Compute Centroids
The centroid is also known as center of mass for a region and corresponds to a measure of center location for a region. The centroid is given by an integral
, where
is the measure of the region
.
Regions in 1D.
| In[1]:= | X |
| Out[1]= |
| In[2]:= | X |
| Out[2]= |
Regions in 2D.
| In[3]:= | X |
| Out[3]= |
| In[4]:= | X |
| Out[4]= |
| In[5]:= | X |
| Out[5]= |
| In[6]:= | X |
| Out[6]= | ![]() |
| In[7]:= | X |
| Out[7]= | ![]() |
| In[8]:= | X |
| Out[8]= | ![]() |
Regions in 3D.
| In[9]:= | X |
| Out[9]= |
| In[10]:= | X |
| Out[10]= |
| In[11]:= | X |
| In[12]:= | X |
| Out[12]= | ![]() |
| In[13]:= | ![]() X |
| Out[13]= | ![]() |
| In[14]:= | X |
| Out[14]= |
| In[15]:= | X |
| Out[15]= | ![]() |
Regions in
D.
| In[16]:= | X |
| Out[16]= |
| In[17]:= | X |
| Out[17]= |






