# 数式定義領域

 In[1]:= X\[ScriptCapitalR] = ImplicitRegion[1 <= x^2 + y^2 <= 2, {x, y}];
 In[2]:= XRegionPlot[\[ScriptCapitalR], FrameTicks -> None]
 Out[2]=
 In[3]:= XIntegrate[1, x \[Element] \[ScriptCapitalR]]
 Out[3]=
 In[4]:= X\[ScriptCapitalR] = ImplicitRegion[x y z <= 1, {{x, -5, 5}, {y, -5, 5}, {z, -5, 5}}];
 In[5]:= XRegionPlot3D[\[ScriptCapitalR], PlotStyle -> Opacity[0.5]]
 Out[5]=
 In[6]:= XIntegrate[1, x \[Element] \[ScriptCapitalR]]
 Out[6]=
 In[7]:= X\[ScriptCapitalR] = ImplicitRegion[-1 + (-1 + 18 x^2 - 48 x^4 + 32 x^6)^2 + (-1 + 18 y^2 - 48 y^4 + 32 y^6)^2 <= 0, {x, y}];
 In[8]:= XRegionPlot[\[ScriptCapitalR], FrameTicks -> None] // Quiet
 Out[8]=

 In[9]:= X\[ScriptCapitalR] = ParametricRegion[{Cos[\[Theta]], Sin[\[Theta]]}, {{\[Theta], 0, 2 \[Pi]}}];
 In[10]:= XRegionPlot[\[ScriptCapitalR], FrameTicks -> None]
 Out[10]=
 In[11]:= X\[ScriptCapitalR] = ParametricRegion[{{s^2 t^2, s t^3}, -1 <= s <= 1 && -1 <= t <= 1}, {s, t}];
 In[12]:= XRegionPlot[\[ScriptCapitalR], FrameTicks -> None]
 Out[12]=

## Mathematica

Questions? Comments? Contact a Wolfram expert »