Wolfram Language

Álgebra y teoría de números

Solución de problemas combinatorios usando Permanent

Un permanente es similar a un determinante, con excepción de que todos los términos poseen un signo positivo.

In[1]:=
Click for copyable input
Permanent[\!\(\* TagBox[ RowBox[{"(", "", GridBox[{ { SubscriptBox["a", RowBox[{"1", ",", "1"}]], SubscriptBox["a", RowBox[{"1", ",", "2"}]]}, { SubscriptBox["a", RowBox[{"2", ",", "1"}]], SubscriptBox["a", RowBox[{"2", ",", "2"}]]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}], "", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]\)]
Out[1]=
In[2]:=
Click for copyable input
Permanent[\!\(\* TagBox[ RowBox[{"(", "", GridBox[{ { SubscriptBox["a", RowBox[{"1", ",", "1"}]], SubscriptBox["a", RowBox[{"1", ",", "2"}]], SubscriptBox["a", RowBox[{"1", ",", "3"}]]}, { SubscriptBox["a", RowBox[{"2", ",", "1"}]], SubscriptBox["a", RowBox[{"2", ",", "2"}]], SubscriptBox["a", RowBox[{"2", ",", "3"}]]}, { SubscriptBox["a", RowBox[{"3", ",", "1"}]], SubscriptBox["a", RowBox[{"3", ",", "2"}]], SubscriptBox["a", RowBox[{"3", ",", "3"}]]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}], "", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]\)]
Out[2]=

Por lo tanto, la aplicación de Permanent a una matriz cuyas entradas todas son igual a 1 es una forma divertida pero ineficiente de computar la función factorial.

In[3]:=
Click for copyable input
Table[Permanent[ConstantArray[1, {n, n}]], {n, 10}]
Out[3]=

El permanente puede ser utilizado para resolver el siguiente y más interesante problema combinatorio: dados conjuntos, cada uno conteniendo un subconjunto de , cuántas formas hay para escoger un elemento distinto de cada subconjunto. Primero, construya la matriz donde la posición contiene un 1 cuando el subconjunto contiene , y de lo contrario cero.

In[4]:=
Click for copyable input
sets = {{3, 5, 6, 7}, {3, 7}, {1, 2, 4, 5, 7}, {3}, {1, 3, 6}, {1, 5, 7}, {1, 2, 3, 6}}
Out[4]=
In[5]:=
Click for copyable input
m = Table[If[MemberQ[sets[[i]], j], 1, 0] , {i, 7}, {j, 7}]; m // MatrixForm
Out[5]//MatrixForm=

El permanente de es la solución al problema.

In[6]:=
Click for copyable input
Permanent[m]
Out[6]=

Confirma la respuesta construyendo explícitamente todas las tuplas.

In[7]:=
Click for copyable input
Select[Tuples[sets], DuplicateFreeQ]
Out[7]=

Ejemplos relacionados

de en fr ja ko pt-br ru zh