From our origins in mathematical and technical computing, Wolfram technologies have gradually emerged as a major force in many other areas of computing. Passionate individuals and organizations have played a major role in helping advance the usage of our technologies. We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.

Innovator Award
Winners: View All Winners Filter:

André Koppel has worked in the field of measurement systems for over thirty years, developing robust software for intensive use in a wide variety of fields. His most recent project is the development of a modular software system for insolvency management, called INVEP, which uses the Wolfram Language to power its analytical engine. INVEP is capable of processing and analyzing accounts with more than 100,000 entries within seconds. He also teaches a course in insolvency analysis, using Wolfram Mathematica, at the University of Applied Sciences Schmalkalden.

André Koppel

MathConsult GmbH and uni software plus GmbH share this award for their work in the development and continued success of the UnRisk family of products, built on the Wolfram Language and used in the finance industry for financial derivatives and risk analytics. The two companies are closely linked, working together on numerous other industrial mathematics consultancy projects, and are based at the Johannes Kepler University Linz. They have been long-term advocates of Wolfram technologies, a byproduct of the strong sales and marketing partnership uni software plus has had with Wolfram for over two decades. Michael Aichinger, Stefan Janecek, and Sascha Kratky were present to accept the award on behalf of both companies, but special mention must go to Michael Schwaiger, Andreas Binder, and Herbert Exner, who were unable to collect the award in person.

UnRisk Development Team

Richard Gaylord is one of Mathematica’s earliest users and is a self-described evangelist for the Wolfram Language. He taught computer programming in the Wolfram Language at many universities, companies, government agencies, and scientific conferences for more than 25 years. He has co-authored several texts, including An Introduction to Programming with Mathematica, and three other books on programming computer simulations in a wide variety of fields using the Wolfram Language. Gaylord has made a three-part video explaining the fundamentals of the Wolfram Language.

Prof. Richard J. Gaylord

János Karsai has been using Mathematica since 1994 in teaching and research. He teaches mathematics and Mathematica-aided modeling to math, pharmacy, biology, and engineering students in Szeged and Berlin, and has given several Mathematica trainings of different levels and topics in Hungary, Czech Republic, Serbia, and Romania. He has supervised several outstanding students in Mathematica-related research. Karsai applies Mathematica experiments in his research; works on modernizing mathematical education, especially in applied sciences; and manages several projects in these fields. He developed a package and wrote a book on impulsive systems with Mathematica in 2002 and has prepared several dynamic teaching materials in Mathematica for his courses. Karsai manages the website

Dr. János Karsai

Mark Kotanchek left Dow Chemical in 2005 to form the startup Evolved Analytics. DataModeler, one of the largest Mathematica applications produced outside of Wolfram Research, handles data modeling via evolutionary programs. It also performs data analysis and makes sophisticated use of both user interface and kernel technology. At the 2014 Wolfram Technology Conference, Kotanchek revealed a GUI for DataModeler that makes it even easier to use Wolfram’s world-class analysis capabilities.

Mark Kotanchek

John Michopoulos uses Mathematica in his professional research with composite materials and has been published in the International Journal for Multiscale Computational Engineering, Composite Structures, and the Journal of Computing and Information Science in Engineering. He applies the global optimization capabilities of Mathematica to solve inverse problems and better understand the physics of materials and composite material designs.

John Michopoulos

Rodrigo Murta is Retail Intelligence Manager for St Marche Supermercados, a high-end supermarket chain, and the first customer to purchase Mathematica Enterprise Edition in Brazil. He uses Mathematica as a hub for all of the company’s data, workflows, computation, and processing, and EnterpriseCDF to construct reports for store managers and company executives. He is currently experimenting with a web-based report interface that provides even greater access to intelligence reports.

Rodrigo Murta
2014 Yves Papegay French National Institute for Research in Computer Science and Control Areas: Authoring and Publishing, Computer Science, Education, Mathematics

Yves Papegay integrates new Wolfram technologies into his workflow and has used Wolfram Development Platform (formerly Wolfram Programming Cloud) and Mathematica on Raspberry Pi for his robotics projects. Papegay is also a Wolfram certified instructor and develops industrial Mathematica tools for C code generation in the aerospace and energy industries for companies including Airbus and French energy company, EDF.

Yves Papegay

Frank Scherbaum, a professor of geophysics at the University of Potsdam, has been using Wolfram technologies since Mathematica 1. He has developed packages for signal processing, seismology, and seismic hazard analysis, which are widely used in research and teaching. His most recent book on probabilistic seismic hazard analysis, developed with the help of his students Nico Kuehn and Annabel Hëndel, covers widely diverse areas such as probability theory, earthquake seismology, strong motion processing, and geotechnical engineering, and has been fully generated with Mathematica and CDF technology. In addition, he uses Mathematica extensively as a hobby musicologist to explore new ways to represent and classify polyphonic vocal music.

Frank Scherbaum

At Enova Financial, Chad Slaughter used Mathematica’s deep analysis capabilities to better understand the relationship between performance data and top-level business metrics. This led to the Colossus Project, a completely automated platform that handles Enova’s online loan approval system and can process more than 20,000 loans per hour. Now a consultant, Slaughter is also using Wolfram Development Platform (formerly Wolfram Programming Cloud) to create solutions for Eligo Energy.

Chad Slaughter

Bruce Torrence is the author of numerous Mathematica books and articles including The Student’s Introduction to Mathematica, a popular general reference book for students and educators. In addition to publishing dozens of articles on the use of Mathematica in education and research, Torrence recently completed a five-year editorship at Math Horizons and is a Wolfram Science Summer School alumni.

Bruce Torrence

Physicist Frank Brand teaches courses in business mathematics, statistics, econometrics, and optimization using Mathematica. He has used Mathematica for many years, starting with his PhD thesis, “Optimization of Complex Optical Systems with Evolution Strategies.” Frank’s achievements using Mathematica in his research include the automatic construction of quality functions related to optimization problems. He also used Wolfram technology to write books—very recently he published a book on the analysis of complex systems, based on applications of graph theory.

Prof. Dr. Frank Brand

Stefan Braun is recognized for using Mathematica in industrial applications. He has used Mathematica and the SmartCAEFab in more that 150+ industrial projects in different application areas. SmartCAE’s software solutions allow practical users to simulate complex applications problems, with a lot of parameters, without being a simulation or Mathematica expert.

Stefan Braun
2013 Sam Daniel Engineering Fellow, Raytheon Areas: Control Engineering, Engineering, Signal Processing

Sam Daniel has been using Mathematica since 1988—the year Mathematica 1.0 was launched—to complete a range of innovative projects from patented work on fingerprint identification algorithms for Motorola to spearheading signal processing projects for Raytheon Missile Systems. His mastery of Mathematica has enabled him to document his work and share those results with others, bringing invaluable insights to areas from adaptive antenna simulation to radar ground clutter characterization. Sam’s continued work with Mathematica will include creating elaborate Enterprise CDFs from Wolfram SystemModeler for possible automatic extraction of parameters and control placement.

2013 George Danner President, Business Laboratory, LLC Areas: Industrial Engineering, Industrial Engineering Economics

In his role as President of Business Laboratory, LLC, George Danner uses Mathematica to solve complex problems for mid-size and large businesses and government organizations. Following the flu outbreaks that took health agencies by surprise in 2008, Danner simulated a hypothetical outbreak in Alabama. As a result, state and federal health officials were able to role-play a series of outbreaks and identify barriers to outbreak response. Other accomplishments include assisting an energy company with over 1,100 natural gas wells in identifying an optimal drilling sequence and helping a large national retailer double its number of stores by using simulated shopper agents to determine optimal locations.

George Danner
2013 Brian Frezza & Emerald Therapeutics Co-CEO and Co-founder, Emerald Therapeutics Areas: Biotechnology

Brian Frezza, Co-CEO and Co-founder of Emerald Therapeutics, has integrated Mathematica at many organizational levels within the company—from using it as a standard documentation tool for the Emerald Therapeutics computer platform to controlling laboratory robots. Although the business is small, Mathematica has been broadly integrated in a manner rarely seen, even by Mathematica’s power users. Emerald’s small team has used Mathematica to conduct more than half a million biotech experiments.

Brian Frezza & Emerald Therapeutics
2013 Grigory Fridman Saint Petersburg State University of Economics Areas: Computer Science, Education, Finance, Mathematics, Risk

Grigory Fridman is Head of the Department of Economical Cybernetics and Mathematical Methods for Economics at Saint Petersburg State University of Economics in Saint Petersburg, Russia. With his help StPSUE became the first university in Russia to offer access to Mathematica to all faculty and students.

Grigory Fridman
2013 Charles Macal Director, Center for Complex Adaptive Agent Systems Simulation, Argonne National Laboratory Areas: Engineering, System Modeling

As Director of the Center for Complex Adaptive Agent Systems Simulation at Argonne National Lab, Charles Macal uses Mathematica to develop models for studying behavioral factors that contribute to the spread of Methicillin-resistant Staphylococcus aureus (MRSA) and to study how human reactions to political and military action can be quantified and used to simulate when and if conflicts will arise. Macal has been asked to work with the Federal Highway Administration on an innovative new project to develop models for understanding driver behavior for route planning and improving vehicular safety.

Charles Macal

Rolf Mertig is a physicist working in different fields as a software consultant. His specialties include efficient webMathematica programming and programmatic CDF generation. Through his own consulting company, GluonVision GmbH based in Berlin, Germany, he works with companies and universities in order for them to get the most out of Mathematica, webMathematica, and CDF.

Rolf Mertig
2013 Tom Meyer Associate Professor, Department of Natural Resources and the Environment, University of Connecticut Areas: Education, Geographic Information Systems

As a developer of Mathematica’s Geodesy package, Thomas Meyer has pioneered the use of Mathematica in geodesy and geographic information systems (GIS) throughout his career at the University of Connecticut. Meyer has published eight papers in two years in which Mathematica was used to conduct research. One paper, “The Direct and Indirect Problem for Loxodromes,” provides the mathematics of how to write an autopilot using a GPS to lay out the course, correctly using modern geodetic reference ellipsoids. Meyer also uses Mathematica in teaching a range of courses from geomatics and GNSS surveying to spatial statistics and programming.

Tom Meyer
2013 Bart ter Haar Romeny Eindhoven University of Technology Areas: Biotechnology, Image Processing, Mathematics

A professor in biomedical image analysis, Bart ter Haar Romeny uses Mathematica to design brain-inspired image analysis methods for computer-aided diagnosis. He is an enthusiastic teacher, and introduced Mathematica as a design tool in the curriculum for all students of his department and in most projects in his group. He advocates that Mathematica is ideal for designing innovative algorithms and for “playing with the math.” His PhD students van Almsick, Duits, Franken, (now Professor) Florack, Janssen, and Bekkers substantially contributed to the Mathematica packages on brain-inspired computing. He cochaired with Markus van Almsick the International Mathematica Symposium 2008 in Maastricht and teaches a popular national course on biologically inspired computing (book written in Mathematica), which was thrice awarded the BME Teaching Award.

Bart ter Haar Romeny
2013 Keith Stroyan Professor of Mathematics, University of Iowa Areas: Education, Mathematics

As a mathematics professor at the University of Iowa, Keith Stroyan was an early adopter of Mathematica in calculus courses, reaching around 6,000 students and 100 teaching assistants in 24 years. In 2005, he was awarded Teacher of the Year by the Mathematical Association of America based on his work developing Mathematica course materials. Stroyan also conducted an early study showing that students who used Mathematica in calculus courses performed better in subsequent courses, even in traditional courses without much technology. In addition to these achievements, Stroyan developed one of the first custom kernel Mathematica programs, Calculus Wiz, and published the first CDF in a scientific journal. His work on iMultiCalc 2013 CDF edition continues to push the boundaries in delivering textbook content.

Keith Stroyan

Thomas Weber is recognized as an expert on quantitative methods in finance and risk. Being a heavy user of Mathematica since Version 1.2, Thomas utilizes this powerful tool for his consultancy for big banks, energy suppliers, and other institutions. Over these many years he has extended Mathematica as needed. For example, he developed a database link long before the Data Access Kit was available. He also integrated different pricing libraries into Mathematica, which allow kinds of risk analysis that go way beyond what is normally possible within financial institutions.

Dr. Thomas Weber
2013 Jacqueline Zizi MUM Research Areas: Education

Jacqueline Zizi is a passionate and family-centered individual (mother of six and grandmother of 14) who loves mathematics and computation. She has been using Mathematica as a programming language for education and teaching as well as providing her Wolfram Training instructor services all around France. Furthermore, she wrote a simulation tool for high-risk boat navigation (CGA, Alstom Group), a tour in a protein associating music and zooming for IHES, and a conjecture about Grothendieck invariants solved in the special case of graph theory for Professor O. Mathieu in abstract mathematics. Twenty years ago Jacqueline wrote a trilogy of books in French about general considerations in programming and mathematics for education purposes. After the national curriculum was changed, leading to “Polytechnique” and “Grandes Écoles,” she published a book following such a curriculum which, although old, is still for sale.

Jacqueline Zizi

Richard Anderson is recognized for his pioneering use of gridMathematica to explore network properties using percolation and random graph theories. He has developed gridMathematica applications that use a probabilistic approach along with large-scale multiprocessor computing techniques to explore the underlying structure of complex networks. This work led to the development of new methodologies to identify nodes that are critical to network cohesion and connectivity.

Richard Anderson