) + \!\(
\*SubscriptBox[\(\[PartialD]\), \({t}\)]\(c[t, s]\)\) == 0,
c[T, s] == Max[s - k, 0]}]
Out[1]//TraditionalForm=
Solve the boundary value problem.
In[2]:=
(dsol = c[t, s] /.
DSolve[BlackScholesModel, c[t, s], {t, s}][[
1]]) // TraditionalForm
Out[2]//TraditionalForm=
Compute the value of the European vanilla option.
In[3]:=
dsol /. {t -> 0, s -> 100, k -> 100, \[Sigma] -> 0.2, T -> 1,
r -> 0.06}
Out[3]=
Compare with the value given by FinancialDerivative.
In[4]:=
FinancialDerivative[{"European", "Call"}, {"StrikePrice" -> 100.00,
"Expiration" -> 1}, {"InterestRate" -> 0.06, "Volatility" -> 0.2 ,
"CurrentPrice" -> 100}]
Out[4]=