# Wolfram Language™

## Polar and Spherical Coordinates

New, dedicated functions are available to convert between Cartesian and the two most important non-Cartesian coordinate systems: polar coordinates and spherical coordinates.

Convert between Cartesian and polar coordinates.

In:= `ToPolarCoordinates[{x, y}]`
Out= In:= `FromPolarCoordinates[{r, \[Theta]}]`
Out= Convert between Cartesian and spherical coordinates.

In:= `ToSphericalCoordinates[{x, y, z}]`
Out= In:= `FromSphericalCoordinates[{r, \[Theta], \[CurlyPhi]}]`
Out= Polar coordinates naturally generalize to higher dimensions.

In:= `ToPolarCoordinates[{w, x, y, z}]`
Out= In:= ```FromPolarCoordinates[{r, \[Theta]1, \[Theta]2, \[Theta]3, \ \[CurlyPhi]}]```
Out= Plot curves expressed in polar and spherical coordinates.

In:= ```ParametricPlot[ FromPolarCoordinates[{Exp[-t/10], t}] // Evaluate, {t, 0, 50}, PlotRange -> All]```
Out= In:= ```ParametricPlot3D[ FromSphericalCoordinates[{1, TriangleWave[{0, Pi}, p/(2 Pi)], p}] // Evaluate, {p, 0, 2 Pi}]```
Out= 