Wolfram 언어

확률과 통계의 수량

수량 데이터의 비모수 분포

WeatherData를 사용하여 2014년 초부터 2015년 말까지 시카고에서 측정 된 풍속의 시계열을 얻습니다.

In[1]:=
Click for copyable input
wsts = WeatherData["Chicago", "WindSpeed", {DateObject[{2014, 1, 1}], DateObject[{2015, 12, 31}]}]
Out[1]=

Histogram을 사용하여 풍속의 분포를 시각화합니다.

In[2]:=
Click for copyable input
Histogram[wsts, PlotTheme -> "Detailed", FrameLabel -> Automatic]
Out[2]=

결측치를 보간하여 풍속 값을 추출합니다.

In[3]:=
Click for copyable input
winds = Values[TimeSeries[wsts, MissingDataMethod -> "Interpolation"]]
Out[3]=

SmoothKernelDistribution을 사용하여 반드시 풍속을 비음으로하여 시카고의 풍속 비모수 모델을 구축합니다.

In[4]:=
Click for copyable input
ws\[ScriptCapitalD] = SmoothKernelDistribution[winds, Automatic, {"Bounded", Quantity[0, ("Kilometers")/("Hours")], "Gaussian"}]
Out[4]=

터빈의 전력 출력의 비모수 모델을 풍속 함수로 사용하여 그 장소에 설치된 GE 1.5 MW 바람 터빈의 평균 전력 출력을 추정합니다.

In[5]:=
Click for copyable input
turbine = Interpolation[ QuantityArray[{{0.`, 0.`}, {0.5`, 0.`}, {1.`, 0.`}, {1.5`, 0.`}, {2.`, 0.`}, {2.5`, 0.`}, {3.`, 0.`}, {3.5`, 0.`}, {4.`, 36.`}, {4.5`, 66.`}, {5.`, 104.`}, {5.5`, 150.`}, {6.`, 205.`}, {6.5`, 269.`}, {7.`, 344.`}, {7.5`, 428.`}, {8.`, 528.`}, {8.5`, 644.`}, {9.`, 774.`}, {9.5`, 926.5`}, {10.`, 1079.`}, {10.5`, 1211.`}, {11.`, 1342.`}, {11.5`, 1401.`}, {12.`, 1460.`}, {12.5`, 1477.`}, {13.`, 1494.`}, {13.5`, 1500.`}, {30.`, 1500.`}}, {"Meters"/"Seconds", "Kilowatts"}] // Normal, InterpolationOrder -> 1];
In[6]:=
Click for copyable input
NExpectation[turbine[v], v \[Distributed] ws\[ScriptCapitalD]]
Out[6]=

관련 예제