Wolfram Language

Visualización de volumen

Visualización de datos de huracanes

El modelo simple para un vórtice se da por medio de la combinación de la rotación del cuerpo dentro de un núcleo y la decreciente velocidad angular externa.

muestre la entrada completa de Wolfram Language
In[1]:=
Click for copyable input
w = 6; rcore = 3; a = 1; g = 9.82; rho = 1; Subscript[rho, 0] = 1;
In[2]:=
Click for copyable input
wind[r_, z_] := If[r <= rcore, w r, (w a^2)/r];

La fórmula para encontrar presión da la siguiente fórmula en términos de radio y elevación.

In[3]:=
Click for copyable input
pressure[r_, z_] := If[r < rcore, 1/2 rho w^2 r^2 - rho g z + Subscript[rho, 0], -((rho w^2 rcore^4)/(2 r^2)) - rho g z + rho w^2 rcore^2 + Subscript[rho, 0]];

Grafique las velocidades del viento, las cuales aceleran fuera del centro del sistema.

In[4]:=
Click for copyable input
SliceContourPlot3D[ wind[Sqrt[x^2 + y^2], z], {x^2 + y^2 == 3 z, x^2 + y^2 == 6 z, x^2 + y^2 == 1 z}, {x, -5, 5}, {y, -5, 5}, {z, 1, 5}, Contours -> 20, RegionFunction -> Function[{x, y, z}, x < 0 || y > 0], PlotTheme -> "NoAxes", PlotLegends -> Automatic, PlotLabel -> "Wind Strength", ImageSize -> 400]
Out[4]=

Grafique las direcciones del viento como un campo vectorial.

In[5]:=
Click for copyable input
SliceVectorPlot3D[{(wind[Sqrt[x^2 + y^2], z] y)/ Norm[{x, y}], (-wind[Sqrt[x^2 + y^2], z] x)/Norm[{x, y}], 0}, {x^2 + y^2 == z, x^2 + y^2 == 3 z, x^2 + y^2 == 6 z}, {x, -5, 5}, {y, -5, 5}, {z, 1, 5}, ImageSize -> 400, PlotLegends -> None, VectorStyle -> "Arrow3D", VectorScale -> {Medium, 0.5, Automatic}, VectorPoints -> 8, RegionFunction -> Function[{x, y, z}, x < 0 || y > 0], PlotTheme -> "NoAxes", PlotLabel -> "Wind Direction"]
Out[5]=

Grafique la presión como una densidad en 3D. Note la presión baja relativa en el centro del sistema.

In[6]:=
Click for copyable input
DensityPlot3D[ pressure[Sqrt[x^2 + y^2], z], {x, -5, 5}, {y, -5, 5}, {z, 1, 5}, ImageSize -> 400, PlotLegends -> Automatic, PlotTheme -> "NoAxes", RegionFunction -> Function[{x, y, z}, (x^2 + y^2 <= 6 z) && (x < 0 || y > 0)], PlotLabel -> "Air Pressure", OpacityFunction -> Function[f, f/5 + 0.1]]
Out[6]=

Ejemplos relacionados

de en fr ja ko pt-br ru zh