# 漸近出力追従

 In[1]:= Xpars = {Subscript[c, B1] -> 20.05, Subscript[c, B2] -> 0.2, Subscript[k, 1] -> 0.4, Subscript[k, 2] -> 1};
 In[2]:= Xasys = AffineStateSpaceModel[ {{-Subscript[k, 1] Sqrt[Subscript[x, 1]], -((Subscript[k, 2] Subscript[x, 2])/(1 + Subscript[x, 2])^2)}, {{ 1, 1 }, {( Subscript[c, B1] - Subscript[x, 2])/Subscript[x, 1], ( Subscript[c, B2] - Subscript[x, 2])/Subscript[x, 1] }}, {Subscript[ x, 1], Subscript[x, 2]}, {{ 0, 0 }, {0, 0 }}}, {{Subscript[x, 1], 25.05}, {Subscript[x, 2], 9}}, {{Subscript[u, 1], 1}, {Subscript[u, 2], 1}}, {Automatic, Automatic}, Automatic , SamplingPeriod -> None];

 In[3]:= Xpars1 = {Subscript[r, 1] -> 30, Subscript[r, 2] -> 10.5, Subscript[p, 1] -> -1, Subscript[p, 2] -> -1.5};

 In[4]:= Xfb = AsymptoticOutputTracker[ asys, {Subscript[r, 1], Subscript[r, 2]}, {Subscript[p, 1], Subscript[p, 2]}]
 Out[4]=

 In[5]:= Xcsys = SystemsModelStateFeedbackConnect[asys, fb] /. pars /. pars1
 Out[5]=

 In[6]:= XOutputResponse[csys, {0, 0}, {t, 0, 4}];
 In[7]:= XOutputResponse[csys, {0, 0}, {t, 0, 4}];; Plot[Evaluate[ Join[%, {Subscript[r, 1], Subscript[r, 2]} /. pars1]], {t, 0, 4}, PlotStyle -> {Automatic, Automatic, Dashed, Dashed}, PlotLegends -> {"liquid level", "product concentration", "ref. liquid level", "ref. product concentration"}]
 Out[7]=

 In[8]:= Xpars = {Subscript[c, B1] -> 20.05, Subscript[c, B2] -> 0.2, Subscript[k, 1] -> 0.4, Subscript[k, 2] -> 1};; Plot[Evaluate[ Join[%, {Subscript[r, 1], Subscript[r, 2]} /. pars1]], {t, 0, 4}, PlotStyle -> {Automatic, Automatic, Dashed, Dashed}, PlotLegends -> {"liquid level", "product concentration", "ref. liquid level", "ref. product concentration"}]; -fb /. Thread[{Subscript[x, 1], Subscript[x, 2]} -> StateResponse[csys, {0, 0}, {t, 0, 4}]] /. pars /. pars1; Plot[Evaluate[%], {t, 0, 4}, PlotRange -> All, AxesOrigin -> {0, 0}, PlotLegends -> {"input 1", "input 2"}]
 Out[8]=

## Mathematica

Questions? Comments? Contact a Wolfram expert »