Wolfram Language

Medidas em probabilidade e estatística

Distribuições não paramétricas de dados quantitativos

Use WeatherData para obter séries temporais das medições da velocidade do vento na cidade de Chicago do início de 2014 até o final de 2015.

In[1]:=
Click for copyable input
wsts = WeatherData["Chicago", "WindSpeed", {DateObject[{2014, 1, 1}], DateObject[{2015, 12, 31}]}]
Out[1]=

Use Histogram para visualizar a distribuição das velocidades do vento.

In[2]:=
Click for copyable input
Histogram[wsts, PlotTheme -> "Detailed", FrameLabel -> Automatic]
Out[2]=

Extraia valores de velocidade do vento com os valores que faltam interpolados.

In[3]:=
Click for copyable input
winds = Values[TimeSeries[wsts, MissingDataMethod -> "Interpolation"]]
Out[3]=

Use SmoothKernelDistribution para construir um modelo não paramétrico de velocidades do vento em Chicago, certificando-se que a velocidade do vento permaneça não-negativa.

In[4]:=
Click for copyable input
ws\[ScriptCapitalD] = SmoothKernelDistribution[winds, Automatic, {"Bounded", Quantity[0, ("Kilometers")/("Hours")], "Gaussian"}]
Out[4]=

Use um modelo não paramétrico de potência da turbina como uma função de velocidade do vento para estimar a produção média de energia para uma turbina eólica da GE de 1.5 MW instalada no local.

In[5]:=
Click for copyable input
turbine = Interpolation[ QuantityArray[{{0.`, 0.`}, {0.5`, 0.`}, {1.`, 0.`}, {1.5`, 0.`}, {2.`, 0.`}, {2.5`, 0.`}, {3.`, 0.`}, {3.5`, 0.`}, {4.`, 36.`}, {4.5`, 66.`}, {5.`, 104.`}, {5.5`, 150.`}, {6.`, 205.`}, {6.5`, 269.`}, {7.`, 344.`}, {7.5`, 428.`}, {8.`, 528.`}, {8.5`, 644.`}, {9.`, 774.`}, {9.5`, 926.5`}, {10.`, 1079.`}, {10.5`, 1211.`}, {11.`, 1342.`}, {11.5`, 1401.`}, {12.`, 1460.`}, {12.5`, 1477.`}, {13.`, 1494.`}, {13.5`, 1500.`}, {30.`, 1500.`}}, {"Meters"/"Seconds", "Kilowatts"}] // Normal, InterpolationOrder -> 1];
In[6]:=
Click for copyable input
NExpectation[turbine[v], v \[Distributed] ws\[ScriptCapitalD]]
Out[6]=

Exemplos Relacionados

de en es fr ja ko ru zh