極座標と球座標
直交座標と,2つの最も重要な非直交座標である極座標,球座標の間の変換を行うための関数が利用可能になった.
直交座標と極座標の間の変換を行う.
In[1]:=

ToPolarCoordinates[{x, y}]
Out[1]=

In[2]:=

FromPolarCoordinates[{r, \[Theta]}]
Out[2]=

直交座標と球座標の間の変換を行う.
In[3]:=

ToSphericalCoordinates[{x, y, z}]
Out[3]=

In[4]:=

FromSphericalCoordinates[{r, \[Theta], \[CurlyPhi]}]
Out[4]=

極座標は,自然に高次元に一般化される.
In[5]:=

ToPolarCoordinates[{w, x, y, z}]
In[6]:=

{Sqrt[w^2 + x^2 + y^2 + z^2], ArcCos[w/Sqrt[w^2 + x^2 + y^2 + z^2]],
ArcCos[x/Sqrt[x^2 + y^2 + z^2]], ArcTan[y, z]}
In[7]:=

FromPolarCoordinates[{r, \[Theta]1, \[Theta]2, \[Theta]3, \
\[CurlyPhi]}]
Out[7]=

極座標と球座標で表された曲線をプロットする.
In[8]:=

ParametricPlot[
FromPolarCoordinates[{Exp[-t/10], t}] // Evaluate, {t, 0, 50},
PlotRange -> All]
Out[8]=

In[9]:=

ParametricPlot3D[
FromSphericalCoordinates[{1, TriangleWave[{0, Pi}, p/(2 Pi)], p}] //
Evaluate, {p, 0, 2 Pi}]
Out[9]=
