Créez une galerie de fonctions propres pour le Laplacien dans une balle
Définissez un opérateur Laplacien 3D.
In[1]:=

\[ScriptCapitalL] = -Laplacian[u[x, y, z], {x, y, z}];
Spécifiez des conditions aux limites de Dirichlet homogènes.
In[2]:=

\[ScriptCapitalB] = DirichletCondition[u[x, y, z] == 0, True];
Trouvez les 16 plus petites valeurs et fonctions propres dans une balle.
In[3]:=

\[CapitalOmega] = Ball[{0, 0, 0}, 2];
In[4]:=

{vals, funs} =
DEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x, y, z], {x, y, z} \[Element] \[CapitalOmega], 16];
Les valeurs propres sont données en termes de BesselJZero.
In[5]:=

vals[[1]] // TraditionalForm
Out[5]//TraditionalForm=

Générez une galerie de fonctions propres.
Afficher l'entrée complète de Wolfram Language
Out[6]=
