중력 가속도의 추정
중력 가속도는 를 사용하여 진자의 주기 와 길이 를 측정함으로써 얻을 수있습니다. 5회 연속 주기 측정 후 그 평균을 낸 불확실성은 BatesDistribution에서 모델링 할 수있습니다.
In[1]:=
\[Mu]T = Quantity[2, "Seconds"]; \[CapitalDelta]T =
Quantity[0.01, "Seconds"];
period\[ScriptCapitalD] =
BatesDistribution[
5, {\[Mu]T - \[CapitalDelta]T/2, \[Mu]T + \[CapitalDelta]T/2}]
Out[1]=
진자의 길이는 해상도 1mm의 자로 측정하였으며, 그 불확실성은 UniformDistribution으로 모델링됩니다.
In[2]:=
\[Mu]len = Quantity[1, "Meters"]; \[CapitalDelta]len =
UnitConvert[Quantity[1, "mm"], "Meters"];
len\[ScriptCapitalD] =
UniformDistribution[{\[Mu]len - \[CapitalDelta]len/
2., \[Mu]len + \[CapitalDelta]len/2.}]
Out[2]=
중력 가속도 측정의 불확실성을 살펴봅니다.
In[3]:=
g\[ScriptCapitalD] =
TransformedDistribution[ (2 \[Pi])^2 len/T^2, {len \[Distributed]
len\[ScriptCapitalD], T \[Distributed] period\[ScriptCapitalD]}]
Out[3]=
선형 근사와 비교합니다.
In[4]:=
lin[e_, {x_, x0_}, {y_, y0_}] :=
Block[{f = Function @@ {{x, y}, e}}, f[x0, y0] +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x0, y0] (x - x0) +
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x0, y0] (y - y0)]
In[5]:=
lin\[ScriptCapitalD][\[ScriptCapitalD]_] :=
NormalDistribution[Mean[\[ScriptCapitalD]],
StandardDeviation[\[ScriptCapitalD]]]
In[6]:=
gApprox\[ScriptCapitalD] =
TransformedDistribution[
lin[(2 Pi)^2 len/
T^2, {len, \[Mu]len}, {T, \[Mu]T}], {len \[Distributed]
lin\[ScriptCapitalD][len\[ScriptCapitalD]],
T \[Distributed] lin\[ScriptCapitalD][period\[ScriptCapitalD]]}]
Out[6]=
정확한 분포와 선형 분포를 사용하여 평균 가속도를 계산합니다.
In[7]:=
{\[Mu]g, \[Mu]gApprox} = {NExpectation[g,
g \[Distributed] g\[ScriptCapitalD]],
NExpectation[g, g \[Distributed] gApprox\[ScriptCapitalD]]}
Out[7]=
불확설성 척도를 계산합니다.
In[8]:=
{\[Sigma]g, \[Sigma]gApprox} = {Sqrt[
NExpectation[(g - \[Mu]g)^2, g \[Distributed] g\[ScriptCapitalD]]],
StandardDeviation[gApprox\[ScriptCapitalD]]}
Out[8]=
측정 가속도에 대한 90% 신뢰 구간의 샘플링 추정을 구합니다.
In[9]:=
confidenceInterval =
Quantile[RandomVariate[g\[ScriptCapitalD], 10^6], {0.05, 0.95}]
Out[9]=
In[10]:=
NProbability[First[confidenceInterval] < x < Last[confidenceInterval],
x \[Distributed] g\[ScriptCapitalD]]
Out[10]=