Travaillez avec les séries temporelles valorisées quantitativement
Analysez la variabilité de la température à un endroit donné.
In[1]:=

data = WeatherData[
Entity["City", {"Champaign", "Illinois", "UnitedStates"}],
"Temperature", {{2016, 3, 20}, {2016, 3, 22}}];
In[2]:=

temps = TimeSeries[data, MissingDataMethod -> "Interpolation"]
Out[2]=

Visualisez la série temporelle de la température.
In[3]:=

DateListPlot[temps, PlotTheme -> "Detailed"]
Out[3]=

Les propriétés de base.
In[4]:=

stats = {Min, Max, Mean, Median, StandardDeviation};
TableForm[{Map[#[temps] &, stats]}, TableHeadings -> {None, stats}]
Out[4]//TableForm=

Convertissez des températures en degrés Fahrenheit.
In[5]:=

tempsF = UnitConvert[temps, "DegreesFahrenheit"];
TableForm[{Map[#[tempsF] &, stats]}, TableHeadings -> {None, stats}]
Out[5]//TableForm=

Trouvez la moyenne mobile sur 6 heures.
In[6]:=

avg = MovingMap[Mean, temps, {Quantity[6, "Hours"], Center}]
Out[6]=

Afficher l'entrée complète de Wolfram Language
Out[7]=
