Wolfram Language

Traitement d'images et de signaux

Ondes dans le Grand Lac Salé

À l'aide de ImageMesh, vous pouvez convertir des segments d'image en objets BoundaryMeshRegion. Ces régions de mailles vous permettent d'utiliser des fonctions dans d'autres aires, telles que les méthodes d'éléments finis (FEM).

Pour illustrer cette connexion FEM, déterminez les modes principaux d'ondes de surface sur le Grand Lac Salé dans l'Utah.

In[1]:=
Click for copyable input
img = EntityValue[Entity["Lake", "GreatSaltLake::yw8cf"], "Image"]
Out[1]=

Régulariser l'image avec un filtre de moyen déplacement.

In[2]:=
Click for copyable input
img2 = MeanShiftFilter[img, 3, 0.1]
Out[2]=

Obtenez une segmentation par région en croissance.

In[3]:=
Click for copyable input
mask = RegionBinarize[img2, \!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzt1jEKwkAQQNFdK0uv4C1sLW0VD6AYxSZCFMRzCJ7XiF3SzFb7lf8ggUCK D8MmM99f1sdJSuk67W/r3X3ZdbvHZtY/bNvr+dQ2h1V7a05Nt9h/Xnv21ytJ kiRJkiRJkn5H7tVuGLMqzqo4q+KsiuNW8bKsimNWfbNwXVbF5Yzuqp0xZFUB dBaui5kF/T5AsxJ1jNAsq0qgs3BlOSPDMrMLmvUBDcNnsbqov2x4FrWrdscA NIu6SjCzoEOEZlGniF5Ta0eMmVXCqjjmCJlV5KzaDWNWxXGreFnMKvAIazeM MUfIXEmtKsCs8hSWsCrOqjhmlSRJkiRJkvS/3tRrD1M= "], {{0, 147}, {150, 0}}, {0, 1}, ColorFunction->GrayLevel], BoxForm`ImageTag["Bit", ColorSpace -> Automatic, Interleaving -> None], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{150, 147}, PlotRange->{{0, 150}, {0, 147}}]\), 1/5]
Out[3]=

Récupérez un objet de BoundaryMeshRegion de la surface du lac surface.

In[4]:=
Click for copyable input
\[ScriptCapitalR] = ImageMesh[mask]
Out[4]=

Créez une surface de maille du lac.

In[5]:=
Click for copyable input
\[CapitalOmega] = TriangulateMesh[\[ScriptCapitalR], MaxCellMeasure -> 8]
Out[5]=

Résolvez l'équation de la surface du lac d'onde en déterminant les fonctions propres du Laplacien intérieur de la région du lac.

In[6]:=
Click for copyable input
\[ScriptCapitalL] = -\!\( \*SubsuperscriptBox[\(\[Del]\), \({x, y}\), \(2\)]\(\[CurlyPhi][x, y]\)\);

Utiliser une condition de limite.

In[7]:=
Click for copyable input
\[ScriptCapitalB] = DirichletCondition[\[CurlyPhi][x, y] == 0, True];

Générez une base orthonormée de fonctions propres Φ avec valeurs propres Λ.

In[8]:=
Click for copyable input
{\[CapitalLambda], \[CapitalPhi]} = NDEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]}, \[CurlyPhi][x, y], {x, y} \[Element] \[CapitalOmega], 64];

Montrez les six premiers modes d'oscillation.

In[9]:=
Click for copyable input
GraphicsGrid[ Partition[ Table[ContourPlot[\[CapitalPhi][[ k]], {x, y} \[Element] \[CapitalOmega], PlotRange -> All, PlotLabel -> \[CapitalLambda][[k]], PlotTheme -> "Minimal"], {k, 6}], 3 ], ImageSize -> 512 ]
Out[9]=

L'évolution temporelle des modes d'oscillation en décomposition est donnée par ce qui suit.

In[10]:=
Click for copyable input
\[CapitalTheta][\[Lambda]_, \[Xi]_, t_] = FullSimplify[ DSolveValue[Join[{ \!\( \*SubscriptBox[\(\[PartialD]\), \(t, t\)]\(\(TraditionalForm\`\[CurlyTheta]\)[ t]\)\) + \[Xi] \!\( \*SubscriptBox[\(\[PartialD]\), \(t\)]\(\(TraditionalForm\`\ \[CurlyTheta]\)[ t]\)\) == -\[Lambda] \!\(TraditionalForm\`\[CurlyTheta]\)[ t] }, {\!\(TraditionalForm\`\[CurlyTheta]\)[0] == 1, \[CurlyTheta]'[0] == 0} ], \!\(TraditionalForm\`\[CurlyTheta]\)[t], t], {\[Lambda] > 0, \[Xi] > 0, \[Xi]^2 < 4 \[Lambda], t \[Element] Reals} ]
Out[10]=

Au moyen de l'expansion d'une perturbation initiale en fonctions propres et en laissant évoluer dans le temps, une simulation de la propagation des ondes à travers le lac est obtenu.

Montrer l'entrée complète de Wolfram Language
In[11]:=
Click for copyable input
n = 64; weights = Take[GaussianMatrix[{{n}, n/2}], -n - 1]; weights -= Last[weights]; weights = Most[weights]; weights *= 1/First[weights]; wave[t_] = (\[CapitalTheta][\[CapitalLambda], 0.005, t] weights (\[CapitalPhi] /. {x -> 50, y -> 60} )) . \[CapitalPhi]; waveColors = (Blend[{{-0.01, Purple}, {-0.005, Blue}, {0., Green}, {0.005, Orange}, {0.01, Yellow}}, #] &); anim = Table[ ContourPlot[ wave[t], {x, y} \[Element] \[CapitalOmega], PlotRange -> {-0.01, 0.012}, Contours -> Range[-0.01, 0.012, 0.0005], PlotTheme -> "Minimal", ColorFunctionScaling -> False, ContourStyle -> None, ColorFunction -> waveColors ], {t, 0, 255, 1} ]; ListAnimate[anim]
Jouer l'animation
Arrêter l'annimation

Exemples connexes

de en es ja ko pt-br ru zh