Find Eigenvalues That Lie in an Interval
Specify a region.
In[1]:=
\[CapitalOmega] =
ImplicitRegion[(x^2 + y^2 + 2 y)^2 < 4 (x^2 + y^2), {x, y}];
Specify a Laplacian operator.
In[2]:=
\[ScriptCapitalL] = -Laplacian[u[x, y], {x, y}];
Specify a Dirichlet boundary condition.
In[3]:=
\[ScriptCapitalB] = DirichletCondition[u[x, y] == 0, True];
Find an eigenvalue in a particular interval and the corresponding eigenfunction using a refined mesh.
In[4]:=
{vals, funs} =
NDEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u, {x, y} \[Element] \[CapitalOmega], 1,
Method -> {"Eigensystem" -> {"FEAST", "Interval" -> {400, 405}},
"SpatialDiscretization" -> {"FiniteElement",
"MeshOptions" -> {"MaxCellMeasure" -> 0.001}}}]
Out[4]=
Visualize the eigenfunction found.
show complete Wolfram Language input
Out[5]=