# Wolfram Language™

## Visualisez les coupes

Utilisez plusieurs plans d'intersection comme surfaces sur lesquelles tracer les contours d'une fonction.

Afficher l'entrée complète de Wolfram Language
In[1]:=
```opts = {ColorFunction -> ColorData[{"Rainbow", {-2.5, 2.5}}], ColorFunctionScaling -> False, ClippingStyle -> Automatic, PlotTheme -> "Bare", SphericalRegion -> True, ImageSize -> 250, Contours -> Subdivide[-2.5, 2.5, 10]};```
In[2]:=
```func = Simplify[ Sum[Cos[5 Norm[{x, y, z} - {Sin[\[Theta]], Cos[\[Theta]], 0}]], {\[Theta], 0, 2 \[Pi] - (2 \[Pi])/3, (2 \[Pi])/ 3}], (x | y | z) \[Element] Reals];```
In[3]:=
```With[{k = 1}, SliceContourPlot3D[ func, {x == -k, x == k, y == -k, y == k, z == -k, z == k}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Evaluate@opts] ]```
Out[3]=

Utilisez une balle de norme comme surface.

In[4]:=
```With[{p = 5}, SliceContourPlot3D[func, BoundaryDiscretizeRegion[ ImplicitRegion[ Norm[{x, y, z}, p] <= 2, {{x, -2, 2}, {y, -2, 2}, {z, -2, 2}}], {{-2, 2}, {-2, 2}, {-2, 2}}, MaxCellMeasure -> {"Length" -> 0.05}], {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Evaluate@opts] ]```
Out[4]=

Utilisez une sphère et des disques croisant les surfaces.

Afficher l'entrée complète de Wolfram Language
In[5]:=
```sphere = BoundaryDiscretizeRegion[ ImplicitRegion[Norm[{x, y, z}, 2] <= 1, {{x, -2, 2}, {y, -2, 2}, {z, -2, 2}}], {{-2, 2}, {-2, 2}, {-2, 2}}, MaxCellMeasure -> {"Length" -> 0.05}];```
In[6]:=
```planes = With[{r = 2}, DiscretizeRegion[ImplicitRegion[ (x^2 + y^2 <= r^2 && z == 0) || (x^2 + z^2 <= r^2 && y == 0) || (z^2 + y^2 <= r^2 && x == 0), {{x, -2, 2}, {y, -2, 2}, {z, -2, 2}}], {{-2, 2}, {-2, 2}, {-2, 2}}, MaxCellMeasure -> {"Length" -> 0.05}] ];```
In[7]:=
```SliceContourPlot3D[func, {sphere, planes}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Evaluate@opts]```
Out[7]=

La transition entre les différents paramètres des surfaces se fait en douceur afin d'obtenir un film intéressant.