Wolfram Language

Probabilidade e estatística aprofundadas

Retornos logarítmicos de preços de ações

Os preços das ações modelados com o movimento geométrico browniano (no modelo clássico de Black-Scholes) são considerados normalmente distribuídos em seus retornos logarítmicos. Aqui, essa suposição é examinada com os preços das ações de cinco empresas: Google, Microsoft, Facebook, Apple e Intel.

Extraia os preços das ações em 2015 com FinancialData.

In[1]:=
Click for copyable input
symbols = {"GOOGL", "MSFT", "FB", "AAPL", "INTC"}; prices = Table[ FinancialData[stock, {{2015, 1, 1}, {2015, 12, 31}}], {stock, symbols}];

Calcule os retornos logarítmicos.

In[2]:=
Click for copyable input
logreturn = Minus[Differences[Log[prices[[All, All, 2]]], {0, 1}]];

Filtre os retornos logarítmicos com ARCHProcess de ordem 1.

In[3]:=
Click for copyable input
fdata = Table[ {\[Kappa]1, \[Alpha]1} = {\[Kappa], \[Alpha]} /. FindProcessParameters[lr, ARCHProcess[\[Kappa], {\[Alpha]}]]; MovingMap[Last[#]/Sqrt[\[Kappa]1 + \[Alpha]1 First[#]^2] &, lr, 2] , {lr, logreturn}]; fdata = Transpose[fdata];

Compare os dados filtrados de cada ação com a distribuição normal com QuantilePlot. Para as cinco empresas o comportamento assimptótico apresenta uma divergência respeito à normal.

mostre o input completo da Wolfram Language
In[4]:=
Click for copyable input
MapThread[ QuantilePlot[#1, PlotLabel -> #2, PlotTheme -> "Detailed"] &, {Transpose[fdata], symbols}]
In[5]:=
Click for copyable input
{\!\(\* GraphicsBox[{{}, {{ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], Dashing[Small], LineBox[{{-9.739549144845185, -3.2234018878885635`}, \ {-4.914315914292211, -3.2234018878885635`}}]}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], Dashing[Small], LineBox[{{5.389488258896621, 3.6124508317404134`}, { 9.174325346727695, 3.6124508317404134`}}]}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], Dashing[{0, Small}], LineBox[{{-4.914315914292211, -3.2234018878885635`}, { 5.389488258896621, 3.6124508317404134`}}]}}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJwVlGk4FIr7hscuEqnkWE6WKBGFX1HpHZUlHMmpSClLhRJOlhTFkaVCFCFR CUW2I7KWd4Tsa4Ns0yyWsTODxv7v/+G5nuv+dl/Ph0fewd3yKjeBQFj8nf/v AyXvYwc4G0g8tSQDEkGZJJR3ylL5oABp70n3cpWnQiSZioK0lUw+EuN/XrQi HT5SyQt1u5xIXlLGKhv0B3hITJldjpY5PCTzq4Nf6tK4SQoSQ7ZBLG7Szsgp b8zkIolJOWRFnuYmFWbZi7Ak1lFMZOrEkyouUv4RsuKNhTUsaXEbkzjBRRof 3zq07fQK8prtPqLYRiCxf019Muzi4C4JmnbEVQJpA/eU5J58Doq/br5Uxk0g OYxNah5+z8HPlp27ps3WkcbotpyK4mC0vbF02us17B5f2NhR+guFKqz5t6ys Yn+9iVDU1wWsX7rXymu/ipcpmw7+7/0CSldJbr3bvIIGVW9598/P44U7hv6v iCuoKu2qd3HbPN6zrfTD0mXMesOesFtjY+zQhn8MdJbRzqRjzmaJjZKaAv/k li8hg3ZZ8UcQG0+R3IweH1/Chlv2kmeE2Hj8TPL5262LSJHJ9ZugsrBDboem 3OVFFNRS8OiisNBTJytcl8VBT3aluWYyC/fcy/wS+JCDes0cxb3uLDxwiehV Js/B4P/tkbqhxkL3j4Gp+V9+4QFJ13JfURamXzfLPHDxF4ZMp14ctZrFvqoH sX+uLmBvpE6RjcUs0tLVHx97s4CisUtP7u+dxQnj+WMBBgtokRLuenvrLFoK eiYVTszjS+XnFuemZ1AV+w7VPJ/HhGiHqeiy3/xUQSeOOI9bFrZ8l3edwe6A S5RNk3PI31kQubFnGqkV8TckX87hHZP4kPCqaSQ2BAwkm8wh386los0lU+h/ sq8qfJmNLqf/OMlzewprRl5KtuWwsfTmDy3TM1P4MpIsY2PPRhtF+Rzja5M4 qd6lKyXBRl3Oz7vmOybwnCd1iKuJhUYspu9w0DhqwWg4zwMWXov2Dz52eRxf pG/2ET/MwvMiN3vfW40jm+FWpjA3ixx/cwUj2ijmX+5TUcmdxUeBbRW8ZCbu LHtClHaZxddW45pHXzORaW0gOb1zFod0Rdu1nEfwVUTthZe0GTQLTz2QvGEE ZcTfH97+egbZ05mBDiNDaKMjesXGdgbfvrAVTkgZwrjsh+yLMr93kvMT+eA8 hD8HVYfUS6bxrsE1/5KjDFxakE/g051Gq/bIyh1iDGwLuR6xr3wKPW/ISmkS 6Xj6v4ect0enMFfDh/z8Iw23MFzyLaomETcU7msLp2ES95cd6icnUWSU+ebB PRpqf1c5sK9tAlWLxYWXb9KQmW3pbGY9gXyeho7ORjTU4I5860sbx3UbKlsK aFjpBMeyboyjh2djWJ4gDTfndW7qWxhDnaLqx/e4aJhupqe1HjSGZa7eBw2a qVhUPHBQVGwMl4Y5B1ozqehawrXK/WoUN+s+P1fvR8Wq8vefOtRGkVuZEZph TMWM4//RfT4zUXun2g6J7VScd3UwZ5ox0U97sHWPMBU3m4OgHGUEs+0enSmP piAnVdZ+u8cIfvPc4v7Bm4Jh9LCRWu4RtHrTWnN3HwU/m1pdUY0bxleLPx5O Fw3gnEZY9+E9w9gWV6jeGjaADuOHvdkVQ3gkzb769OUBLE5cfGt2ZgjVVer3 37YcwOR+/nn9sUEccVJRb1UcwBwjjmpL4CAGCNrdFp3sx/FQe82J7YOo3lvj +Mm2Hw1PZ0rF5zHw/KTstbzGPpTIWZVpMGJgiohASmFFH64oX3seSKWjjYKJ 5opGH5aSZ7mK7tCx31pTsHt3H9qorBOubaEjYVmZ4KrUh4/rXp6KyKHhYj4I a0IvJmUt1e40pqHvP9fTOWndeGXj+mVVBhVj5SWyLEK68WBG766k+1Q0Yj9b S7nRhXYbKow9pahIrTws9Hq+EyuOaAnY3PyJumv5Zy4MdiL/cv/l8HcUFJfw zygK7USMvuDtSR3AUTelkF2unTh3w9REWHoA1Vrs3qzXk1G9ZEHA7Fw/Hrwp 7dCSS8Z/SXYr6s/6sJHmXafw5jtGRDkl5LT0os+mgvv68d/xktXSzUrhXnw8 Op6sdf87th13VL9ysgf7Mi7bH7jRgeiRmhEV9gP7OYdpTkpt6N7xs1bvWzf+ raBDMi5oxZHZgafOfN0Yqx0c/1y/Ba09opSEDLrQMtFdYs6lGdXOZpXKhHTi cLgjaGc14FbdMy8Ta8g4Z/rnX8qRDWjl1qB2n5+M9TopBSfEG3DRUmWw0ug7 CswIuhZL16ICn4aJ3aMO5J0V1bkYWoP+n0UW/25sR4z7TqmprsYr2wxfxou0 47NNegYyAdWok/poTMmiDZuL9vPcdK3GG6dMbNlKrdiZGiBmUfcV7TMYvtLZ zSiknqPl4/sVu7gSR0s1mzCqKEzixzoJSxJUw6pLG/Duf4VtWsEkdNW209uv X4+KlEnztj0kvDMgKbRQV4s8rh9IcrtI+PCU87Lg6W+YmJ9gf+lBBXL2Fey1 66lG8TXLViuPMuyR766fta9ChUQyfYZajM2lVjyFY5U467JVQPBdMfo/i5ZI 9iRhsIrBWYXCQhxb74o0XPyCI2FNjT8+FOJXXe2yO8LlGHJX6sh0XR7uS081 IcmWYMONuaYrtFx8Jralj3/fJ8wYpfvuNcpGHxMPgUPHPmJi3BUcScjCNhOz toiMXPSOjTPW/pyJb3M0ZPc3ZeBigETn2usMtBXR5Dk0/RajrQxZJbQ3OJHy YISgmIhmscSNookx2Gbzie3VGIFzKdlS8vvCkTSZrxCteRVvhZhWbPMIQjt2 narowSCQJ4mnxMhegyNJMChPjYXsfOdkQd274Hqrx2/47zfAf91sfWNvCGRv JJS66r6DP2q8jpfpRcBERqJJk1w2FEP5jsS7SeBz7OfW7Xz54HPAYnhkMAl2 Crd3DywVgHWYj7DfSgpEv582b50tAj4qF2OyOg2kGrxiCGOlkCBb/87R8R0E c11aDmV8hs0WJTv3jH6EQTe6rC8Fge+ceStfxCdgN/FOeN2sBLLhWOOlveWw i69g952Jr5AB1oei5b/A3cN+hDOu1SBTsM3JQ78CEo5K9ohN1kArGEao1FZA 7rq0QblbLWjJCXfwV1WCyZFU/suzdfA4adpIur0SPOgK4oLeDdDT8kHYJewr BG04/fTrYiP8ZRojzyBWA/2O6nBiQDPEuGzuTafVQEefbG4yfytU+jdvI+TX wbOhNPoNozaw++VNjE9shPMvFneqbmyHq8TM3fEZjbCrYoNFTHs7CLGi3ye1 NoLr7vBDWfEd4FHzl+AGiSZQvk6j3bn0HZaSv6KmbhMoEve48iuTIXzU61zE o2Yg33PcYz1FhoLvKdaO6c2wzzA70ae4EyRuSxo0+rdAcnDqdZd/u+Cgj3NS 2clW8K0YuqNj1g0MaftW0+U2kA3M7h/f/gMawxauPYV26O56Sgkf/AHmMQki v/5pBzu/u3zyH3tgSCLz4oUn7fAkLHNrYWAvFKD4clR5O8y0EsTMLfrA/aJL xjG7Djh6+B/gyPVDao+tU+6tDqj4/ErzM6sfFvfzuFQ/7IBXw+XVqTUD4NfN caox+A5dDilypS8osCqzwqTLk2E3r3INv/tPeBpZJziSTYYMQ0p1owIVio98 DLesJcNNh9zT5U+owNVB40ldIcOhRQrZapkKac/ra45ROiG7zMv8vTMNzprK 7z7n0AXVV+Lm87posLfIK8W0tQvSH5Qe9jWgg+/PE9YznC64aCPQxv+JDtcr 1FwOYjf4dKy9dVBiAD13p5eBYC/ItVqPPYtjwCEnvi38e/vgWou20mvBQehg a04r+/SBlWOsXJTfIKjKEBrcOP1QU6O2cn16EBoe1DkPdAyA5/04jcNXhkAx iVyUTqMAQ3IwSrB3CEQVSFZxLAokVWWe7bcYhqNUMb/yv6kwPBqoSKobhlui BTsME6hg8cdWkQr9ESjjzpDmuk+D6kXSK2r5CLz9madWk0EDntqfQ5oHmfDY WFT/aSMNgpMq75AKmJBzxqLSXpQOH0TuhDzfPwp6PBF6oTl0iFkO6qj4bxTi D8nqJ+TRgebuTD65fwyCWd4zfw/S4WqY96cTBWNQRlCq6nrCgIlD6VcqDoyD 27CewFIaA5gaw2nfyschsocgrpPDgKA6mqzbsQkQC/UbUFUYhNXHXm7fGibg lLWTunvMIIh3iejTz0yCUZTMtoXOQUikaDt0UichO6A79pz6MAzb3+0pdJuC BTdbp/agYZB8rsIXvzYF3dIixuZKI2C3ur00Jnoa8k6rxR8IGYETZf/ucxCf AdntglZaUkyYkwzc8tZ2BpL/+/d8lAYTdngaiUp+mIHwpnSx+xQmdJJDy77/ moGAKd0ujU2jkHhWlTxkOAvszZVKWtWjcMjkuINd/CxsPOZb5r88CurCQp3n Rmehb2iPIP+HMQiRaVGnHGFB3xF32/W4cQgyCdsv8owF0j8mvwXUjkNWzJ8x K0wWTImV1q61j4Mh+Y1urT4bwntiNeJdJ0B3f2/g4yQ2ZFqNMAs9J0DrlEb4 tUU2WOiRK1tCJ2B9/tfr+9ZzMOyr1+TwbRJq9dQSF0vnQCNaOe3d1BREjY5f 5/5zHh5JpLy41zENAYJnC+uC50FyXEDfYmIGmqrOBf07NQ92sVb5ClqzoJbd sNv5wgKUXMtziQ+dhRc/jS2wcQEkPCvKfB/OQrqp1NEO+AWd5lWS6b/51peP TgvFv+D5ReGommezMOHxySlSmwPEZP7MJlMWdDNdbwkUcUCD/6l9eQ8LCnhZ t4aPLEJ9j0Uai8YCN/Nqoa/1i8D8uJK422oOFENVvpnZLoHd2U1mbe7zYH+S d9WGswSdGZb5WwsWgDnB3jzxchmGRBy7TJp+e1EC/zx4cgUC9cLlXy0vgF+9 YeFnrlU49tpH7Z7pL0gvvmlnV7v6+3/DE86rLsIFxRW3J0lr8JTyQaNHYwmq dj9q9A5eh/4zdGuvd0vwueM48aM+gUjQUth5/9UylPwsfpffSiDeU9xeV6S4 Ci19h86/8+AicgWqnS+fXINYuv8lH1Vu4kMfx+ehN9fh0uXgC+3CPMQGVw0X RgqB+O3Bhjdyu3mJSauSxsxNXMQMr/S/TD7xEa2shp9uDOAidtxbjeK6LUg8 N6D02mx4I/H/AGfZWgQ= "]]}, {}, {}}}, {}, {}, {}, {}}, AspectRatio->0.6180339887498948, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{}, StyleBox[ LineBox[{{-9.739549144845185, -6.424606331170559}, {9.174325346727695, 6.123425270436057}}], Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Dashing[{0, Small}]], StripOnInput -> False]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImagePadding->All, Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"GOOGL\"", TraditionalForm], PlotRange->{{-3.246516381615062, 3.0581084489092314`}, {-3.2234018878885635`, 3.6124508317404134`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]\), \!\(\* GraphicsBox[{{}, {{ {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{-8.62501550382003, -2.8523556428167356`}, \ {-4.488098207856721, -2.8523556428167356`}}]}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{4.264036280778001, 2.7184936616092057`}, { 8.32555754281431, 2.7184936616092057`}}]}, {}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], LineBox[{{-4.488098207856721, -2.8523556428167356`}, { 4.264036280778001, 2.7184936616092057`}}]}}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw9j3k0FArYxi2VRFcitIhkSdy6hTbpnTbK2Et0LQkVJaSMJSWFyJIs3Uhd WRJlTXbeIfu+7zHD2LcZM2PL8t3vnO98zzm/85zfef569lk6GNzi4uDgWPqP /+1tgp9+cHHwkE/LejWfTRIlD7ztSw98uYGs5dEXucNchCzobTYfvZ+b7OV9 l9vKeQM5bz2npEmai6y222Qlfw8n+RVVNQFNOMniD7iH62XW8K5Ma9+VLA7y XbrnFvP+Vfyy9YW2sDQHuXeoLPZL2CquZWe9iL+8jtJDDguBcSuonsdzQvHW Gp5VSYuWfLKMB9aS9Y0iVrFr11Kt+8ElDE8SU9DsWEG9myeZQ5sXsLWR5nBQ ZgWLLOZbE9lsrEm3OV7n+RsThWcEuyfZ+GxcUPYpbRnZn6RsO7+zMSAgKGJU fxk/GM5n/dHDwo9/auYwKpaQl27TY6DDQn2BXV9zzi2hWmhb0j+1TAzWqtz/ uGwRD3CNzPcVMfESKVk8mriIgrs9LYyUmfhK931WaOcCtklvstblY+K9oX63 iTsL+ERPXpM5OIe2oY39Z1bmUdDS+/7d/jkM4HK+eyJ8HicUHe2ozXNYVX3J 99XheRT1j3z13mgOv75TKmLUs9Hi4tqITBsDpUZY+kcd2KgRkrb7izoDW3RV d4oKsVE8ce8/dYIMHJfK9XPMY2HlJdRN7Kfj4oIQXciShT6+6q0aSEdXdWJr Dz8LRaRc7uQzZ5F2beJGbB4Ti5NvG5s8nkW/p9sXNW2YmBz7gJcTZrFr9XJj jhgTlZ3/lnMdnMH15KmIhpo53FC4+UVlwgwekcn5y+XpHKrl8qU8H5vG1N23 3N8rzWECcef6i0fTaEos3io3wcAklZ+9KWrT+KivQIQnloE/u5iZisensDkx Rf6gCQPNEnhCKeOT6KXrKvFsBwMlt9+MSv8wie9LFeeXmuhosfecNU/eBIq0 Xf/hH0THNErIeGTEGLpFhRpKEelY/3xcotp7DCXf5SXn8NIxXk37ULfdGJK0 rT95hM5igEAVSWRiFO/s1lM2EppFE50HKV+KRjGeYMA1GTGDl0pdxZh6I1hq m3JUZtcMWgSZvdjaNoyjR5c3sf6dxnYf8yeEw8P4U6euTF1uGr1iJAeuJ9Fw I+vFp63pU/gwIjcq5C4NOUP40k+emsL9Pk9edwoMYdRfmk2F5ZNYrmjQ50Sk 4ifNXTH+BpMY3j4Va8CioENi1P0wygRKMQIdWakULPfPOtjg8N/PF0EaG1cG 0PhT9s1DHBNopO1eoGA0gG7EsYNJb8bRQtaktkF8AL+u/5ZSlh5HRdk6q2XX fmRkalqW54zhgxpj77f2/RjxsuzRFa0xVJD9bHJMvB+NDX0M2qmjWF33Q5s2 /gubvFeNz7mOol2FZUhJ8i98bPvpQqjAKAqzRX3Hlf/bS7YrFCWOoOCYHNlx uA9PGeQ5FxBGsDX9oYPnlV5M+UHu8+kZxpo1b4lZ7V4899zJcofzMBL5TQnf jHpQpZymY7VtGCMr9LYJ6PegcgJbwfYbDeUiQswaw7txR2pQieRlGq4O9Wnu e96N/uNS271HhvBu7I0L9aQuXCK5GAV5D+GZqs5nFWmdGNIWvH5s/xDmi/KX 63h34IpHe9Lj0kH016uQ7nDtQNIQSfqa5SBuCX5A5fi7A7cq9duWcA1iOzn/ +wG+DjzkZ/4xN46Kgw9M9b2n25EnYX3r8YtUvJ17e/55aTtSrewOnhiloIn9 Q9qIcjvq3+bwz/GnYI21FOmiXRtKZ89R0hUpKKH6hK1c24pBj48JEWIGMItF 94gRbsUtV2MZnGP9+OXGkSAobEbBfvLzf//qx115y/WHdZvxwwf5/YLuv5A/ yVTjyJlmDCZnWOmW9SH/zqXMsK9N6GjTuOmKQB+mi3nszhZsQt8YiTVhk168 q/RviNJUA5Jj+W2CE3tQuE+z28m6HpVUQ4NyWd0oEcImPuipQeL5vZTAc90o 2WdgbBBQjaQrAQsb3nShgd6qI+teNRZOKYXsonRiqfD6iJN5Fco93uNfebgT 3QiOvRqJlUhJPTq48VkHGriS5asmK1C5LCa/sakds/8s+0pWL0f9e0q6ElLt WBL+8LLH32XoKtK8OPOwDdtcTiZTWD9R8BWnwsmKVjym6KhFOvETX0Z7Oy2K teLabt/7ReslGCWz8FDOrgUFuWZ/qxeUIEvBZ4KMzXiTGeZ76nsJ/rb/8hmF mrHSeh+PNakEK13mAvfaNOGtntvS4saIT5tL5TPcGlE5Q0dl/UQB9kY/ed28 vwHVDtiTWHZ5SHwi4BneUIcrzZr9T1JyMe5EAZHuVov+MtE2giPZWF+8eqtX pgZJ4meViO7ZyBESfF2rpQrb9r/OnxTNwIqO+7UnPSvRoVbEelooA2Ml1l2i FCswxslahbSYhm8SDh+51VOGenqyTbWlKeijnNgX4vcTW6KG3xoUp2BVCpeT 8PFSZPW6aTWufcO4c6JLI8NktNdsP7Zv7zf8tuHxtnV5xGwupZ8VpK8Ixeo+ yX6F+NbkEttROBkzky6lFI/mIbg5/Xn0VAKmlmgvymvk4MrZwx8NVBKQyLE6 3PM5CytVhPS+P4zCv7tjucibMtHLXRLv10Riz7WNVa/rU9FTa6XjllckEi9f 1yoNSsKjOzrGXLte4RfVlCaWdjxy/F8qsFuWd8/H/3dO6QeRH96HocdbxoFx cV9QVjONKVV+jjrtlS3jnH5A2dmlKuZ5DTZf/UMq6FIA6CXeqzzb+RJ4Zg0v 138MAPNp321Mx7dg95fjnBx3MLBdkomiHjEQk2N0xq/qDThLGx+uJyeArOof X5wkI8ATJrqLN30F59Ga4l6Rf6CMc5PIZrl02LUQfK6hPBro7Pg4p9pMCKKe sX4+Hw0E6+eaGY4/4DQ5ev4kfzwkd/y83SGSC4u7RqWpNglwQTnWk1WUD9+K WsVJIcmwLCdO3Hu7CCr5FYM/r3+DmK5B4+88ZBjd1LJ+UTANVBb1bOmmJaDS 2dotdD0d6hXfcjdllkKjVtAp9qUMoGnmMk14y2CHqIq60N8ZoH9SWu6jRTn0 XtaK29KQAWe+/0qNya0Au9VmvtAfWeD/uaTkvmAVFM59yEjm+wG24X3FAveq YTTGpe1CRTa4OXQcflNeA5kvh45r3sgDop9z7YpkHZznI/BmchUA48gpV7Mn 9ZAvlzh90QuhYEhYt7inARbupMU+8EYINt2jG7GnCc7zos+SJxlaDmyav1bX BGGnFWgZx0rAJkp8NcmjGSbCeI/X2ZSANKezdfifLTCy+cIPzakSWKDzaO8Z aAFbSVH2fZNSoI49XtZ40wrrN/33t+7/CbZ6823iF9pAJ0xcWOBSGRzV4b0X v9AGHCb+bnVmZbBXJO/h4Nd2YBm/beQ+UQ4n7d839Vt0QNRck3R9ViVoEIVC YkQ6wbv8jrxhQzVgQPLsofpOSDdVLD24uwZ+cAaav/HugrpkebUXaTWgKi/5 rPF0N5QZ0t77GtcBfWfjIQa7G6rv1mVdqG0ELfeJp2tpPXA/KJDMsmoCB+fS kvW7vWD0hcka5GuG3IUxv1XZPrhSd9N+6FYz8BR/TuKg9YE4TPMruDRDpdBn wvbYXzCv6DHj9qgFIh51/lC92Q8afrFz8j4tkJAYTvbdNwCG01IuD2ktUH2N x251cACsariXUg+2QoP21NZ2Awp8DQgJ8I5rhRvkf6pqsyigNbVWL1TVChPe XK42olS4Y6KvlSvaBjwedwfT3akQwuPu85dnG/BFX9/4tZ8K5Rvl4yK6OkD0 +qiY2flB4D/lo8G52gEvAlXC6r8MwoxDaHiEVSdslT+kyC0wBBHBXExXt06I f/eSuoE0BNQpr7I+UhfoE0R+d/8agrMn5E1PJ3ZDvImTwCt1GqitCLvLJnXD IcXlzeLpNPDoyt2YONYL98xPKrzfNQxfz8aK15ztg3J/FNvqOwydtQMmm4V+ gVeHY/fjuWGYjS68ZtH1C7SlzKj0GyNQycdR2q3ZD4quCmKkhhEIO2MlO6bV D+8t5Kk7zoxCy2djiYuGA3DuqYB0b+ooRE50/PPBfABc9r2+1iw5BjscJVzz RSjgyIO+G8L/8wKe8q1uFGi//ey21+ZxMJmH6CwPCvTWLBoZPh2HQkZXpHQc BcJkzj4OZo/DE+X47KlqChTyOhSp2k+AlY7XjQJvKrwjSI3bjU3AdLS1WFwM FVxEK3OPWk8CX3OgsJbRIKjNlU18pE6Czr5pPoV3Q6Al3W1UZjEFRadtRCyW h0CEZ4wvhzoF36zMzxGkaVDNF3Uz0HoaOpt/bNaSo8Hq0wP7TManYerqs6PZ J2iw1bQhVtVxBp5dMN0ddJkG3c632BpLM5C73JLrkUsDF9km3mjvWeDMPDGr dWcYKBrzjIO8dLD1B/fIZ8NQlb04pqlPh/xbGSMCOAxiL/81xCg68OcRLStr RuBDCIPv/TAdvA70EAvPj4KNiNyDuSMMCLH5/Mk6chTO23on93oygOSnEha1 cQxY41qt9o0MYG34+Pld3zjolEqrVkjOwZTSL5XQqXEYzPBJXXs4Bww1TQu2 zARYW+nUHq+egx7hjKLzgRNwJXjOKlySCTsVEmKcZyZArcCZdcqdCQU33521 4p+EV/qH/7zWwQQMKvq5cWwSRDbYv9uhwoJ+T62lVtMpUFZ5cTP1LQv25Brx 75iaAub9tIumv1lwkZXOPqkwAy2rvPmWVmxIOWVLEjCjQ6fOTsM/GtkQZsk3 qvqUDqz89tfZZ+ahcXue3UwuHbKotEXMnAeduUcjhZV0WMzhXP+osAABJ66l FY3SIdv9qm9v0gIwrxJlzc4yYEukd+iOQ4sAfR4tAT5zwJqvdOTLW4SwYDPP Um4mTFzV4owlLkHYoBOXkzoTju2J204fWYLncZS2q41MUFOVIOoELsO52Srd IGDBqvCVTfZqv8Gw+RJP9VUWBNsOKz5e+Q2HGFTF7blLkCJ9TkivbgXEAwLj +bOXwUZq1rwqfRWEuj5XHvVYgSxfAkkrbQ1mktqPh9BW4FQ2Jby2cR2S6ze6 mLzhIIBod6j+aw4C5xq/fwmTg2CrYphmacxJuBqSjNRlTkJZ3vLQISMuQsQm JX+SITfBr87t494CbsJzCyemfcsWQo76mbhwpU0Em4bLl6yCRAn/A1zCWdo= "]]}, {}, {}}}, {}, {}, {{}, {}}}, AspectRatio->0.6180339887498948, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{}, StyleBox[ LineBox[{{-8.62501550382003, -5.485558191362114}, {8.32555754281431, 5.303705637831441}}], Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Dashing[{0, Small}]], StripOnInput -> False]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImagePadding->All, Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"MSFT\"", TraditionalForm], PlotRange->{{-2.87500516794001, 2.7751858476047704`}, {-2.8523556428167356`, 2.7184936616092057`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]\), \!\(\* GraphicsBox[{{}, {{ {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{-8.694948115378702, -3.0278639449241225`}, \ {-3.4015357976266287`, -3.0278639449241225`}}]}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{4.015701989439402, 3.4662317887317755`}, { 8.237675916947204, 3.4662317887317755`}}]}, {}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], LineBox[{{-3.4015357976266287`, -3.0278639449241225`}, { 4.015701989439402, 3.4662317887317755`}}]}}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJw9kHk0FAr8xcfSK9UrRVJCQhpLKK+M1FdKSK8QL4Sk5GUJKaEsJaKIV/ZK RMkTWZ49viNL9mXsSzRmbMMYY+wTfv3O+Z3fPeeeez5/3HPuuVK2LsZ2vAQC YemX/ze/QJ4RWXk9+ZTv1RJB0gbyjWwbnCvgJyd+kvL2kdlAvnTk2cMbJnzk a2zfNfVkPnKryJj1oCkv2dZM5J5KHB95q1B+BX8YDzkvamH8BJWX7BmaY1U9 TCA/S/afFTImkP/yzRjLMCWQL8wl6Df4rWHlQ7/CPRlr6JlrtI/fZRV5dGou D9WsYvGOj661jBUcNCQ26CytIGnuICk7YwWVvnW5OGms4PfwF4F+7itoPHK1 8EHIT1yt+rzLUZWL/UzKRQM6F0vCTuy5qcLFbNo2Szl9Loom3fpSrsRF4ZOk 4ML8ZUzQ3Ow2tI2LX6sMTMcUllEog/Pel8BFpZb9UpTUJRwNe6vQ0b6M4nny lALiEjJq9SfpGsvo7iAYsZS1iO8+1uV9+NXL2RT0auvxRWT76vknyy0j563N +8DGBdQ408GMWV1EzzZNjYWrC3hn84mUD8oLOBfRvbh5eR6zw32YmRfm8YCF 6xXvqHk8zHO6QOz9HCrKH9n08/A8CkeGkahv5/DdfrELf3XM4YyhKLVk7xyy 0o9uMfGaw5K8l4cCBOdQQ3ZvfZXkHIodHSCqiHEQ3myl+tfMIu3BZ6kwzgwG qLsNWLvPor7knawPC2w8WXVyWXPvLDrso5k5d7JRIUPtLbeJgwSugaJ3DRs3 FSRs8PXj4BVD7frl3Wx0f7PCTFPloN8TheL8zWzUGonWsB+eQanjOv7k39iY s12u+W38DI5IihFZb6aRqrliAEYz2FMjIHDcYxoZB5SGDgnM4NgXN6WNMyy8 9gblb35l4/HJ81lFQSy0VlrmpTxgI7lFLd7uJAs7Yc3JWp2N0Zd8ffXWT+Ej Obk7hLlp5DrLex6rZCKfbJhwes40xk2ETC3fZOIDNxtZY7dpXDdi42mRP4mM 4Xgdhso0xpLEukd+TqCkV3xU6xALy6/uPHfLeQJjCryuPbFjYeYj65N+thNY IXJIijY+hUMyBHeSzARmhyrsaHOZwvcrn0vyNkzgqU+PQs4sMHFL6fpTDT8Z qPZssEDJn4larwRGwxcYOGCvXuC1kYmT+hR2+HMGtoTrOe6JnsSFm4Nj1O0M zCA9u7tBehL1KpXvuUSNo/mBCDnV7Al89tK/423AOCarBno81ZpA3fV3tapI Yxin187a0MpAuTX9XQKcUYz+pygzyZaBxt875E9kj2K7XaHx2blx3Pbqaict cRQVdvbMLwaPY4TZn7qOMaOo3PyKmCI+jq+PHd8fHjKK2rvDh7Vzx1B1wmn+ C3cE0994P23QH8PjJNuf5KkRpMsJdqlTR/Hy0Spzo5QRrK0Sofl5jWJ6yXxt tPEIxrfz747fPor8H+32ufCN4L6Da3/4fxpB5hZ3KoEyjD3hascUdEew7Fih I9FkGOO1w9wjh4YxTLAp+Ms7Oma2pTrk+Q7jqSxp6fSndJS7vofxRGwY4+gn iadN6RidS5hfV0RHw9nolfR9dOyPS60lXqKjs1tYslo1DfWlY9qZczT0mki3 fe1Ow0ZOVsG5KBpyKgSKlpuGcJgbrH3yDxreVw9QOF0+hAeHR1yrO4bwnoae Ls+FIQyauvV3l8cQ3vHYkPVQdwh3k1w8XESHUKqQKd0uPoQWdU2/Py2mYspG 1WF1FhUPfRWr2mdFRYL+Sn5lJxVJ9/NN/iBQsXD4n0OSkT9w6/2dUaXJP1Du 3p46WbMfaKRz0KdA9wfSEkVlX+8fxI0xmSdPdA+iqeGBdA5xAM2zm6ypUoP4 rC3YyVtqAInTUXRDpwGMmlORDDPpx8/jrjGBBd9RuWnTRRlKH2aajjh48n3H E0acdGvsw6C54377DPtxmJ6w92hhHya+0JH0edOHciI8lI7UXlzefKjs4UQv Gqy/65D1qhcF4uLniBq9KM8NeOLt0IsTt0IDXEJ6UE5gS7K/Ti+SzuXpnevp xlgJlaX2g71Ydib5TDGxG51D1dPK3/VgcbBoQq53F261eqR6JLYbq1Ldwg41 dKJSYgvjh3k33rUSd1GV6EQxCwVjBYM29PGRKfzXtQNZkvs+LBF+8c7y+diK duyp+uA0/IutK/la50Xa8ZballsdZAq6HgziQ4c2jGyc1W2+24qXZog2k2UU PK+2LS+nsQU38dMavIQouGejYzEpuQVDm0O1bf9uRbNTqv6lJi0oZVZbn1ja gqsv9Z6dP9KCF5PHA1SEWnDEMJf2orUZX4SWKuyiNGHk9k8vMjh1KMOw87Dx bUQ7jbPPGbK1qDEv5KGk0ID1l0+xtM1q0GanEcWjuw6P/kXK99KswR3Id/Zw UC1WiHq9Whj9hulHorPN1WqwoUJ5b6PmN/xzTY79Y6gabT1f8ubrVKNJaw0v +Z8qlCapfRborUDvC1+mmVqVeLfwZpZ8fxmee1bVdnX6KzpYSAQ4WBRhvq9X 6/bEcuwyDEkWdM3DiPcxuxcvkNHIp/904u5cbG9spmwjlOGC6ULmacUcFFyv QfCyKcFi19q2Z7ez0fPx3fPC5YX47V6Ozd7iLExVWr1EkcpHSlJryWDCZwzn f1Wa9CgXg2VvO2lDBjr1HZV2o2VhGJE5NjiXhgYCD82tgz/henGe9sreNBTn X5yL1E9FhZiw69TgNEzzaDC8tvEdqo8bFV/u+YiLC7tF/4yKw2Q+qRNdA++x 20r069SB5yjpmKyoQYrD6QOfNVZ0byNFMTTmamE0uloRrwfV3oOCL4ESpKR/ kHDjFnHGMwL+EZhI59sVgdMd9q+XeF4B4f90pmayebD63f8zP+Od6pktH6Fk a/paAOkFaBt0G5tcygD1jIDFEptYMKCxXXcaZYOt687ZHuHXIFUf5eazkAtJ 2bqJ948nwnpBnf6phHwozb509f6XJJB+7Brpq1sEM+FXLJMsk8HuEisX2CXg oALbJkPSYUVt5bnO6zJoUufW3Z9Ph0d8Cv1GKWSQeNAWIaCSCRI/CnmPcsth atyeXb0jG86Zuen3G1fAO0Hxg1sn/4MDj53oBumV4E/60CpunA8O8qPKEfzV IK6er5d2tgBuzGfk5Fp/A59t+s70E0Vgkf92b3lRDVTIWp/WtyqC6bN6VhU7 6sAFaUqrk0UwsDnat+p2PWx0I65MRJXAZHB6M6WlAYT/vWLfaFEK/S+b2+aV m+CrR4CIqwAZtHt89I9HNEO3Yrm6tWQ5lIs0ivR4tgB/g4ria/WvkPX0+qCK fCs8Pce64BNYDWaCnlqK/a1QHCUmuu1jLZDcXRNbn1Mg/nJUUJtYPVxvEw2V 024DLmQOXRdoAHv75EK1+TawKnY7/yK8AQaca9YR0tvBqCRg3Na8CbYo8/hH 2HTAmW+WrayaX7uEqbZMkU4YYDr6MQWbwWxDuJhEUyc8IBK0+s63QJf7VQP5 oC7Qcy4/JmbaAjJ33tbtgm7omZp0zuRphV28Dumzi91QP2a5JBfcCs7bWzQr cnvg9LZc17q4VmCwBLc8d+kFytDnvWd524FsIThjpdgHnkrHLh52bwdhPQKf JqMP3OaXz/IltYPv3dMfVNP6IYkkv+c5pR2M7SIj9G5+B3G71TeSF37trrSp eyo/AAd/OyV4zaUDbmU//I+XOQDnSvt5bCU6gU4//HtJ1iAUflAxzPmzC3iT 87wHNX6Ag5Ysz3dGFzzZfpK7OeEHNB/03Cdo1w0eD/fzT/JQ4Y5ZxXpWVDf8 19RY/+gGFQyEuCJ7jHtg1Sm2uqueCt96sgYWU/rAXSjhX7bqEGTty+kpUv8O yfxZ7l2xQ7Dfp6w1JXoAyDfS7CMINPDucsnb0TwAgf1CYjI3aRB3YHPq6OIA SJgf8Iin0GBdtMla4qZB2LTlj2KuJh08RIJD7VyosO6v208MP9IhvSOlwWqc ClkpRrQk4WE44W1gG5Y2BK4txrD0cBgeM4Yz0lTo4P7E2d9mehhucd+4a7vR wc9VYv3QlRHQqVInjqTQQdWeWBjcMgL0R60fSYRhCPGU+c1GexQ0ewL4qNRh +NRE5brnjUJbnRRB8tDIr99adVuJY+CW7HD1vucICNZ56gW+HQNekYkfnetG YdeE2O4EkXGgv83aF3pmFELrK9/Lh4/DEbJaZu7IKLw1rc/WEGAAyVztvrT8 GLjOb58deMwA3fpPapnKY8AtOLyfyDsBOn43LM84jkHWxmYxxYcTsH+PZKNL 2xi0S1n0cXkmofHcaYLapnGgBecWZTyehDiZhadHs8ahL2zU00yACR0bbtZK lzAguCzGQTiCCaybHtuOzE5AbFxYNFd0CiyfHFTgBDMh0Ut0hJgyBaV6ERcv xzEhK4JjUqrKAu2Iv5X9vjMhofDlgc5yFjiuUdxN6UyQyHGPMZCfhg2hrPMW vFOQGUjjFbo7DbGZxQX0e1PwXfNsvmn5NNwpDZquuM8Cz78mWohb2TC41pGc EcuCuHMP7VOt2fB4y4OeNe9pyLj+/OvYZzZEJGx1C30wDayu0g8b+WYgsPKj poIlGzI0LdMUzWag+Mn0S6unbPhQ6fTS7fMMrCnY619ms8HS4HHn2gYOrJM0 FYzWn4HN1fY7ee04oJTkmLn0qxdX+6gttYIDyzwW7tJKHIhe+iK3X3YW5CJ3 3Dh2lgNXVGTLC0NmIchSaeGjDwdot0N4k9mzcCJtoHHcjwNXIcNZ1WoO7gnZ VosUcEAinXKtpGEOjik7hdiWcIAqYGX2XmseZEMOSzPuzEGIyb34a0XzcM5a tW7/yUWIcnEf9zm6AK5ht9+dv74IKnax4pElC1BQtlxy8tQS+P0INLx+ZhFc o+pScv5bBvEAa5m27kU49NyL94zRTzgbJrlnwX0JrNJsvx4O+AllgZn+B3Yt w4kZlcii+p8Qe0NGXbRuGX4GH7v4VHEFdKfvRrKDuUB8QNzh+WUFHOjCMs/N foK5JSVm9+QKqEg1+NdorsBWX5NnfX+ugtDr1Lj1x1ZB4ndKmJ3NKpgXZgeo X14DkZTtgdc2r0G1bX9qrwlBy9fpv2suwgStRze2nMoT59EieahrOErza20O yrbT3MOr9cEqflOF1DqtbTxPkuv9+LR2GFL/DVPcqGUX3vdH9MI6rb3p9iVd xZu0/geY/0FW "]]}, {}, {}}}, {}, {}, {{}, {}}}, AspectRatio->0.6180339887498948, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{}, StyleBox[ LineBox[{{-8.694948115378702, -7.662463419291668}, {8.237675916947204, 7.162743031508085}}], Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Dashing[{0, Small}]], StripOnInput -> False]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImagePadding->All, Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"FB\"", TraditionalForm], PlotRange->{{-2.8983160384595674`, 2.7458919723157345`}, {-3.0278639449241225`, 3.4662317887317755`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]\), \!\(\* GraphicsBox[{{}, {{ {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{-8.557314213621972, -3.5981403826688174`}, \ {-4.556517431185752, -3.5981403826688174`}}]}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{5.015626009030535, 3.89671083743314}, { 8.567038225661562, 3.89671083743314}}]}, {}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], LineBox[{{-4.556517431185752, -3.5981403826688174`}, { 5.015626009030535, 3.89671083743314}}]}}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJwVjmk4FAobhhlUtlMpHQkpSVJRlpTyTuLYsoQSR9RRSVpsIUtlCdkSUSlS qRQtlLK/Y1+zjGWMbQzDjJ2xjvXr+/Fcz5/nvq9nx3+3zC4TuLi4OH/y/1Z6 sV+4pnENidCq2LRcKUQyXnWRoJrxkmwcourt+daRlDLU1E4OE0g5+8o/9tXz kUqydXTbB7lJDaZ2IhqFPKSZ35a3c6S4SW2si5KcTwRSj2uETvxtLlLUC02n f15xkc4reBCzK1axdvlUz9b5VUxkSO57Vr6CcRviW93frOL4/rNQSVvGlFSb +Vsry0jrs+ttFF5GIXf5I4yWZdScizOpP7WE0RlKvFHrllFXpjSr+/kiKq9Y 5pr0LmI+5cSdOvYCchz9GiO6OejFkvrNOrOAyeNH19Rnc9Ce3zegsYiDjAjl drWoecTtAuM3VTm4Wj19yVxgHsXTBqnUr/MomtYVoNszh3KnnQlmSvO40fyF FdF9Dm/lrJJUf86hfK61SN7yLIYmVNYuEufws5K2XE3pLDqOeD840DCLviU3 Fr5tnkWCdbDFVftZdEv5Rwh1ZzBO2a7DdGEGT1uPXv55bQqlab65CU9mkKys 4lVycgqXHuXXcB+aQf3wV+tN29i4ZnRTlj55Gq3ti/0LYtl4fNN7PHZ7Gjeu vWbfdZuNi79tGZ/Ep1FUapuplzMb5Ws7CY7FU6gXerhV6yYbt3lvO2p6fQq3 WMWdG1dmo2qRls1xsSlkv6JFbnKdRBm447WhnI38ItGTyRsn8VbjV4/0P16z 2qgAr8kJfHdapXh2Nxs/C5sUUhomMDzpLheFOokSpnsCLxhMIF1egawWNYl9 5Ajn0b/H8bKt90tu7UksoE0pCd4bQX6+Ratdi392+l7iGeIj2GOq7RL5fQK9 CxIspYqGkSbVGr3vxgSKuxr6b8wdxk2Cto/YchNo7VTIMi8awtyi+6/eVIyj xYVFtc9aQxjim2/qeWIcr7q43NOeG8SFEJMEg4IxTJC0Yq9xHETGR1UvPo0x 3HY0hHKFysTtM7mWMbmjuEH6RaOaDxOHFW3nOzVGsVc0dpeiDRMl9YdNyIUj KMXJtx04wcTC7Y4uF06OoJHJzw0tCwMovRLo4VE1jO8ZuTxPRwfQdf1eJ97T w7ga9OqHsMcAeu/eqrFIHcI0iQ5GLt8AlmbJvj51aQjtfIcnWF/7MWK7gNjw +CCuaVnJMXrUj7Y5sbVVvoPIarnb2GPUjzGH1j3uFBjEhIf5XkIa/dj36k3j 3wksnJelxphWMJBmJxjmvJeFLeu/3X0Ux8BZ9wyNzjwmdlyd1ufmYeC3/jGG qTETN7tHhqp09eFhHcZ8KX0ABQv3bci50Yc6xRxLxT8/h0rSCib8ezHur1m9 EMEBnMiNz6ETe3FaNtG19HU/Jpm9wyM1dFz1qW7pVu/HXz4PSgMC6GhwdbGi roGBemtuzvVdpyOlEcYiHBmIfs96tljQsVU6VF3kzw+xsAO75LToeOCyXpdl Yh92r+d7FNvWg3U3HM9YqvfhsH7b3QlSD1K0/M8JNPdifmDfmFtYD3ZsMaJe c+5FdmjjGoegHrxk7kBwE+7FE/xPvPpMe1BnQEVZMo2O3Vu/qrLe0/CVA9+y vT4dmTmlXGaHaDj/93/SWqw/nFsW5u+hYenG0LDMkB5kWgWJSKZ0Y62NgPk3 uR5MOl/+RMGwG02zD7rdiKah422XjcY1XRj5jqwbQO7G5fZLtJOVXRg0eu9w vGg3Evb73S+X6EJK0N6EZKsufLLi5i4y3In+5Z/XPU/qxIT1bxQO1neixodA K09GBwbrF1+KP9KBVakfEpUVOtChNWk4aEsHyp94J1nu2o4kb5ugYIE25Eqv OyuXR8Wq2E12300oaGH1fN6El4orW8ZfKB+g4AN7yV514zZMnLFw0KltRZ6P Wds7nlFQcoNha+lwCwabF7IUGa2oqZs8JO/UgjWkW4lKSq3YI5n7VESiBUMH mkpbfVuQXOz35XNEM0bdbBaQqG7G0gaCqxS9CdOZdpoLfzdjUpKYlOrLJjR8 kGLidKUJ32Ys/Dp6sQm1CXbGjllkdD5Q5NlGIaOBxbGrY7xkDH1y96GzBxm9 p04xpy0akVvkwfS20kZ0iQpV8nzXgMK1JB1L40aU3lccRBupRwOzSzw8Gxqx VqPySuajOrxY0Xbo+eEG1Ndoumij/Bv14+7lmefXY4Bt0iKZUoOu7mkx+1t+ 4yLDr1fQrxr3lAUfpdBrMDyeMLy0swrvZncOO1NrUNIzQ/hlVQX+5XVB+Nq+ KqzXrbtEcy5H1bIZZb4vJOy7e3hvgVgZRgu8K3bdR8IxF7MshaIS3Cif1n5O uBCv+K25s+NaMYanU5wKD+RhB085d9ymIkz969FHp5ps5FjqMTneiPlCOnZW 478w7+3IhuT6fLxonOgzEPcD+8y5JARkcxEyNC8PaXzHME3zSlmfX3jQzS87 WyITk5e9Z3saf6B/qp4zz0QGmoheSJGXz0Q+HuOrh6u+4VrrzKYO7q9YrOhU qiPxGb9bvhs6nPkRZ0xldv6cDcLO3YSN2vYpWHEjSTWsxA0qllyac+ST8Kju h9PT6p7Q0Rx1pTAyFq0ePcyJkIqDniH5ySSGP96MlgnpfR0Hu3mK82MjrUFW ef7JfHQiLDlZ9/CEhkKuuKB1LCcJQFSu25kWD/tVNk9UL6ZCvBTf7p8FySC4 +dbrD/QvwPmn7pSk0HtofCxTIrfmB/R7uuze+G8aGBZ7/Bdd/QM2HccQ6zPf 4KVXRYnm5V9gJ/uPVvxyJmT5MKMslnIgV/jiE6P3WbD/cA/hmEo+PDc+ciXG JBvUpVkNnlAIy/YDOR6cXCiISJe33k2Cou/kL0IpBZAiciqxyJ0EvCpPtb7L kSBc26koxbYImII5pjV+RcBrWX99vr4YbjzgVFg2F8PVsr7HDhklMH1Hh/c/ hVJoq+F+45RcCuPBe+9MBZSBUWMBUzS1FFpNir6LdpTDFl1a+HmVMpC/l2JD Vq6EoLulauvSKyEyaeaIcmQV3JGR9pwrqwTCqPNBLWY1uGZ4hTusVkLUlccG /Fq1kOQWv6fBqRpMT5Z/i0n8DbIPn6lavq4G8sm8LBanDuw/cilyLdfAloT2 wTCFBgiRpWsKmNTCbRHCuZj2BjhUnfDI8mUt3Pcs/2tDWCM8FrU+71NWB4Zt WY/4j5LBh+e0rah6A+gGt90OGiIDZcbASrejAU7zS3kGv2gCPvE9JhkmjfDV iXpZ1KgZaLangk/+boQYttGhw6vNUKtRvbNgMxmirhmNTGa0wMAuifM8mmSo 1x4sNbzcCuwQIcHrV8gQQTm8wXArBdyrIpNMvMnAu19Rd/Y3BYQza6JUHpHh ITOe3yKwDa4/5jG+RmkC6y4RaacjVBAf2x1f2N8EPEp6d7UmqLBavVfPdkMz 7CuT0qF/aIerm2s8XG80Q/2+HWXGFzogWCXyaslCM2gqLN+P2doJHnaeav7r WyDEQE7pR1MniLyenGzNbAHKupSivKguYOUGqj2/3gohLhzbDINukLx3vEtK kAKx8qduJa6lQecLn9y9mhQwP5aWEFpGg3mJOv+s5xSol6oYOK7VA+O+ZZW8 m9ugsklbivimBx7wnY5239EGC1SpH/UEOnAb3vfeZdMGb+WLoyft6fDcT6L1 wHMq6KZOln8qo4Ndg0ydaioVHER3xXPt6QXJ94oS0uVUoLXx35gP6wVL7oBT 7WwqtPNqjjwd64UajcqVAOt2qFfcPcgw64Otq18Tnzi0wyE5Ppf+X30QNTJy Rk62A6i92rWvJBlgM6Y8+sapAzpil/zFgxhgsW6IrhvZAYZ7s/+1GWaADO+Z hxNGncCtGeJ43bwfWhYiSUPZnTDPtFpjlt8PZ2viwqsGO+FpQ2bn5t0D4GhB ct9D7AH9oJ/D+dEDkFlkIRkmSAeNta8jzJYGQONZ5SdbMTpkfkjz6r7KhOqO MtEfZ+mwoHaz3rGVCemqk2urzHuBvqNSckWbBX93FpNnenuh/6Ld5Xc/WJAU IFzVvqkP4qdLd12THYR0j/JDRB8G2PmYXrB8Oggxp3y2yq/th2h6eZqXwBA4 zFzhrZHth0rPXpX2u0PgZhssduFyP/iyWupCp4fgwB23FWJMP3g0Dqw8dhqG x2EN7VkqAyBFIgrwMoZBlHPWX1lnAIrosnxj50fAMtxcYVqGCTsEU/vsqCOw wr+nvuEJE0YmxSOunR2FxPx1pfYyLJD55Tm8vWUU9mgkbZsyGASWE1sw9swY bNo+ZDTbMwjL+kIH2ihjEJVdn+bLGIRwzTsMXptxqJGr3jkxNQg5gceVlXrH wXB2WoFgOgSbrx+zOqI6AUMhrdpTzcNAv/fD2s17AvQy9oiUGo8CPWOnRjNp Ala/LAgxY0dB8ApVxmndJNTF73D75TwGDnjuit7pSaDRrzbyp44DPYz/pd+L SQi+v03i+x9P5KpNtSRzEuSNRSx17k1ASqZIxHEVNtwykCrI8poE50NRxKkA NpQbPvMLVmKDbLKllmUTGwISi/hNgA2qO3fsDpKdghCqWGaaFRvEOzg8T+9M Qei2oS0H77BBYX9e7df6KbhoU7JVbNcULB44/mVSbho8E/g6nydOgaZ70MPA gGm4l6rinCQ/DbzG7LvRtGnwD8zP/fVxGpYnEuL0YAaOVkurpd+egZ3Ef4Po r2dg4SQzMD50BmKfHH/3dO0s1P2SOhpNmwHuvEtSX51nYW1nVLnx8Aw4GVmZ 3O6ahfNfPvF+EZmF0MX38VrGc9B9vpBLznsWXMS7w3xL5uBfdYMTXmvnQC7T uPbZ8XlI2ETzDOefgy1ClW+lC+Zh+bWw4rs/XNF9VnaWFgco6lWBHNI8/HfN +pRYPQcMq7TWs1QWwEt/OV7RfgFmvVLOZzstQKG69ElRrkU487ZGPeLzAugG vbkn+2ERiH/p8jwmLMHxc+5bt1gvAZfMv1LiO5agQ1szXWzbMpgTWLbszysw EqXCv350GQrbK0YibFchUWdpprtpBX7KelUU9a2CZYSFwGrzKlBLmxOeJXAR bd/6fDriy0XklBP6mMVcRPeVf9ptZLmJF1a6xdV9CMRjgyrpfhPcxN5ntp8O 7uIlfqbLvhiYJBDdLsWx7lPXEosUL/r7WvESPT8YtiR3CRKTayRcb7atIY5P 6eR57FtP/B8v3Fr4 "]]}, {}, {}}}, {}, {}, {{}, {}}}, AspectRatio->0.6180339887498948, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{}, StyleBox[ LineBox[{{-8.557314213621972, -6.730706963341009}, {8.567038225661562, 6.677415739228952}}], Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Dashing[{0, Small}]], StripOnInput -> False]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImagePadding->All, Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"AAPL\"", TraditionalForm], PlotRange->{{-2.852438071207324, 2.855679408553854}, {-3.5981403826688174`, 3.89671083743314}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]\), \!\(\* GraphicsBox[{{}, {{ {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{-8.282742573545612, -3.7696723729864274`}, \ {-3.7842085071390166`, -3.7696723729864274`}}]}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], Dashing[Small], LineBox[{{3.0076215921420832`, 3.037337418556066}, { 8.273634113938336, 3.037337418556066}}]}, {}, {Hue[0.9060679774997897, 0.6, 0.6], Opacity[0], LineBox[{{-3.7842085071390166`, -3.7696723729864274`}, { 3.0076215921420832`, 3.037337418556066}}]}}, {{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.007333333333333334], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJwtlHk0FIz3xifSIkWRhFJkfROvtyxJd1KWalCSaCNLG0XSQiVEKUVZk1RE SqRkKeEOirIbM5ZsM5jB2Ga1hHz9zvndc+75nOc5595z/7nPRhcvW3cRAoEw Nd//R2YQV/uo7CKybt/W2b0aK8h5EoY3EjJFyXlhipumSBLk2pTGGs4BEbIV G0U7NBeR7TWehKx0WEDWmkn1MgleQE6esfbJiiaQT9fr0z8FLiBPpRyuItHn EKw/89ZtJZA/n+Qa3Kn4i75Hkr0LdQnkXY8+OrFrZ7Hl68U/VjdnMXRPsWnZ 6Aw29Nta6yvP4M3/8jLLVGbwW0K0IDxvGt12TI6pnZvGHQ2JjMPz2vqyTK5q 0R80arX3k7k1hXV2wtmX8n9wV7vhgZVLp/BhH+HuaPAU0jpDRQO1J3GDe8k7 Mn8SD35aNGv3bQLTmq/LLvKcxA/WB0ZW2E9g4dvEnd3sCYz4+WSE2CHE7XJ9 u6K8JvDukocuC9uFKHXTihY8NY7rxSLboyyE+ICZa7I5bBxP7VjzXDFDgHLi D0sVFcYxn8IS5j0SYG9GswbvkxBL8xvPmJEEeC/HSfQISYg5cU+PTt/iY7h4 fDCBLcCVOZnU2Jt89BmbK8t8IEDiMcvDbz34WOqwwGPjFgGmSty0adbj42Y5 argWlY/0nrCzDzg8zMzTzU+Yn4uQNwl5mMNDl2VMAzN1PrL2mdSOk3h4Y0Lc fzGVh9tNTk/4ruBhjneAX0kwD+83LnwT9Y6LfrqJdvv/m/dt+1dlpXBxXPoY +wmTi+TsM1r/eHExW6/k3vUELnafUI2w9OTiei+x5H5rLnqam8/47eVi8Ibv Mb/EuBjXnrrsVC8Hw2HLNfESDuZU6re6NXHQJc+uL/4aB6kyCeSOLA56/TZp ddbj4DG9gUcH4zhoSeesed8xhpsKPjpIOHGw0bQjq85+DE1+9VeqzPuD1Z/V VzaNIvFUQKLP1Cjq6pJXOh4cxQig3TlOGcW4D3mpEY0jGBu8zsvvxDBqVc28 TDw0gmluauSTz4fQPmiFhkfLMDrOFR+39xrC1P6TbwePD2Nw08ULROkhtPVz +7Kwbwhf6yzjni5iY1r5UdH3nkMoMNC5OPWVjbdSPPVqxtkYEBJ9PTR9EPOp s60OwWx8HezVlVQ+gARXmoupJBs9hrsXaz0bwJlYnuiNpEE8n6Vy1ebyAP4g dr4Tbh5EoSTv2zMmC7tULUfTigdwr3oCtYvGwhAXhnigzQCm+xr8Z01mYYHh v3XXe/qRvU9D/bkKC+WcPZ6EXu3HLsO/7m2TTFSyldd5vqwfFbWPGBt9ZmIk PeJPTjIL2yxiFz4NZuIqBuEL2ZCFKRVvH8hKMrGSYRNb1MBE6mF7w0RqH04U 26m8OMfEs+f7TgxR+pD8ON/mhCgTrU+4Esqie/H5uL4TL6kPz0zvufxYqRct qecHDhv1oWb+26SKnB6sm6TVBdJ6cbApu+5cKQNpI847PX16kU+a2aAZz0Az zY3pK6V6Mcnt3EgaiYH9CZ5fz3/owTCr7Q3HxRlYZKjncsmqB0XNV/+zY5iO EcwnlUojDFTWT/E3vUjH884fzLwfMbA5P7Tghh0dv37I9TixhYGgNOLjuLAb Xd7JTDHq6fiw82mK0/0u1KSxfk9eouO63YaqF3W6sGjuhmaSDB1V2nttH6zv wrEWNVKMVzeOqZRpGq/twudw7tJ4fhdO/Hn90sK1c/7v7TqOzHViATFpdV5r B9rmbRvOtuzEoMv3ZRmv5zUlwHQ8qgP1+BHXpL+343IjN1TumqfqvhbtiN/o z8gK0NZqxyhymm/VwzbUDs+lrrj2G5elJLUdYreiqcr9/fi9DSUctifTO1vR 2WT3KwPpNpxNNZkoLmnFNPZlsrdLKxb5f897c7oVPS4WVrrmtGDeX1K6Oa0Z 44Ouzy4VbUG/2hmR1ms0VFmQSjlu14zNiwesDCOpqLQ8t/vwGxqWUybbusIb UaEsvWd0kop/hHbZZGIj0lo3FW8kUZFYtbL6q14jfojL9Bl42YSJ8upq7l61 WB/LVDMRUNBbi5dQ/LcGw8WmFOT3UvBK+paQyMBKjFQQ+eT3ohFt0jM7IvZV 4OydCGd7QQO+X/vGhnr4B8bkbMGMfQ1oJhtFN676joGrtAQ9pvWIrCO9n4fL 0exz6Pt93FqUN9O90iBTjhszQxyDX9WgK6vfYltIGTpotXXcPlCNigcXtqcy yKjw8Yqx0YIqxPyy6meyiPIv9rxKzfmJ1pJ3fkTeLMaHlnyHL26VSL+35tXG TcXYZlTfdH5NBa52TbEvVPuGjCO5STnzd2TsU0+ySy7AkU/izncDyrHtb8nu IrkCLK2hdHXoleFutfpX9yby8dcBHM/sJ6Oj53n/lCv5+GN1vn67EaJBsXuf sVo+ivr7ZvyTVoQk/bmB3qxcjA/3DDRaWYjmnJdHbEo+4+NT7tL8WwVYf6Op SkfhI7Y+oXWaD+Xi395TFnGG2dj28tFVFccclJntKc+I+YBXJejyYxHZ6F8T Xrw8KhW/Xznf4OqZgXaMsy+jT6ei/GbfkuB9abgE/LXuNKdgwYYPuZqar/Ae h36zST8G11tO61+QisOPCQW+To3RWJUhU7DuxT0k/H/1x3+xN+92wMLyg7d5 tBjYEHp6I+l0EKjaJU9E+MSD8rZNniGCKIglegmvKrwGny2hL87rJ8GYtXoM 7+FnCEtZ4hhR9Bqu+MuKvNv7BcyH/5736noLYrKVNkpzX6Ev2DfvD+ED5Bux Cd0fCkGyvWW3ZtQnWPum1FLNoxjkapXekzblwuIL/f22j4qh4nk2fTI/H6Ty mGbBs2Roqci3gn1fIQh12wudS0Enr+Tav13foLukzlt+UTlMHyAsZPiUwIXS svrSgxVw7qJbp04IGQovKez/8rsCjrOv/XCqL4X1JIt/cowrIaw+23ypQjkE hUXJXXauhKArjiHbznwHA+bkhQTXX+B7xLdw5PMP8HXy6LKQq4HNp5+C8YJK qCRk2hXm18DHb4N31W1+QmzzWEGmWC3k18orFyX9guuUtLRgr1qYtAgoFxmp gp+vfE69JtRB0S9NophJDQRJaOkMKDQAvUErqvZRLUj1/Oo5rNkAG3Trf7t3 1wEh0GZB/4MGcNkVpDcs1wA60SXXZyMboXYVoym+rAF+VSnfWz7WCEcz7DZ9 82wE2r6dpqbCRnCI2R95bA0FxhadPFNSTIGXmwyfBZRRwHNi74a3NRS4oTrH 1LzYBGtNA9P9minw+sw1XVd5KvRLJR3cxqLA0IE/h3UrqVD/grNqQkiBkcRF h+J9afDE56uFrGQT8CPHzV4oN4Piuk6Kh1UTuEhVe+9vbAYrzZ3xzKQmMJqV ME4LbIFQys40iYYmuOJX8V+ObiuIi7pjpSoVtGtipf0YrSAS+yNC6R0VJHPa SwjRbRBbnm52by8NZtcutjxg9hvu/mr4eHNPM1h4E3gXJ3+DeP3m9hcOzdBZ ma/nltkOO+vfVcjyWkDxVGOewakO0HvuOXVquhWU9oQ5cWU7YcPJjkvjzb8h oPONTUJtJxj4i2o7H2+Hc3Xf+gxCu+AescnSt74Lik77Ic2kGzbJqSV53+4G y/mQujHRDWt0axKOaNEhUvFxzFpHOpgFaI3nZdChilOcI1JAB87gDUL5Jzoo jZ9QDVjNgKhPNZ3utgxoTD8y99iXAVyW/3+nfjBgfLNxEJHKgOWsKqGEWg+o BLYrRG3tgVmFkd3mRj1AYqy+HB7bA6Z26aH19T2Q5V3lrDfRA2d8vWjJkz2w Y5v45EPHXtgqvN6qPU994u2w5KJeEK9bLHHWvg+yFGRSrm7og+1+FSu4mkwQ 2UmXkw7tg13AZ4bGM0Gj1WlpALsPDFyKJRkKLDgh9rej5AAT7vqdsy3cyAId zSnrzgImdD76HOR2hgX+GhmXGEos2FD2lp6QzQKhumFuUxgLSEtSHAorWHAv oXygiMcCkzlWvW4PCwLSZfa/OdEPyheGzlU/64d1gb/vJfzqh9ZGjduxRgMw /O7B91f6AzDhe+jZ+scDsPsCN70idQCqxKLfsVkDoB1211VWZhCKby1f5S0+ CG6dicWJIYNwVC0usf4yG05nBCi6jg9C1o77BGEIG9Yrpkf5nWNDKD89fbqV Dd2Dq4eHO9kg3vCFZLxjCCSWLSyuPjQE2yk/RzZbDUEhebmPavUQBGUV3JZ3 HYKlOktcxPcMw+DobmsV7yEo+VnACC8ZhiyVtgX85CGIWvnGsWj7CGQuHItc ljUEs8KTJ7O/jMC0cUDu5fYheHrtXLWf4SiQAqUtKGLDQJI+wfi3cBRQXyX3 jXAYDB+EnhkzGQPraX/ptkWj8FH9WWN1+Ri0s4qkqqVGQTlg1TauKgfyL52Z PO8+CrKOmrs0PDiQp97nZv1+FKBXhPrsEwdEl1YlH+WOwtbvT7mOUxxoqXa/ QuCPAmXV79lrplxwmjMILVs7Bs7NUX1LHnFB5Cw8iTbmwLsCHQvlNi4MDujy 18dyQJvq9aldjQcOwd7yq2Y54CZzqNn6Kg9srboih5ZyQTuxuzm+kgd3/NVr YyS5IJv9NYYmz4db4ZUj7ju5cNJRTFrLmz+f028OnN3Phe5vbwcKK/kQx+Dr zY1x4dIMrfLTRgFs9/AaFpPngWo0VckkQAANBj+XLt/GA/jg0f24UwDRz5Ys WPiaBwb2W537QQg/Qn0H3mrxIcb6fWhwmhA0nvSwCyf4UJPlvD5rxTg0rH0k 1U4SwI77958V3RiHwNdyVTsOC+C7krKe9Mg49D+4aZx0UgDD3768UHadgJS4 uuqwCwI4S/JO9OqagOLDcWzPOwJw9Le6HOc0CWfUgyUzqgXQuCR60cH+SdBr /7jxlqIQdobRegKuTsG3IMrdWwNCCJ78dVR3xR94WiCI2GI5CYQ1g1L52X/A XPOgV9b8ntX0GlLB8WmQbElK3C0/BVot95ceWjMD0QTF7yvCp2DrwJOXtj0z oBMpXSidNAd83dAi/9JZKLX6k6eVPgfOIhUx0oV/YVHjzf1tygTiW3Mt9c6m OTh7sdte3I1A9Lf++urKIwIRzzY6fPEiEP/xn85pO7iAOBoYMjSxV4SYKjCe /rJPhHiR/1CJflqEGHwy5d2pN6LE4xrP/3oeW0z82HTsuLLUIqL58M3Ia6Ql xP8BO4x5NA== "]]}, {}, {}}}, {}, {}, {{}, {}}}, AspectRatio->0.6180339887498948, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{{}, StyleBox[ LineBox[{{-8.282742573545612, -8.278260631231932}, {8.273634113938336, 8.315119441113826}}], Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Dashing[{0, Small}]], StripOnInput -> False]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Automatic, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.4, 0.5], AbsoluteThickness[1], AbsoluteDashing[{1, 2}]], ImagePadding->All, Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox["\"INTC\"", TraditionalForm], PlotRange->{{-2.7609141911818704`, 2.757878037979445}, {-3.7696723729864274`, 3.037337418556066}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]\)}

Realize um teste de normalidade multivariado com BaringhausHenzeTest (BHEP). A suposição de normalidade é claramente rejeitada.

In[6]:=
Click for copyable input
htd = BaringhausHenzeTest[fdata, "HypothesisTestData"];
In[7]:=
Click for copyable input
htd["TestDataTable"]
In[8]:=
Click for copyable input
\!\(\* StyleBox[ TagBox[GridBox[{ {"\<\"\"\>", "\<\"Statistic\"\>", "\<\"P\[Hyphen]Value\"\>"}, {"\<\"Baringhaus\[Hyphen]Henze\"\>", "3.69066", "0.`"} }, AutoDelete->False, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}, GridBoxDividers->{ "Columns" -> {}, "ColumnsIndexed" -> {2 -> GrayLevel[0.7]}, "Rows" -> {}, "RowsIndexed" -> {2 -> GrayLevel[0.7]}, "Items" -> {}, "ItemsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}, GridBoxSpacings->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{Automatic}}, "RowsIndexed" -> {}, "Items" -> {}, "ItemsIndexed" -> {}}], "Grid"], "DialogStyle", StripOnInput->False, "NodeID" -> 379]\)
In[9]:=
Click for copyable input
htd["ShortTestConclusion"]
Out[9]=

Ajuste os dados filtrados com MultinormalDistribution e MultivariateTDistribution.

In[10]:=
Click for copyable input
multiN = EstimatedDistribution[fdata, MultinormalDistribution[Array[x, 5], Array[s, {5, 5}]]]
Out[10]=
In[11]:=
Click for copyable input
multiT = EstimatedDistribution[fdata, MultivariateTDistribution[Array[x, 5], Array[s, {5, 5}], nu]]
Out[11]=

Calcule o AIC para duas distribuições. O modelo de MultivariateTDistribution possui um valor menor.

In[12]:=
Click for copyable input
aic[k_, dist_, data_] := 2 k - 2 LogLikelihood[dist, data]
In[13]:=
Click for copyable input
aic[5 + 15, multiN, fdata]
In[14]:=
Click for copyable input
3273.13
In[15]:=
Click for copyable input
aic[5 + 15 + 1, multiT, fdata]
In[16]:=
Click for copyable input
2931.76

Exemplos Relacionados

de en es fr ja ko ru zh