Retornos logarítmicos de preços de ações
Os preços das ações modelados com o movimento geométrico browniano (no modelo clássico de Black-Scholes) são considerados normalmente distribuídos em seus retornos logarítmicos. Aqui, essa suposição é examinada com os preços das ações de cinco empresas: Google, Microsoft, Facebook, Apple e Intel.
Extraia os preços das ações em 2015 com FinancialData.
symbols = {"GOOGL", "MSFT", "FB", "AAPL", "INTC"};
prices = Table[
FinancialData[stock, {{2015, 1, 1}, {2015, 12, 31}}], {stock,
symbols}];
Calcule os retornos logarítmicos.
logreturn = Minus[Differences[Log[prices[[All, All, 2]]], {0, 1}]];
Filtre os retornos logarítmicos com ARCHProcess de ordem 1.
fdata = Table[
{\[Kappa]1, \[Alpha]1} = {\[Kappa], \[Alpha]} /.
FindProcessParameters[lr, ARCHProcess[\[Kappa], {\[Alpha]}]];
MovingMap[Last[#]/Sqrt[\[Kappa]1 + \[Alpha]1 First[#]^2] &, lr, 2]
, {lr, logreturn}];
fdata = Transpose[fdata];
Compare os dados filtrados de cada ação com a distribuição normal com QuantilePlot. Para as cinco empresas o comportamento assimptótico apresenta uma divergência respeito à normal.
{\!\(\*
GraphicsBox[{{}, {{
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6], Dashing[Small],
LineBox[{{-9.739549144845185, -3.2234018878885635`}, \
{-4.914315914292211, -3.2234018878885635`}}]},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6], Dashing[Small],
LineBox[{{5.389488258896621, 3.6124508317404134`}, {
9.174325346727695, 3.6124508317404134`}}]}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
Dashing[{0, Small}],
LineBox[{{-4.914315914292211, -3.2234018878885635`}, {
5.389488258896621, 3.6124508317404134`}}]}}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJwVlGk4FIr7hscuEqnkWE6WKBGFX1HpHZUlHMmpSClLhRJOlhTFkaVCFCFR
CUW2I7KWd4Tsa4Ns0yyWsTODxv7v/+G5nuv+dl/Ph0fewd3yKjeBQFj8nf/v
AyXvYwc4G0g8tSQDEkGZJJR3ylL5oABp70n3cpWnQiSZioK0lUw+EuN/XrQi
HT5SyQt1u5xIXlLGKhv0B3hITJldjpY5PCTzq4Nf6tK4SQoSQ7ZBLG7Szsgp
b8zkIolJOWRFnuYmFWbZi7Ak1lFMZOrEkyouUv4RsuKNhTUsaXEbkzjBRRof
3zq07fQK8prtPqLYRiCxf019Muzi4C4JmnbEVQJpA/eU5J58Doq/br5Uxk0g
OYxNah5+z8HPlp27ps3WkcbotpyK4mC0vbF02us17B5f2NhR+guFKqz5t6ys
Yn+9iVDU1wWsX7rXymu/ipcpmw7+7/0CSldJbr3bvIIGVW9598/P44U7hv6v
iCuoKu2qd3HbPN6zrfTD0mXMesOesFtjY+zQhn8MdJbRzqRjzmaJjZKaAv/k
li8hg3ZZ8UcQG0+R3IweH1/Chlv2kmeE2Hj8TPL5262LSJHJ9ZugsrBDboem
3OVFFNRS8OiisNBTJytcl8VBT3aluWYyC/fcy/wS+JCDes0cxb3uLDxwiehV
Js/B4P/tkbqhxkL3j4Gp+V9+4QFJ13JfURamXzfLPHDxF4ZMp14ctZrFvqoH
sX+uLmBvpE6RjcUs0tLVHx97s4CisUtP7u+dxQnj+WMBBgtokRLuenvrLFoK
eiYVTszjS+XnFuemZ1AV+w7VPJ/HhGiHqeiy3/xUQSeOOI9bFrZ8l3edwe6A
S5RNk3PI31kQubFnGqkV8TckX87hHZP4kPCqaSQ2BAwkm8wh386los0lU+h/
sq8qfJmNLqf/OMlzewprRl5KtuWwsfTmDy3TM1P4MpIsY2PPRhtF+Rzja5M4
qd6lKyXBRl3Oz7vmOybwnCd1iKuJhUYspu9w0DhqwWg4zwMWXov2Dz52eRxf
pG/2ET/MwvMiN3vfW40jm+FWpjA3ixx/cwUj2ijmX+5TUcmdxUeBbRW8ZCbu
LHtClHaZxddW45pHXzORaW0gOb1zFod0Rdu1nEfwVUTthZe0GTQLTz2QvGEE
ZcTfH97+egbZ05mBDiNDaKMjesXGdgbfvrAVTkgZwrjsh+yLMr93kvMT+eA8
hD8HVYfUS6bxrsE1/5KjDFxakE/g051Gq/bIyh1iDGwLuR6xr3wKPW/ISmkS
6Xj6v4ect0enMFfDh/z8Iw23MFzyLaomETcU7msLp2ES95cd6icnUWSU+ebB
PRpqf1c5sK9tAlWLxYWXb9KQmW3pbGY9gXyeho7ORjTU4I5860sbx3UbKlsK
aFjpBMeyboyjh2djWJ4gDTfndW7qWxhDnaLqx/e4aJhupqe1HjSGZa7eBw2a
qVhUPHBQVGwMl4Y5B1ozqehawrXK/WoUN+s+P1fvR8Wq8vefOtRGkVuZEZph
TMWM4//RfT4zUXun2g6J7VScd3UwZ5ox0U97sHWPMBU3m4OgHGUEs+0enSmP
piAnVdZ+u8cIfvPc4v7Bm4Jh9LCRWu4RtHrTWnN3HwU/m1pdUY0bxleLPx5O
Fw3gnEZY9+E9w9gWV6jeGjaADuOHvdkVQ3gkzb769OUBLE5cfGt2ZgjVVer3
37YcwOR+/nn9sUEccVJRb1UcwBwjjmpL4CAGCNrdFp3sx/FQe82J7YOo3lvj
+Mm2Hw1PZ0rF5zHw/KTstbzGPpTIWZVpMGJgiohASmFFH64oX3seSKWjjYKJ
5opGH5aSZ7mK7tCx31pTsHt3H9qorBOubaEjYVmZ4KrUh4/rXp6KyKHhYj4I
a0IvJmUt1e40pqHvP9fTOWndeGXj+mVVBhVj5SWyLEK68WBG766k+1Q0Yj9b
S7nRhXYbKow9pahIrTws9Hq+EyuOaAnY3PyJumv5Zy4MdiL/cv/l8HcUFJfw
zygK7USMvuDtSR3AUTelkF2unTh3w9REWHoA1Vrs3qzXk1G9ZEHA7Fw/Hrwp
7dCSS8Z/SXYr6s/6sJHmXafw5jtGRDkl5LT0os+mgvv68d/xktXSzUrhXnw8
Op6sdf87th13VL9ysgf7Mi7bH7jRgeiRmhEV9gP7OYdpTkpt6N7xs1bvWzf+
raBDMi5oxZHZgafOfN0Yqx0c/1y/Ba09opSEDLrQMtFdYs6lGdXOZpXKhHTi
cLgjaGc14FbdMy8Ta8g4Z/rnX8qRDWjl1qB2n5+M9TopBSfEG3DRUmWw0ug7
CswIuhZL16ICn4aJ3aMO5J0V1bkYWoP+n0UW/25sR4z7TqmprsYr2wxfxou0
47NNegYyAdWok/poTMmiDZuL9vPcdK3GG6dMbNlKrdiZGiBmUfcV7TMYvtLZ
zSiknqPl4/sVu7gSR0s1mzCqKEzixzoJSxJUw6pLG/Duf4VtWsEkdNW209uv
X4+KlEnztj0kvDMgKbRQV4s8rh9IcrtI+PCU87Lg6W+YmJ9gf+lBBXL2Fey1
66lG8TXLViuPMuyR766fta9ChUQyfYZajM2lVjyFY5U467JVQPBdMfo/i5ZI
9iRhsIrBWYXCQhxb74o0XPyCI2FNjT8+FOJXXe2yO8LlGHJX6sh0XR7uS081
IcmWYMONuaYrtFx8Jralj3/fJ8wYpfvuNcpGHxMPgUPHPmJi3BUcScjCNhOz
toiMXPSOjTPW/pyJb3M0ZPc3ZeBigETn2usMtBXR5Dk0/RajrQxZJbQ3OJHy
YISgmIhmscSNookx2Gbzie3VGIFzKdlS8vvCkTSZrxCteRVvhZhWbPMIQjt2
narowSCQJ4mnxMhegyNJMChPjYXsfOdkQd274Hqrx2/47zfAf91sfWNvCGRv
JJS66r6DP2q8jpfpRcBERqJJk1w2FEP5jsS7SeBz7OfW7Xz54HPAYnhkMAl2
Crd3DywVgHWYj7DfSgpEv582b50tAj4qF2OyOg2kGrxiCGOlkCBb/87R8R0E
c11aDmV8hs0WJTv3jH6EQTe6rC8Fge+ceStfxCdgN/FOeN2sBLLhWOOlveWw
i69g952Jr5AB1oei5b/A3cN+hDOu1SBTsM3JQ78CEo5K9ohN1kArGEao1FZA
7rq0QblbLWjJCXfwV1WCyZFU/suzdfA4adpIur0SPOgK4oLeDdDT8kHYJewr
BG04/fTrYiP8ZRojzyBWA/2O6nBiQDPEuGzuTafVQEefbG4yfytU+jdvI+TX
wbOhNPoNozaw++VNjE9shPMvFneqbmyHq8TM3fEZjbCrYoNFTHs7CLGi3ye1
NoLr7vBDWfEd4FHzl+AGiSZQvk6j3bn0HZaSv6KmbhMoEve48iuTIXzU61zE
o2Yg33PcYz1FhoLvKdaO6c2wzzA70ae4EyRuSxo0+rdAcnDqdZd/u+Cgj3NS
2clW8K0YuqNj1g0MaftW0+U2kA3M7h/f/gMawxauPYV26O56Sgkf/AHmMQki
v/5pBzu/u3zyH3tgSCLz4oUn7fAkLHNrYWAvFKD4clR5O8y0EsTMLfrA/aJL
xjG7Djh6+B/gyPVDao+tU+6tDqj4/ErzM6sfFvfzuFQ/7IBXw+XVqTUD4NfN
caox+A5dDilypS8osCqzwqTLk2E3r3INv/tPeBpZJziSTYYMQ0p1owIVio98
DLesJcNNh9zT5U+owNVB40ldIcOhRQrZapkKac/ra45ROiG7zMv8vTMNzprK
7z7n0AXVV+Lm87posLfIK8W0tQvSH5Qe9jWgg+/PE9YznC64aCPQxv+JDtcr
1FwOYjf4dKy9dVBiAD13p5eBYC/ItVqPPYtjwCEnvi38e/vgWou20mvBQehg
a04r+/SBlWOsXJTfIKjKEBrcOP1QU6O2cn16EBoe1DkPdAyA5/04jcNXhkAx
iVyUTqMAQ3IwSrB3CEQVSFZxLAokVWWe7bcYhqNUMb/yv6kwPBqoSKobhlui
BTsME6hg8cdWkQr9ESjjzpDmuk+D6kXSK2r5CLz9madWk0EDntqfQ5oHmfDY
WFT/aSMNgpMq75AKmJBzxqLSXpQOH0TuhDzfPwp6PBF6oTl0iFkO6qj4bxTi
D8nqJ+TRgebuTD65fwyCWd4zfw/S4WqY96cTBWNQRlCq6nrCgIlD6VcqDoyD
27CewFIaA5gaw2nfyschsocgrpPDgKA6mqzbsQkQC/UbUFUYhNXHXm7fGibg
lLWTunvMIIh3iejTz0yCUZTMtoXOQUikaDt0UichO6A79pz6MAzb3+0pdJuC
BTdbp/agYZB8rsIXvzYF3dIixuZKI2C3ur00Jnoa8k6rxR8IGYETZf/ucxCf
AdntglZaUkyYkwzc8tZ2BpL/+/d8lAYTdngaiUp+mIHwpnSx+xQmdJJDy77/
moGAKd0ujU2jkHhWlTxkOAvszZVKWtWjcMjkuINd/CxsPOZb5r88CurCQp3n
Rmehb2iPIP+HMQiRaVGnHGFB3xF32/W4cQgyCdsv8owF0j8mvwXUjkNWzJ8x
K0wWTImV1q61j4Mh+Y1urT4bwntiNeJdJ0B3f2/g4yQ2ZFqNMAs9J0DrlEb4
tUU2WOiRK1tCJ2B9/tfr+9ZzMOyr1+TwbRJq9dQSF0vnQCNaOe3d1BREjY5f
5/5zHh5JpLy41zENAYJnC+uC50FyXEDfYmIGmqrOBf07NQ92sVb5ClqzoJbd
sNv5wgKUXMtziQ+dhRc/jS2wcQEkPCvKfB/OQrqp1NEO+AWd5lWS6b/51peP
TgvFv+D5ReGommezMOHxySlSmwPEZP7MJlMWdDNdbwkUcUCD/6l9eQ8LCnhZ
t4aPLEJ9j0Uai8YCN/Nqoa/1i8D8uJK422oOFENVvpnZLoHd2U1mbe7zYH+S
d9WGswSdGZb5WwsWgDnB3jzxchmGRBy7TJp+e1EC/zx4cgUC9cLlXy0vgF+9
YeFnrlU49tpH7Z7pL0gvvmlnV7v6+3/DE86rLsIFxRW3J0lr8JTyQaNHYwmq
dj9q9A5eh/4zdGuvd0vwueM48aM+gUjQUth5/9UylPwsfpffSiDeU9xeV6S4
Ci19h86/8+AicgWqnS+fXINYuv8lH1Vu4kMfx+ehN9fh0uXgC+3CPMQGVw0X
RgqB+O3Bhjdyu3mJSauSxsxNXMQMr/S/TD7xEa2shp9uDOAidtxbjeK6LUg8
N6D02mx4I/H/AGfZWgQ=
"]]}, {}, {}}}, {}, {}, {}, {}},
AspectRatio->0.6180339887498948,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{},
StyleBox[
LineBox[{{-9.739549144845185, -6.424606331170559}, {9.174325346727695,
6.123425270436057}}],
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Dashing[{0, Small}]], StripOnInput -> False]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"GOOGL\"", TraditionalForm],
PlotRange->{{-3.246516381615062,
3.0581084489092314`}, {-3.2234018878885635`,
3.6124508317404134`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\), \!\(\*
GraphicsBox[{{}, {{
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{-8.62501550382003, -2.8523556428167356`}, \
{-4.488098207856721, -2.8523556428167356`}}]},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{4.264036280778001, 2.7184936616092057`}, {
8.32555754281431, 2.7184936616092057`}}]}, {},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0],
LineBox[{{-4.488098207856721, -2.8523556428167356`}, {
4.264036280778001, 2.7184936616092057`}}]}}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJw9j3k0FArYxi2VRFcitIhkSdy6hTbpnTbK2Et0LQkVJaSMJSWFyJIs3Uhd
WRJlTXbeIfu+7zHD2LcZM2PL8t3vnO98zzm/85zfef569lk6GNzi4uDgWPqP
/+1tgp9+cHHwkE/LejWfTRIlD7ztSw98uYGs5dEXucNchCzobTYfvZ+b7OV9
l9vKeQM5bz2npEmai6y222Qlfw8n+RVVNQFNOMniD7iH62XW8K5Ma9+VLA7y
XbrnFvP+Vfyy9YW2sDQHuXeoLPZL2CquZWe9iL+8jtJDDguBcSuonsdzQvHW
Gp5VSYuWfLKMB9aS9Y0iVrFr11Kt+8ElDE8SU9DsWEG9myeZQ5sXsLWR5nBQ
ZgWLLOZbE9lsrEm3OV7n+RsThWcEuyfZ+GxcUPYpbRnZn6RsO7+zMSAgKGJU
fxk/GM5n/dHDwo9/auYwKpaQl27TY6DDQn2BXV9zzi2hWmhb0j+1TAzWqtz/
uGwRD3CNzPcVMfESKVk8mriIgrs9LYyUmfhK931WaOcCtklvstblY+K9oX63
iTsL+ERPXpM5OIe2oY39Z1bmUdDS+/7d/jkM4HK+eyJ8HicUHe2ozXNYVX3J
99XheRT1j3z13mgOv75TKmLUs9Hi4tqITBsDpUZY+kcd2KgRkrb7izoDW3RV
d4oKsVE8ce8/dYIMHJfK9XPMY2HlJdRN7Kfj4oIQXciShT6+6q0aSEdXdWJr
Dz8LRaRc7uQzZ5F2beJGbB4Ti5NvG5s8nkW/p9sXNW2YmBz7gJcTZrFr9XJj
jhgTlZ3/lnMdnMH15KmIhpo53FC4+UVlwgwekcn5y+XpHKrl8qU8H5vG1N23
3N8rzWECcef6i0fTaEos3io3wcAklZ+9KWrT+KivQIQnloE/u5iZisensDkx
Rf6gCQPNEnhCKeOT6KXrKvFsBwMlt9+MSv8wie9LFeeXmuhosfecNU/eBIq0
Xf/hH0THNErIeGTEGLpFhRpKEelY/3xcotp7DCXf5SXn8NIxXk37ULfdGJK0
rT95hM5igEAVSWRiFO/s1lM2EppFE50HKV+KRjGeYMA1GTGDl0pdxZh6I1hq
m3JUZtcMWgSZvdjaNoyjR5c3sf6dxnYf8yeEw8P4U6euTF1uGr1iJAeuJ9Fw
I+vFp63pU/gwIjcq5C4NOUP40k+emsL9Pk9edwoMYdRfmk2F5ZNYrmjQ50Sk
4ifNXTH+BpMY3j4Va8CioENi1P0wygRKMQIdWakULPfPOtjg8N/PF0EaG1cG
0PhT9s1DHBNopO1eoGA0gG7EsYNJb8bRQtaktkF8AL+u/5ZSlh5HRdk6q2XX
fmRkalqW54zhgxpj77f2/RjxsuzRFa0xVJD9bHJMvB+NDX0M2qmjWF33Q5s2
/gubvFeNz7mOol2FZUhJ8i98bPvpQqjAKAqzRX3Hlf/bS7YrFCWOoOCYHNlx
uA9PGeQ5FxBGsDX9oYPnlV5M+UHu8+kZxpo1b4lZ7V4899zJcofzMBL5TQnf
jHpQpZymY7VtGCMr9LYJ6PegcgJbwfYbDeUiQswaw7txR2pQieRlGq4O9Wnu
e96N/uNS271HhvBu7I0L9aQuXCK5GAV5D+GZqs5nFWmdGNIWvH5s/xDmi/KX
63h34IpHe9Lj0kH016uQ7nDtQNIQSfqa5SBuCX5A5fi7A7cq9duWcA1iOzn/
+wG+DjzkZ/4xN46Kgw9M9b2n25EnYX3r8YtUvJ17e/55aTtSrewOnhiloIn9
Q9qIcjvq3+bwz/GnYI21FOmiXRtKZ89R0hUpKKH6hK1c24pBj48JEWIGMItF
94gRbsUtV2MZnGP9+OXGkSAobEbBfvLzf//qx115y/WHdZvxwwf5/YLuv5A/
yVTjyJlmDCZnWOmW9SH/zqXMsK9N6GjTuOmKQB+mi3nszhZsQt8YiTVhk168
q/RviNJUA5Jj+W2CE3tQuE+z28m6HpVUQ4NyWd0oEcImPuipQeL5vZTAc90o
2WdgbBBQjaQrAQsb3nShgd6qI+teNRZOKYXsonRiqfD6iJN5Fco93uNfebgT
3QiOvRqJlUhJPTq48VkHGriS5asmK1C5LCa/sakds/8s+0pWL0f9e0q6ElLt
WBL+8LLH32XoKtK8OPOwDdtcTiZTWD9R8BWnwsmKVjym6KhFOvETX0Z7Oy2K
teLabt/7ReslGCWz8FDOrgUFuWZ/qxeUIEvBZ4KMzXiTGeZ76nsJ/rb/8hmF
mrHSeh+PNakEK13mAvfaNOGtntvS4saIT5tL5TPcGlE5Q0dl/UQB9kY/ed28
vwHVDtiTWHZ5SHwi4BneUIcrzZr9T1JyMe5EAZHuVov+MtE2giPZWF+8eqtX
pgZJ4meViO7ZyBESfF2rpQrb9r/OnxTNwIqO+7UnPSvRoVbEelooA2Ml1l2i
FCswxslahbSYhm8SDh+51VOGenqyTbWlKeijnNgX4vcTW6KG3xoUp2BVCpeT
8PFSZPW6aTWufcO4c6JLI8NktNdsP7Zv7zf8tuHxtnV5xGwupZ8VpK8Ixeo+
yX6F+NbkEttROBkzky6lFI/mIbg5/Xn0VAKmlmgvymvk4MrZwx8NVBKQyLE6
3PM5CytVhPS+P4zCv7tjucibMtHLXRLv10Riz7WNVa/rU9FTa6XjllckEi9f
1yoNSsKjOzrGXLte4RfVlCaWdjxy/F8qsFuWd8/H/3dO6QeRH96HocdbxoFx
cV9QVjONKVV+jjrtlS3jnH5A2dmlKuZ5DTZf/UMq6FIA6CXeqzzb+RJ4Zg0v
138MAPNp321Mx7dg95fjnBx3MLBdkomiHjEQk2N0xq/qDThLGx+uJyeArOof
X5wkI8ATJrqLN30F59Ga4l6Rf6CMc5PIZrl02LUQfK6hPBro7Pg4p9pMCKKe
sX4+Hw0E6+eaGY4/4DQ5ev4kfzwkd/y83SGSC4u7RqWpNglwQTnWk1WUD9+K
WsVJIcmwLCdO3Hu7CCr5FYM/r3+DmK5B4+88ZBjd1LJ+UTANVBb1bOmmJaDS
2dotdD0d6hXfcjdllkKjVtAp9qUMoGnmMk14y2CHqIq60N8ZoH9SWu6jRTn0
XtaK29KQAWe+/0qNya0Au9VmvtAfWeD/uaTkvmAVFM59yEjm+wG24X3FAveq
YTTGpe1CRTa4OXQcflNeA5kvh45r3sgDop9z7YpkHZznI/BmchUA48gpV7Mn
9ZAvlzh90QuhYEhYt7inARbupMU+8EYINt2jG7GnCc7zos+SJxlaDmyav1bX
BGGnFWgZx0rAJkp8NcmjGSbCeI/X2ZSANKezdfifLTCy+cIPzakSWKDzaO8Z
aAFbSVH2fZNSoI49XtZ40wrrN/33t+7/CbZ6823iF9pAJ0xcWOBSGRzV4b0X
v9AGHCb+bnVmZbBXJO/h4Nd2YBm/beQ+UQ4n7d839Vt0QNRck3R9ViVoEIVC
YkQ6wbv8jrxhQzVgQPLsofpOSDdVLD24uwZ+cAaav/HugrpkebUXaTWgKi/5
rPF0N5QZ0t77GtcBfWfjIQa7G6rv1mVdqG0ELfeJp2tpPXA/KJDMsmoCB+fS
kvW7vWD0hcka5GuG3IUxv1XZPrhSd9N+6FYz8BR/TuKg9YE4TPMruDRDpdBn
wvbYXzCv6DHj9qgFIh51/lC92Q8afrFz8j4tkJAYTvbdNwCG01IuD2ktUH2N
x251cACsariXUg+2QoP21NZ2Awp8DQgJ8I5rhRvkf6pqsyigNbVWL1TVChPe
XK42olS4Y6KvlSvaBjwedwfT3akQwuPu85dnG/BFX9/4tZ8K5Rvl4yK6OkD0
+qiY2flB4D/lo8G52gEvAlXC6r8MwoxDaHiEVSdslT+kyC0wBBHBXExXt06I
f/eSuoE0BNQpr7I+UhfoE0R+d/8agrMn5E1PJ3ZDvImTwCt1GqitCLvLJnXD
IcXlzeLpNPDoyt2YONYL98xPKrzfNQxfz8aK15ztg3J/FNvqOwydtQMmm4V+
gVeHY/fjuWGYjS68ZtH1C7SlzKj0GyNQycdR2q3ZD4quCmKkhhEIO2MlO6bV
D+8t5Kk7zoxCy2djiYuGA3DuqYB0b+ooRE50/PPBfABc9r2+1iw5BjscJVzz
RSjgyIO+G8L/8wKe8q1uFGi//ey21+ZxMJmH6CwPCvTWLBoZPh2HQkZXpHQc
BcJkzj4OZo/DE+X47KlqChTyOhSp2k+AlY7XjQJvKrwjSI3bjU3AdLS1WFwM
FVxEK3OPWk8CX3OgsJbRIKjNlU18pE6Czr5pPoV3Q6Al3W1UZjEFRadtRCyW
h0CEZ4wvhzoF36zMzxGkaVDNF3Uz0HoaOpt/bNaSo8Hq0wP7TManYerqs6PZ
J2iw1bQhVtVxBp5dMN0ddJkG3c632BpLM5C73JLrkUsDF9km3mjvWeDMPDGr
dWcYKBrzjIO8dLD1B/fIZ8NQlb04pqlPh/xbGSMCOAxiL/81xCg68OcRLStr
RuBDCIPv/TAdvA70EAvPj4KNiNyDuSMMCLH5/Mk6chTO23on93oygOSnEha1
cQxY41qt9o0MYG34+Pld3zjolEqrVkjOwZTSL5XQqXEYzPBJXXs4Bww1TQu2
zARYW+nUHq+egx7hjKLzgRNwJXjOKlySCTsVEmKcZyZArcCZdcqdCQU33521
4p+EV/qH/7zWwQQMKvq5cWwSRDbYv9uhwoJ+T62lVtMpUFZ5cTP1LQv25Brx
75iaAub9tIumv1lwkZXOPqkwAy2rvPmWVmxIOWVLEjCjQ6fOTsM/GtkQZsk3
qvqUDqz89tfZZ+ahcXue3UwuHbKotEXMnAeduUcjhZV0WMzhXP+osAABJ66l
FY3SIdv9qm9v0gIwrxJlzc4yYEukd+iOQ4sAfR4tAT5zwJqvdOTLW4SwYDPP
Um4mTFzV4owlLkHYoBOXkzoTju2J204fWYLncZS2q41MUFOVIOoELsO52Srd
IGDBqvCVTfZqv8Gw+RJP9VUWBNsOKz5e+Q2HGFTF7blLkCJ9TkivbgXEAwLj
+bOXwUZq1rwqfRWEuj5XHvVYgSxfAkkrbQ1mktqPh9BW4FQ2Jby2cR2S6ze6
mLzhIIBod6j+aw4C5xq/fwmTg2CrYphmacxJuBqSjNRlTkJZ3vLQISMuQsQm
JX+SITfBr87t494CbsJzCyemfcsWQo76mbhwpU0Em4bLl6yCRAn/A1zCWdo=
"]]}, {}, {}}}, {}, {}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{},
StyleBox[
LineBox[{{-8.62501550382003, -5.485558191362114}, {8.32555754281431,
5.303705637831441}}],
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Dashing[{0, Small}]], StripOnInput -> False]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"MSFT\"", TraditionalForm],
PlotRange->{{-2.87500516794001,
2.7751858476047704`}, {-2.8523556428167356`,
2.7184936616092057`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\), \!\(\*
GraphicsBox[{{}, {{
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{-8.694948115378702, -3.0278639449241225`}, \
{-3.4015357976266287`, -3.0278639449241225`}}]},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{4.015701989439402, 3.4662317887317755`}, {
8.237675916947204, 3.4662317887317755`}}]}, {},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0],
LineBox[{{-3.4015357976266287`, -3.0278639449241225`}, {
4.015701989439402, 3.4662317887317755`}}]}}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJw9kHk0FAr8xcfSK9UrRVJCQhpLKK+M1FdKSK8QL4Sk5GUJKaEsJaKIV/ZK
RMkTWZ49viNL9mXsSzRmbMMYY+wTfv3O+Z3fPeeeez5/3HPuuVK2LsZ2vAQC
YemX/ze/QJ4RWXk9+ZTv1RJB0gbyjWwbnCvgJyd+kvL2kdlAvnTk2cMbJnzk
a2zfNfVkPnKryJj1oCkv2dZM5J5KHB95q1B+BX8YDzkvamH8BJWX7BmaY1U9
TCA/S/afFTImkP/yzRjLMCWQL8wl6Df4rWHlQ7/CPRlr6JlrtI/fZRV5dGou
D9WsYvGOj661jBUcNCQ26CytIGnuICk7YwWVvnW5OGms4PfwF4F+7itoPHK1
8EHIT1yt+rzLUZWL/UzKRQM6F0vCTuy5qcLFbNo2Szl9Loom3fpSrsRF4ZOk
4ML8ZUzQ3Ow2tI2LX6sMTMcUllEog/Pel8BFpZb9UpTUJRwNe6vQ0b6M4nny
lALiEjJq9SfpGsvo7iAYsZS1iO8+1uV9+NXL2RT0auvxRWT76vknyy0j563N
+8DGBdQ408GMWV1EzzZNjYWrC3hn84mUD8oLOBfRvbh5eR6zw32YmRfm8YCF
6xXvqHk8zHO6QOz9HCrKH9n08/A8CkeGkahv5/DdfrELf3XM4YyhKLVk7xyy
0o9uMfGaw5K8l4cCBOdQQ3ZvfZXkHIodHSCqiHEQ3myl+tfMIu3BZ6kwzgwG
qLsNWLvPor7knawPC2w8WXVyWXPvLDrso5k5d7JRIUPtLbeJgwSugaJ3DRs3
FSRs8PXj4BVD7frl3Wx0f7PCTFPloN8TheL8zWzUGonWsB+eQanjOv7k39iY
s12u+W38DI5IihFZb6aRqrliAEYz2FMjIHDcYxoZB5SGDgnM4NgXN6WNMyy8
9gblb35l4/HJ81lFQSy0VlrmpTxgI7lFLd7uJAs7Yc3JWp2N0Zd8ffXWT+Ej
Obk7hLlp5DrLex6rZCKfbJhwes40xk2ETC3fZOIDNxtZY7dpXDdi42mRP4mM
4Xgdhso0xpLEukd+TqCkV3xU6xALy6/uPHfLeQJjCryuPbFjYeYj65N+thNY
IXJIijY+hUMyBHeSzARmhyrsaHOZwvcrn0vyNkzgqU+PQs4sMHFL6fpTDT8Z
qPZssEDJn4larwRGwxcYOGCvXuC1kYmT+hR2+HMGtoTrOe6JnsSFm4Nj1O0M
zCA9u7tBehL1KpXvuUSNo/mBCDnV7Al89tK/423AOCarBno81ZpA3fV3tapI
Yxin187a0MpAuTX9XQKcUYz+pygzyZaBxt875E9kj2K7XaHx2blx3Pbqaict
cRQVdvbMLwaPY4TZn7qOMaOo3PyKmCI+jq+PHd8fHjKK2rvDh7Vzx1B1wmn+
C3cE0994P23QH8PjJNuf5KkRpMsJdqlTR/Hy0Spzo5QRrK0Sofl5jWJ6yXxt
tPEIxrfz747fPor8H+32ufCN4L6Da3/4fxpB5hZ3KoEyjD3hascUdEew7Fih
I9FkGOO1w9wjh4YxTLAp+Ms7Oma2pTrk+Q7jqSxp6fSndJS7vofxRGwY4+gn
iadN6RidS5hfV0RHw9nolfR9dOyPS60lXqKjs1tYslo1DfWlY9qZczT0mki3
fe1Ow0ZOVsG5KBpyKgSKlpuGcJgbrH3yDxreVw9QOF0+hAeHR1yrO4bwnoae
Ls+FIQyauvV3l8cQ3vHYkPVQdwh3k1w8XESHUKqQKd0uPoQWdU2/Py2mYspG
1WF1FhUPfRWr2mdFRYL+Sn5lJxVJ9/NN/iBQsXD4n0OSkT9w6/2dUaXJP1Du
3p46WbMfaKRz0KdA9wfSEkVlX+8fxI0xmSdPdA+iqeGBdA5xAM2zm6ypUoP4
rC3YyVtqAInTUXRDpwGMmlORDDPpx8/jrjGBBd9RuWnTRRlKH2aajjh48n3H
E0acdGvsw6C54377DPtxmJ6w92hhHya+0JH0edOHciI8lI7UXlzefKjs4UQv
Gqy/65D1qhcF4uLniBq9KM8NeOLt0IsTt0IDXEJ6UE5gS7K/Ti+SzuXpnevp
xlgJlaX2g71Ydib5TDGxG51D1dPK3/VgcbBoQq53F261eqR6JLYbq1Ldwg41
dKJSYgvjh3k33rUSd1GV6EQxCwVjBYM29PGRKfzXtQNZkvs+LBF+8c7y+diK
duyp+uA0/IutK/la50Xa8ZballsdZAq6HgziQ4c2jGyc1W2+24qXZog2k2UU
PK+2LS+nsQU38dMavIQouGejYzEpuQVDm0O1bf9uRbNTqv6lJi0oZVZbn1ja
gqsv9Z6dP9KCF5PHA1SEWnDEMJf2orUZX4SWKuyiNGHk9k8vMjh1KMOw87Dx
bUQ7jbPPGbK1qDEv5KGk0ID1l0+xtM1q0GanEcWjuw6P/kXK99KswR3Id/Zw
UC1WiHq9Whj9hulHorPN1WqwoUJ5b6PmN/xzTY79Y6gabT1f8ubrVKNJaw0v
+Z8qlCapfRborUDvC1+mmVqVeLfwZpZ8fxmee1bVdnX6KzpYSAQ4WBRhvq9X
6/bEcuwyDEkWdM3DiPcxuxcvkNHIp/904u5cbG9spmwjlOGC6ULmacUcFFyv
QfCyKcFi19q2Z7ez0fPx3fPC5YX47V6Ozd7iLExVWr1EkcpHSlJryWDCZwzn
f1Wa9CgXg2VvO2lDBjr1HZV2o2VhGJE5NjiXhgYCD82tgz/henGe9sreNBTn
X5yL1E9FhZiw69TgNEzzaDC8tvEdqo8bFV/u+YiLC7tF/4yKw2Q+qRNdA++x
20r069SB5yjpmKyoQYrD6QOfNVZ0byNFMTTmamE0uloRrwfV3oOCL4ESpKR/
kHDjFnHGMwL+EZhI59sVgdMd9q+XeF4B4f90pmayebD63f8zP+Od6pktH6Fk
a/paAOkFaBt0G5tcygD1jIDFEptYMKCxXXcaZYOt687ZHuHXIFUf5eazkAtJ
2bqJ948nwnpBnf6phHwozb509f6XJJB+7Brpq1sEM+FXLJMsk8HuEisX2CXg
oALbJkPSYUVt5bnO6zJoUufW3Z9Ph0d8Cv1GKWSQeNAWIaCSCRI/CnmPcsth
atyeXb0jG86Zuen3G1fAO0Hxg1sn/4MDj53oBumV4E/60CpunA8O8qPKEfzV
IK6er5d2tgBuzGfk5Fp/A59t+s70E0Vgkf92b3lRDVTIWp/WtyqC6bN6VhU7
6sAFaUqrk0UwsDnat+p2PWx0I65MRJXAZHB6M6WlAYT/vWLfaFEK/S+b2+aV
m+CrR4CIqwAZtHt89I9HNEO3Yrm6tWQ5lIs0ivR4tgB/g4ria/WvkPX0+qCK
fCs8Pce64BNYDWaCnlqK/a1QHCUmuu1jLZDcXRNbn1Mg/nJUUJtYPVxvEw2V
024DLmQOXRdoAHv75EK1+TawKnY7/yK8AQaca9YR0tvBqCRg3Na8CbYo8/hH
2HTAmW+WrayaX7uEqbZMkU4YYDr6MQWbwWxDuJhEUyc8IBK0+s63QJf7VQP5
oC7Qcy4/JmbaAjJ33tbtgm7omZp0zuRphV28Dumzi91QP2a5JBfcCs7bWzQr
cnvg9LZc17q4VmCwBLc8d+kFytDnvWd524FsIThjpdgHnkrHLh52bwdhPQKf
JqMP3OaXz/IltYPv3dMfVNP6IYkkv+c5pR2M7SIj9G5+B3G71TeSF37trrSp
eyo/AAd/OyV4zaUDbmU//I+XOQDnSvt5bCU6gU4//HtJ1iAUflAxzPmzC3iT
87wHNX6Ag5Ysz3dGFzzZfpK7OeEHNB/03Cdo1w0eD/fzT/JQ4Y5ZxXpWVDf8
19RY/+gGFQyEuCJ7jHtg1Sm2uqueCt96sgYWU/rAXSjhX7bqEGTty+kpUv8O
yfxZ7l2xQ7Dfp6w1JXoAyDfS7CMINPDucsnb0TwAgf1CYjI3aRB3YHPq6OIA
SJgf8Iin0GBdtMla4qZB2LTlj2KuJh08RIJD7VyosO6v208MP9IhvSOlwWqc
ClkpRrQk4WE44W1gG5Y2BK4txrD0cBgeM4Yz0lTo4P7E2d9mehhucd+4a7vR
wc9VYv3QlRHQqVInjqTQQdWeWBjcMgL0R60fSYRhCPGU+c1GexQ0ewL4qNRh
+NRE5brnjUJbnRRB8tDIr99adVuJY+CW7HD1vucICNZ56gW+HQNekYkfnetG
YdeE2O4EkXGgv83aF3pmFELrK9/Lh4/DEbJaZu7IKLw1rc/WEGAAyVztvrT8
GLjOb58deMwA3fpPapnKY8AtOLyfyDsBOn43LM84jkHWxmYxxYcTsH+PZKNL
2xi0S1n0cXkmofHcaYLapnGgBecWZTyehDiZhadHs8ahL2zU00yACR0bbtZK
lzAguCzGQTiCCaybHtuOzE5AbFxYNFd0CiyfHFTgBDMh0Ut0hJgyBaV6ERcv
xzEhK4JjUqrKAu2Iv5X9vjMhofDlgc5yFjiuUdxN6UyQyHGPMZCfhg2hrPMW
vFOQGUjjFbo7DbGZxQX0e1PwXfNsvmn5NNwpDZquuM8Cz78mWohb2TC41pGc
EcuCuHMP7VOt2fB4y4OeNe9pyLj+/OvYZzZEJGx1C30wDayu0g8b+WYgsPKj
poIlGzI0LdMUzWag+Mn0S6unbPhQ6fTS7fMMrCnY619ms8HS4HHn2gYOrJM0
FYzWn4HN1fY7ee04oJTkmLn0qxdX+6gttYIDyzwW7tJKHIhe+iK3X3YW5CJ3
3Dh2lgNXVGTLC0NmIchSaeGjDwdot0N4k9mzcCJtoHHcjwNXIcNZ1WoO7gnZ
VosUcEAinXKtpGEOjik7hdiWcIAqYGX2XmseZEMOSzPuzEGIyb34a0XzcM5a
tW7/yUWIcnEf9zm6AK5ht9+dv74IKnax4pElC1BQtlxy8tQS+P0INLx+ZhFc
o+pScv5bBvEAa5m27kU49NyL94zRTzgbJrlnwX0JrNJsvx4O+AllgZn+B3Yt
w4kZlcii+p8Qe0NGXbRuGX4GH7v4VHEFdKfvRrKDuUB8QNzh+WUFHOjCMs/N
foK5JSVm9+QKqEg1+NdorsBWX5NnfX+ugtDr1Lj1x1ZB4ndKmJ3NKpgXZgeo
X14DkZTtgdc2r0G1bX9qrwlBy9fpv2suwgStRze2nMoT59EieahrOErza20O
yrbT3MOr9cEqflOF1DqtbTxPkuv9+LR2GFL/DVPcqGUX3vdH9MI6rb3p9iVd
xZu0/geY/0FW
"]]}, {}, {}}}, {}, {}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{},
StyleBox[
LineBox[{{-8.694948115378702, -7.662463419291668}, {8.237675916947204,
7.162743031508085}}],
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Dashing[{0, Small}]], StripOnInput -> False]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"FB\"", TraditionalForm],
PlotRange->{{-2.8983160384595674`,
2.7458919723157345`}, {-3.0278639449241225`,
3.4662317887317755`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\), \!\(\*
GraphicsBox[{{}, {{
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{-8.557314213621972, -3.5981403826688174`}, \
{-4.556517431185752, -3.5981403826688174`}}]},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{5.015626009030535, 3.89671083743314}, {
8.567038225661562, 3.89671083743314}}]}, {},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0],
LineBox[{{-4.556517431185752, -3.5981403826688174`}, {
5.015626009030535, 3.89671083743314}}]}}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJwVjmk4FAobhhlUtlMpHQkpSVJRlpTyTuLYsoQSR9RRSVpsIUtlCdkSUSlS
qRQtlLK/Y1+zjGWMbQzDjJ2xjvXr+/Fcz5/nvq9nx3+3zC4TuLi4OH/y/1Z6
sV+4pnENidCq2LRcKUQyXnWRoJrxkmwcourt+daRlDLU1E4OE0g5+8o/9tXz
kUqydXTbB7lJDaZ2IhqFPKSZ35a3c6S4SW2si5KcTwRSj2uETvxtLlLUC02n
f15xkc4reBCzK1axdvlUz9b5VUxkSO57Vr6CcRviW93frOL4/rNQSVvGlFSb
+Vsry0jrs+ttFF5GIXf5I4yWZdScizOpP7WE0RlKvFHrllFXpjSr+/kiKq9Y
5pr0LmI+5cSdOvYCchz9GiO6OejFkvrNOrOAyeNH19Rnc9Ce3zegsYiDjAjl
drWoecTtAuM3VTm4Wj19yVxgHsXTBqnUr/MomtYVoNszh3KnnQlmSvO40fyF
FdF9Dm/lrJJUf86hfK61SN7yLIYmVNYuEufws5K2XE3pLDqOeD840DCLviU3
Fr5tnkWCdbDFVftZdEv5Rwh1ZzBO2a7DdGEGT1uPXv55bQqlab65CU9mkKys
4lVycgqXHuXXcB+aQf3wV+tN29i4ZnRTlj55Gq3ti/0LYtl4fNN7PHZ7Gjeu
vWbfdZuNi79tGZ/Ep1FUapuplzMb5Ws7CY7FU6gXerhV6yYbt3lvO2p6fQq3
WMWdG1dmo2qRls1xsSlkv6JFbnKdRBm447WhnI38ItGTyRsn8VbjV4/0P16z
2qgAr8kJfHdapXh2Nxs/C5sUUhomMDzpLheFOokSpnsCLxhMIF1egawWNYl9
5Ajn0b/H8bKt90tu7UksoE0pCd4bQX6+Ratdi392+l7iGeIj2GOq7RL5fQK9
CxIspYqGkSbVGr3vxgSKuxr6b8wdxk2Cto/YchNo7VTIMi8awtyi+6/eVIyj
xYVFtc9aQxjim2/qeWIcr7q43NOeG8SFEJMEg4IxTJC0Yq9xHETGR1UvPo0x
3HY0hHKFysTtM7mWMbmjuEH6RaOaDxOHFW3nOzVGsVc0dpeiDRMl9YdNyIUj
KMXJtx04wcTC7Y4uF06OoJHJzw0tCwMovRLo4VE1jO8ZuTxPRwfQdf1eJ97T
w7ga9OqHsMcAeu/eqrFIHcI0iQ5GLt8AlmbJvj51aQjtfIcnWF/7MWK7gNjw
+CCuaVnJMXrUj7Y5sbVVvoPIarnb2GPUjzGH1j3uFBjEhIf5XkIa/dj36k3j
3wksnJelxphWMJBmJxjmvJeFLeu/3X0Ux8BZ9wyNzjwmdlyd1ufmYeC3/jGG
qTETN7tHhqp09eFhHcZ8KX0ABQv3bci50Yc6xRxLxT8/h0rSCib8ezHur1m9
EMEBnMiNz6ETe3FaNtG19HU/Jpm9wyM1dFz1qW7pVu/HXz4PSgMC6GhwdbGi
roGBemtuzvVdpyOlEcYiHBmIfs96tljQsVU6VF3kzw+xsAO75LToeOCyXpdl
Yh92r+d7FNvWg3U3HM9YqvfhsH7b3QlSD1K0/M8JNPdifmDfmFtYD3ZsMaJe
c+5FdmjjGoegHrxk7kBwE+7FE/xPvPpMe1BnQEVZMo2O3Vu/qrLe0/CVA9+y
vT4dmTmlXGaHaDj/93/SWqw/nFsW5u+hYenG0LDMkB5kWgWJSKZ0Y62NgPk3
uR5MOl/+RMGwG02zD7rdiKah422XjcY1XRj5jqwbQO7G5fZLtJOVXRg0eu9w
vGg3Evb73S+X6EJK0N6EZKsufLLi5i4y3In+5Z/XPU/qxIT1bxQO1neixodA
K09GBwbrF1+KP9KBVakfEpUVOtChNWk4aEsHyp94J1nu2o4kb5ugYIE25Eqv
OyuXR8Wq2E12300oaGH1fN6El4orW8ZfKB+g4AN7yV514zZMnLFw0KltRZ6P
Wds7nlFQcoNha+lwCwabF7IUGa2oqZs8JO/UgjWkW4lKSq3YI5n7VESiBUMH
mkpbfVuQXOz35XNEM0bdbBaQqG7G0gaCqxS9CdOZdpoLfzdjUpKYlOrLJjR8
kGLidKUJ32Ys/Dp6sQm1CXbGjllkdD5Q5NlGIaOBxbGrY7xkDH1y96GzBxm9
p04xpy0akVvkwfS20kZ0iQpV8nzXgMK1JB1L40aU3lccRBupRwOzSzw8Gxqx
VqPySuajOrxY0Xbo+eEG1Ndoumij/Bv14+7lmefXY4Bt0iKZUoOu7mkx+1t+
4yLDr1fQrxr3lAUfpdBrMDyeMLy0swrvZncOO1NrUNIzQ/hlVQX+5XVB+Nq+
KqzXrbtEcy5H1bIZZb4vJOy7e3hvgVgZRgu8K3bdR8IxF7MshaIS3Cif1n5O
uBCv+K25s+NaMYanU5wKD+RhB085d9ymIkz969FHp5ps5FjqMTneiPlCOnZW
478w7+3IhuT6fLxonOgzEPcD+8y5JARkcxEyNC8PaXzHME3zSlmfX3jQzS87
WyITk5e9Z3saf6B/qp4zz0QGmoheSJGXz0Q+HuOrh6u+4VrrzKYO7q9YrOhU
qiPxGb9bvhs6nPkRZ0xldv6cDcLO3YSN2vYpWHEjSTWsxA0qllyac+ST8Kju
h9PT6p7Q0Rx1pTAyFq0ePcyJkIqDniH5ySSGP96MlgnpfR0Hu3mK82MjrUFW
ef7JfHQiLDlZ9/CEhkKuuKB1LCcJQFSu25kWD/tVNk9UL6ZCvBTf7p8FySC4
+dbrD/QvwPmn7pSk0HtofCxTIrfmB/R7uuze+G8aGBZ7/Bdd/QM2HccQ6zPf
4KVXRYnm5V9gJ/uPVvxyJmT5MKMslnIgV/jiE6P3WbD/cA/hmEo+PDc+ciXG
JBvUpVkNnlAIy/YDOR6cXCiISJe33k2Cou/kL0IpBZAiciqxyJ0EvCpPtb7L
kSBc26koxbYImII5pjV+RcBrWX99vr4YbjzgVFg2F8PVsr7HDhklMH1Hh/c/
hVJoq+F+45RcCuPBe+9MBZSBUWMBUzS1FFpNir6LdpTDFl1a+HmVMpC/l2JD
Vq6EoLulauvSKyEyaeaIcmQV3JGR9pwrqwTCqPNBLWY1uGZ4hTusVkLUlccG
/Fq1kOQWv6fBqRpMT5Z/i0n8DbIPn6lavq4G8sm8LBanDuw/cilyLdfAloT2
wTCFBgiRpWsKmNTCbRHCuZj2BjhUnfDI8mUt3Pcs/2tDWCM8FrU+71NWB4Zt
WY/4j5LBh+e0rah6A+gGt90OGiIDZcbASrejAU7zS3kGv2gCPvE9JhkmjfDV
iXpZ1KgZaLangk/+boQYttGhw6vNUKtRvbNgMxmirhmNTGa0wMAuifM8mmSo
1x4sNbzcCuwQIcHrV8gQQTm8wXArBdyrIpNMvMnAu19Rd/Y3BYQza6JUHpHh
ITOe3yKwDa4/5jG+RmkC6y4RaacjVBAf2x1f2N8EPEp6d7UmqLBavVfPdkMz
7CuT0qF/aIerm2s8XG80Q/2+HWXGFzogWCXyaslCM2gqLN+P2doJHnaeav7r
WyDEQE7pR1MniLyenGzNbAHKupSivKguYOUGqj2/3gohLhzbDINukLx3vEtK
kAKx8qduJa6lQecLn9y9mhQwP5aWEFpGg3mJOv+s5xSol6oYOK7VA+O+ZZW8
m9ugsklbivimBx7wnY5239EGC1SpH/UEOnAb3vfeZdMGb+WLoyft6fDcT6L1
wHMq6KZOln8qo4Ndg0ydaioVHER3xXPt6QXJ94oS0uVUoLXx35gP6wVL7oBT
7WwqtPNqjjwd64UajcqVAOt2qFfcPcgw64Otq18Tnzi0wyE5Ppf+X30QNTJy
Rk62A6i92rWvJBlgM6Y8+sapAzpil/zFgxhgsW6IrhvZAYZ7s/+1GWaADO+Z
hxNGncCtGeJ43bwfWhYiSUPZnTDPtFpjlt8PZ2viwqsGO+FpQ2bn5t0D4GhB
ct9D7AH9oJ/D+dEDkFlkIRkmSAeNta8jzJYGQONZ5SdbMTpkfkjz6r7KhOqO
MtEfZ+mwoHaz3rGVCemqk2urzHuBvqNSckWbBX93FpNnenuh/6Ld5Xc/WJAU
IFzVvqkP4qdLd12THYR0j/JDRB8G2PmYXrB8Oggxp3y2yq/th2h6eZqXwBA4
zFzhrZHth0rPXpX2u0PgZhssduFyP/iyWupCp4fgwB23FWJMP3g0Dqw8dhqG
x2EN7VkqAyBFIgrwMoZBlHPWX1lnAIrosnxj50fAMtxcYVqGCTsEU/vsqCOw
wr+nvuEJE0YmxSOunR2FxPx1pfYyLJD55Tm8vWUU9mgkbZsyGASWE1sw9swY
bNo+ZDTbMwjL+kIH2ihjEJVdn+bLGIRwzTsMXptxqJGr3jkxNQg5gceVlXrH
wXB2WoFgOgSbrx+zOqI6AUMhrdpTzcNAv/fD2s17AvQy9oiUGo8CPWOnRjNp
Ala/LAgxY0dB8ApVxmndJNTF73D75TwGDnjuit7pSaDRrzbyp44DPYz/pd+L
SQi+v03i+x9P5KpNtSRzEuSNRSx17k1ASqZIxHEVNtwykCrI8poE50NRxKkA
NpQbPvMLVmKDbLKllmUTGwISi/hNgA2qO3fsDpKdghCqWGaaFRvEOzg8T+9M
Qei2oS0H77BBYX9e7df6KbhoU7JVbNcULB44/mVSbho8E/g6nydOgaZ70MPA
gGm4l6rinCQ/DbzG7LvRtGnwD8zP/fVxGpYnEuL0YAaOVkurpd+egZ3Ef4Po
r2dg4SQzMD50BmKfHH/3dO0s1P2SOhpNmwHuvEtSX51nYW1nVLnx8Aw4GVmZ
3O6ahfNfPvF+EZmF0MX38VrGc9B9vpBLznsWXMS7w3xL5uBfdYMTXmvnQC7T
uPbZ8XlI2ETzDOefgy1ClW+lC+Zh+bWw4rs/XNF9VnaWFgco6lWBHNI8/HfN
+pRYPQcMq7TWs1QWwEt/OV7RfgFmvVLOZzstQKG69ElRrkU487ZGPeLzAugG
vbkn+2ERiH/p8jwmLMHxc+5bt1gvAZfMv1LiO5agQ1szXWzbMpgTWLbszysw
EqXCv350GQrbK0YibFchUWdpprtpBX7KelUU9a2CZYSFwGrzKlBLmxOeJXAR
bd/6fDriy0XklBP6mMVcRPeVf9ptZLmJF1a6xdV9CMRjgyrpfhPcxN5ntp8O
7uIlfqbLvhiYJBDdLsWx7lPXEosUL/r7WvESPT8YtiR3CRKTayRcb7atIY5P
6eR57FtP/B8v3Fr4
"]]}, {}, {}}}, {}, {}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{},
StyleBox[
LineBox[{{-8.557314213621972, -6.730706963341009}, {8.567038225661562,
6.677415739228952}}],
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Dashing[{0, Small}]], StripOnInput -> False]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"AAPL\"", TraditionalForm],
PlotRange->{{-2.852438071207324,
2.855679408553854}, {-3.5981403826688174`, 3.89671083743314}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\), \!\(\*
GraphicsBox[{{}, {{
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{-8.282742573545612, -3.7696723729864274`}, \
{-3.7842085071390166`, -3.7696723729864274`}}]},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small],
LineBox[{{3.0076215921420832`, 3.037337418556066}, {
8.273634113938336, 3.037337418556066}}]}, {},
{Hue[0.9060679774997897, 0.6, 0.6], Opacity[0],
LineBox[{{-3.7842085071390166`, -3.7696723729864274`}, {
3.0076215921420832`, 3.037337418556066}}]}}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.007333333333333334], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJwtlHk0FIz3xifSIkWRhFJkfROvtyxJd1KWalCSaCNLG0XSQiVEKUVZk1RE
SqRkKeEOirIbM5ZsM5jB2Ga1hHz9zvndc+75nOc5595z/7nPRhcvW3cRAoEw
Nd//R2YQV/uo7CKybt/W2b0aK8h5EoY3EjJFyXlhipumSBLk2pTGGs4BEbIV
G0U7NBeR7TWehKx0WEDWmkn1MgleQE6esfbJiiaQT9fr0z8FLiBPpRyuItHn
EKw/89ZtJZA/n+Qa3Kn4i75Hkr0LdQnkXY8+OrFrZ7Hl68U/VjdnMXRPsWnZ
6Aw29Nta6yvP4M3/8jLLVGbwW0K0IDxvGt12TI6pnZvGHQ2JjMPz2vqyTK5q
0R80arX3k7k1hXV2wtmX8n9wV7vhgZVLp/BhH+HuaPAU0jpDRQO1J3GDe8k7
Mn8SD35aNGv3bQLTmq/LLvKcxA/WB0ZW2E9g4dvEnd3sCYz4+WSE2CHE7XJ9
u6K8JvDukocuC9uFKHXTihY8NY7rxSLboyyE+ICZa7I5bBxP7VjzXDFDgHLi
D0sVFcYxn8IS5j0SYG9GswbvkxBL8xvPmJEEeC/HSfQISYg5cU+PTt/iY7h4
fDCBLcCVOZnU2Jt89BmbK8t8IEDiMcvDbz34WOqwwGPjFgGmSty0adbj42Y5
argWlY/0nrCzDzg8zMzTzU+Yn4uQNwl5mMNDl2VMAzN1PrL2mdSOk3h4Y0Lc
fzGVh9tNTk/4ruBhjneAX0kwD+83LnwT9Y6LfrqJdvv/m/dt+1dlpXBxXPoY
+wmTi+TsM1r/eHExW6/k3vUELnafUI2w9OTiei+x5H5rLnqam8/47eVi8Ibv
Mb/EuBjXnrrsVC8Hw2HLNfESDuZU6re6NXHQJc+uL/4aB6kyCeSOLA56/TZp
ddbj4DG9gUcH4zhoSeesed8xhpsKPjpIOHGw0bQjq85+DE1+9VeqzPuD1Z/V
VzaNIvFUQKLP1Cjq6pJXOh4cxQig3TlOGcW4D3mpEY0jGBu8zsvvxDBqVc28
TDw0gmluauSTz4fQPmiFhkfLMDrOFR+39xrC1P6TbwePD2Nw08ULROkhtPVz
+7Kwbwhf6yzjni5iY1r5UdH3nkMoMNC5OPWVjbdSPPVqxtkYEBJ9PTR9EPOp
s60OwWx8HezVlVQ+gARXmoupJBs9hrsXaz0bwJlYnuiNpEE8n6Vy1ebyAP4g
dr4Tbh5EoSTv2zMmC7tULUfTigdwr3oCtYvGwhAXhnigzQCm+xr8Z01mYYHh
v3XXe/qRvU9D/bkKC+WcPZ6EXu3HLsO/7m2TTFSyldd5vqwfFbWPGBt9ZmIk
PeJPTjIL2yxiFz4NZuIqBuEL2ZCFKRVvH8hKMrGSYRNb1MBE6mF7w0RqH04U
26m8OMfEs+f7TgxR+pD8ON/mhCgTrU+4Esqie/H5uL4TL6kPz0zvufxYqRct
qecHDhv1oWb+26SKnB6sm6TVBdJ6cbApu+5cKQNpI847PX16kU+a2aAZz0Az
zY3pK6V6Mcnt3EgaiYH9CZ5fz3/owTCr7Q3HxRlYZKjncsmqB0XNV/+zY5iO
EcwnlUojDFTWT/E3vUjH884fzLwfMbA5P7Tghh0dv37I9TixhYGgNOLjuLAb
Xd7JTDHq6fiw82mK0/0u1KSxfk9eouO63YaqF3W6sGjuhmaSDB1V2nttH6zv
wrEWNVKMVzeOqZRpGq/twudw7tJ4fhdO/Hn90sK1c/7v7TqOzHViATFpdV5r
B9rmbRvOtuzEoMv3ZRmv5zUlwHQ8qgP1+BHXpL+343IjN1TumqfqvhbtiN/o
z8gK0NZqxyhymm/VwzbUDs+lrrj2G5elJLUdYreiqcr9/fi9DSUctifTO1vR
2WT3KwPpNpxNNZkoLmnFNPZlsrdLKxb5f897c7oVPS4WVrrmtGDeX1K6Oa0Z
44Ouzy4VbUG/2hmR1ms0VFmQSjlu14zNiwesDCOpqLQ8t/vwGxqWUybbusIb
UaEsvWd0kop/hHbZZGIj0lo3FW8kUZFYtbL6q14jfojL9Bl42YSJ8upq7l61
WB/LVDMRUNBbi5dQ/LcGw8WmFOT3UvBK+paQyMBKjFQQ+eT3ohFt0jM7IvZV
4OydCGd7QQO+X/vGhnr4B8bkbMGMfQ1oJhtFN676joGrtAQ9pvWIrCO9n4fL
0exz6Pt93FqUN9O90iBTjhszQxyDX9WgK6vfYltIGTpotXXcPlCNigcXtqcy
yKjw8Yqx0YIqxPyy6meyiPIv9rxKzfmJ1pJ3fkTeLMaHlnyHL26VSL+35tXG
TcXYZlTfdH5NBa52TbEvVPuGjCO5STnzd2TsU0+ySy7AkU/izncDyrHtb8nu
IrkCLK2hdHXoleFutfpX9yby8dcBHM/sJ6Oj53n/lCv5+GN1vn67EaJBsXuf
sVo+ivr7ZvyTVoQk/bmB3qxcjA/3DDRaWYjmnJdHbEo+4+NT7tL8WwVYf6Op
SkfhI7Y+oXWaD+Xi395TFnGG2dj28tFVFccclJntKc+I+YBXJejyYxHZ6F8T
Xrw8KhW/Xznf4OqZgXaMsy+jT6ei/GbfkuB9abgE/LXuNKdgwYYPuZqar/Ae
h36zST8G11tO61+QisOPCQW+To3RWJUhU7DuxT0k/H/1x3+xN+92wMLyg7d5
tBjYEHp6I+l0EKjaJU9E+MSD8rZNniGCKIglegmvKrwGny2hL87rJ8GYtXoM
7+FnCEtZ4hhR9Bqu+MuKvNv7BcyH/5736noLYrKVNkpzX6Ev2DfvD+ED5Bux
Cd0fCkGyvWW3ZtQnWPum1FLNoxjkapXekzblwuIL/f22j4qh4nk2fTI/H6Ty
mGbBs2Roqci3gn1fIQh12wudS0Enr+Tav13foLukzlt+UTlMHyAsZPiUwIXS
svrSgxVw7qJbp04IGQovKez/8rsCjrOv/XCqL4X1JIt/cowrIaw+23ypQjkE
hUXJXXauhKArjiHbznwHA+bkhQTXX+B7xLdw5PMP8HXy6LKQq4HNp5+C8YJK
qCRk2hXm18DHb4N31W1+QmzzWEGmWC3k18orFyX9guuUtLRgr1qYtAgoFxmp
gp+vfE69JtRB0S9NophJDQRJaOkMKDQAvUErqvZRLUj1/Oo5rNkAG3Trf7t3
1wEh0GZB/4MGcNkVpDcs1wA60SXXZyMboXYVoym+rAF+VSnfWz7WCEcz7DZ9
82wE2r6dpqbCRnCI2R95bA0FxhadPFNSTIGXmwyfBZRRwHNi74a3NRS4oTrH
1LzYBGtNA9P9minw+sw1XVd5KvRLJR3cxqLA0IE/h3UrqVD/grNqQkiBkcRF
h+J9afDE56uFrGQT8CPHzV4oN4Piuk6Kh1UTuEhVe+9vbAYrzZ3xzKQmMJqV
ME4LbIFQys40iYYmuOJX8V+ObiuIi7pjpSoVtGtipf0YrSAS+yNC6R0VJHPa
SwjRbRBbnm52by8NZtcutjxg9hvu/mr4eHNPM1h4E3gXJ3+DeP3m9hcOzdBZ
ma/nltkOO+vfVcjyWkDxVGOewakO0HvuOXVquhWU9oQ5cWU7YcPJjkvjzb8h
oPONTUJtJxj4i2o7H2+Hc3Xf+gxCu+AescnSt74Lik77Ic2kGzbJqSV53+4G
y/mQujHRDWt0axKOaNEhUvFxzFpHOpgFaI3nZdChilOcI1JAB87gDUL5Jzoo
jZ9QDVjNgKhPNZ3utgxoTD8y99iXAVyW/3+nfjBgfLNxEJHKgOWsKqGEWg+o
BLYrRG3tgVmFkd3mRj1AYqy+HB7bA6Z26aH19T2Q5V3lrDfRA2d8vWjJkz2w
Y5v45EPHXtgqvN6qPU994u2w5KJeEK9bLHHWvg+yFGRSrm7og+1+FSu4mkwQ
2UmXkw7tg13AZ4bGM0Gj1WlpALsPDFyKJRkKLDgh9rej5AAT7vqdsy3cyAId
zSnrzgImdD76HOR2hgX+GhmXGEos2FD2lp6QzQKhumFuUxgLSEtSHAorWHAv
oXygiMcCkzlWvW4PCwLSZfa/OdEPyheGzlU/64d1gb/vJfzqh9ZGjduxRgMw
/O7B91f6AzDhe+jZ+scDsPsCN70idQCqxKLfsVkDoB1211VWZhCKby1f5S0+
CG6dicWJIYNwVC0usf4yG05nBCi6jg9C1o77BGEIG9Yrpkf5nWNDKD89fbqV
Dd2Dq4eHO9kg3vCFZLxjCCSWLSyuPjQE2yk/RzZbDUEhebmPavUQBGUV3JZ3
HYKlOktcxPcMw+DobmsV7yEo+VnACC8ZhiyVtgX85CGIWvnGsWj7CGQuHItc
ljUEs8KTJ7O/jMC0cUDu5fYheHrtXLWf4SiQAqUtKGLDQJI+wfi3cBRQXyX3
jXAYDB+EnhkzGQPraX/ptkWj8FH9WWN1+Ri0s4qkqqVGQTlg1TauKgfyL52Z
PO8+CrKOmrs0PDiQp97nZv1+FKBXhPrsEwdEl1YlH+WOwtbvT7mOUxxoqXa/
QuCPAmXV79lrplxwmjMILVs7Bs7NUX1LHnFB5Cw8iTbmwLsCHQvlNi4MDujy
18dyQJvq9aldjQcOwd7yq2Y54CZzqNn6Kg9srboih5ZyQTuxuzm+kgd3/NVr
YyS5IJv9NYYmz4db4ZUj7ju5cNJRTFrLmz+f028OnN3Phe5vbwcKK/kQx+Dr
zY1x4dIMrfLTRgFs9/AaFpPngWo0VckkQAANBj+XLt/GA/jg0f24UwDRz5Ys
WPiaBwb2W537QQg/Qn0H3mrxIcb6fWhwmhA0nvSwCyf4UJPlvD5rxTg0rH0k
1U4SwI77958V3RiHwNdyVTsOC+C7krKe9Mg49D+4aZx0UgDD3768UHadgJS4
uuqwCwI4S/JO9OqagOLDcWzPOwJw9Le6HOc0CWfUgyUzqgXQuCR60cH+SdBr
/7jxlqIQdobRegKuTsG3IMrdWwNCCJ78dVR3xR94WiCI2GI5CYQ1g1L52X/A
XPOgV9b8ntX0GlLB8WmQbElK3C0/BVot95ceWjMD0QTF7yvCp2DrwJOXtj0z
oBMpXSidNAd83dAi/9JZKLX6k6eVPgfOIhUx0oV/YVHjzf1tygTiW3Mt9c6m
OTh7sdte3I1A9Lf++urKIwIRzzY6fPEiEP/xn85pO7iAOBoYMjSxV4SYKjCe
/rJPhHiR/1CJflqEGHwy5d2pN6LE4xrP/3oeW0z82HTsuLLUIqL58M3Ia6Ql
xP8BO4x5NA==
"]]}, {}, {}}}, {}, {}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{},
StyleBox[
LineBox[{{-8.282742573545612, -8.278260631231932}, {8.273634113938336,
8.315119441113826}}],
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Dashing[{0, Small}]], StripOnInput -> False]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox["\"INTC\"", TraditionalForm],
PlotRange->{{-2.7609141911818704`,
2.757878037979445}, {-3.7696723729864274`, 3.037337418556066}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)}
Realize um teste de normalidade multivariado com BaringhausHenzeTest (BHEP). A suposição de normalidade é claramente rejeitada.
htd = BaringhausHenzeTest[fdata, "HypothesisTestData"];
htd["TestDataTable"]
\!\(\*
StyleBox[
TagBox[GridBox[{
{"\<\"\"\>", "\<\"Statistic\"\>", "\<\"P\[Hyphen]Value\"\>"},
{"\<\"Baringhaus\[Hyphen]Henze\"\>", "3.69066", "0.`"}
},
AutoDelete->False,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {},
"ItemsIndexed" -> {}},
GridBoxDividers->{
"Columns" -> {}, "ColumnsIndexed" -> {2 -> GrayLevel[0.7]},
"Rows" -> {}, "RowsIndexed" -> {2 -> GrayLevel[0.7]},
"Items" -> {}, "ItemsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {},
"Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {},
"ItemsIndexed" -> {}},
GridBoxSpacings->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {},
"Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {},
"ItemsIndexed" -> {}}],
"Grid"], "DialogStyle",
StripOnInput->False,
"NodeID" -> 379]\)
htd["ShortTestConclusion"]
Ajuste os dados filtrados com MultinormalDistribution e MultivariateTDistribution.
multiN = EstimatedDistribution[fdata,
MultinormalDistribution[Array[x, 5], Array[s, {5, 5}]]]
multiT = EstimatedDistribution[fdata,
MultivariateTDistribution[Array[x, 5], Array[s, {5, 5}], nu]]
Calcule o AIC para duas distribuições. O modelo de MultivariateTDistribution possui um valor menor.
aic[k_, dist_, data_] := 2 k - 2 LogLikelihood[dist, data]
aic[5 + 15, multiN, fdata]
3273.13
aic[5 + 15 + 1, multiT, fdata]
2931.76